共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lyly G. Luhachack Orane Visvikis Amanda C. Wollenberg Adam Lacy-Hulbert Lynda M. Stuart Javier E. Irazoqui 《PLoS pathogens》2012,8(7)
Understanding host defense against microbes is key to developing new and more effective therapies for infection and inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host Caenorhabditis elegans and pathogenic bacterium Staphylococcus aureus, we describe an important role for hypoxia-inducible factor (HIF) in defining the specificity of the host response in the intestine. We demonstrate that loss of egl-9, a negative regulator of HIF, confers HIF-dependent enhanced susceptibility to S. aureus while increasing resistance to Pseudomonas aeruginosa. In our attempt to understand how HIF could have these apparently dichotomous roles in host defense, we find that distinct pathways separately regulate two opposing functions of HIF: the canonical pathway is important for blocking expression of a set of HIF-induced defense genes, whereas a less well understood noncanonical pathway appears to be important for allowing the expression of another distinct set of HIF-repressed defense genes. Thus, HIF can function either as a gene-specific inducer or repressor of host defense, providing a molecular mechanism by which HIF can have apparently opposing roles in defense and inflammation. Together, our observations show that HIF can set the balance between alternative pathogen-specific host responses, potentially acting as an evolutionarily conserved specificity switch in the host innate immune response. 相似文献
3.
The unfolded protein response (UPR), which is activated by perturbations of the endoplasmic reticulum homeostasis, has been shown to play an important role in innate immunity and inflammation. However, little is known about the molecular mechanisms underlying activation of the UPR during immune responses. Using small RNA deep sequencing and reverse genetic analysis, we show that the microRNA mir-233 is required for activation of the UPR in Caenorhabditis elegans exposed to Pseudomonas aeruginosa PA14. P. aeruginosa infection up-regulates the expression of mir-233 in a p38 MAPK-dependent manner. Quantitative proteomic analysis identifies SCA-1, a C. elegans homologue of the sarco/endoplasmic reticulum Ca2+-ATPase, as a target of mir-233. During P. aeruginosa PA14 infection, mir-233 represses the protein levels of SCA-1, which in turn leads to activation of the UPR. Whereas mir-233 mutants are more sensitive to P. aeruginosa infection, knockdown of sca-1 leads to enhanced resistance to the killing by P. aeruginosa. Our study indicates that microRNA-dependent pathways may have an impact on innate immunity by activating the UPR. 相似文献
4.
5.
Lisa M. Parsons Rahman M. Mizanur Ewa Jankowska Jonathan Hodgkin Delia O′Rourke Dave Stroud Salil Ghosh John F. Cipollo 《PloS one》2014,9(10)
Caenorabditis elegans bus-4 glycosyltransferase mutants are resistant to infection by Microbacterium nematophilum, Yersinia pestis and Yersinia pseudotuberculosis and have altered susceptibility to two Leucobacter species Verde1 and Verde2. Our objective in this study was to define the glycosylation changes leading to this phenotype to better understand how these changes lead to pathogen resistance. We performed MALDI-TOF MS, tandem MS and GC/MS experiments to reveal fine structural detail for the bus-4 N- and O-glycan pools. We observed dramatic changes in O-glycans and moderate ones in N-glycan pools compared to the parent strain. Ce core-I glycans, the nematode''s mucin glycan equivalent, were doubled in abundance, halved in charge and bore shifts in terminal substitutions. The fucosyl O-glycans, Ce core-II and neutral fucosyl forms, were also increased in abundance as were fucosyl N-glycans. Quantitative expression analysis revealed that two mucins, let-653 and osm-8, were upregulated nearly 40 fold and also revealed was a dramatic increase in GDP-Man 4,6 dehydratease expression. We performed detailed lectin binding studies that showed changes in glycoconjugates in the surface coat, cuticle surface and intestine. The combined changes in cell surface glycoconjugate distribution, increased abundance and altered properties of mucin provide an environment where likely the above pathogens are not exposed to normal glycoconjugate dependent cues leading to barriers to these bacterial infections. 相似文献
6.
David Schleheck Nicolas Barraud Janosch Klebensberger Jeremy S. Webb Diane McDougald Scott A. Rice Staffan Kjelleberg 《PloS one》2009,4(5)
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa. 相似文献
7.
Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45 degrees C. 下载免费PDF全文
Most Pseudomonas aeruginosa strains are able to produce two distinct lipopolysaccharide (LPS) O-polysaccharide types, A-band (common-antigen) and B-band (serotype-specific) LPSs. The relative expression levels of these two LPS types in P. aeruginosa PAO1 (O5 serotype) at various growth temperatures were investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining or Western blotting (immunoblotting) with monoclonal antibodies specific for each O polysaccharide. A-band and B-band LPSs were expressed concurrently when the cells grew at 15, 25, and 35 degrees C; however, growth at 45 degrees C resulted in a surface deficiency in B-band LPS as determined by immunoblotting and agglutination with B-band-specific monoclonal antibody. Transfer of these cells (expressing A-band LPS but deficient in B-band LPS) [A+B-]) to a lower temperature (at which the division time was comparable) resulted in a rapid resumption of normal A-band and B-band expression. B-band LPS was detectable by immunoblotting before measurable growth of the culture had occurred. 相似文献
8.
9.
Jirapat Likitlersuang Greg Stephens Konstantine Palanski William S. Ryu 《Journal of visualized experiments : JoVE》2012,(69)
We have developed instrumentation, image processing, and data analysis techniques to quantify the locomotory behavior of C. elegans as it crawls on the surface of an agar plate. For the study of the genetic, biochemical, and neuronal basis of behavior, C. elegans is an ideal organism because it is genetically tractable, amenable to microscopy, and shows a number of complex behaviors, including taxis, learning, and social interaction1,2. Behavioral analysis based on tracking the movements of worms as they crawl on agar plates have been particularly useful in the study of sensory behavior3, locomotion4, and general mutational phenotyping5. Our system works by moving the camera and illumination system as the worms crawls on a stationary agar plate, which ensures no mechanical stimulus is transmitted to the worm. Our tracking system is easy to use and includes a semi-automatic calibration feature. A challenge of all video tracking systems is that it generates an enormous amount of data that is intrinsically high dimensional. Our image processing and data analysis programs deal with this challenge by reducing the worms shape into a set of independent components, which comprehensively reconstruct the worms behavior as a function of only 3-4 dimensions6,7. As an example of the process we show that the worm enters and exits its reversal state in a phase specific manner. 相似文献
10.
Wei Zou Qun Lu Dongfeng Zhao Weida Li James Mapes Yuting Xie Xiaochen Wang 《PLoS genetics》2009,5(10)
During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane. 相似文献
11.
12.
Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold atmospheric plasma (CAP) is a new, promising antibacterial treatment to combat antibiotic-resistant bacteria. Plasma is ionized gas that has antibacterial properties through the generation of a mix of reactive oxygen and nitrogen species (RONS), excited molecules, charged particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms using a plasma jet (kINPen med), with no viable cells detected after 5 min treatment and no attached biofilm cells visible with confocal microscopy after 10 min plasma treatment. Because of its multi-factorial action, it is widely presumed that the development of bacterial resistance to plasma is unlikely. However, our results indicate that a short plasma treatment (3 min) may lead to the emergence of a small number of surviving cells exhibiting enhanced resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher degree of resistance to hydrogen peroxide. Whole genome comparison between surviving cells and control cells revealed 10 distinct polymorphic regions, including four belonging to the redox active, antibiotic pigment phenazine. Subsequently, the interaction between phenazine production and CAP resistance was demonstrated in biofilms of transposon mutants disrupted in different phenazine pathway genes which exhibited significantly altered sensitivity to CAP. 相似文献
13.
Alexandra B. Byrne Tyson J. Edwards Marc Hammarlund 《Journal of visualized experiments : JoVE》2011,(51)
Neurons communicate with other cells via axons and dendrites, slender membrane extensions that contain pre- or post-synaptic specializations. If a neuron is damaged by injury or disease, it may regenerate. Cell-intrinsic and extrinsic factors influence the ability of a neuron to regenerate and restore function. Recently, the nematode C. elegans has emerged as an excellent model organism to identify genes and signaling pathways that influence the regeneration of neurons1-6. The main way to initiate neuronal regeneration in C. elegans is laser-mediated cutting, or axotomy. During axotomy, a fluorescently-labeled neuronal process is severed using high-energy pulses. Initially, neuronal regeneration in C. elegans was examined using an amplified femtosecond laser5. However, subsequent regeneration studies have shown that a conventional pulsed laser can be used to accurately sever neurons in vivo and elicit a similar regenerative response1,3,7.We present a protocol for performing in vivo laser axotomy in the worm using a MicroPoint pulsed laser, a turnkey system that is readily available and that has been widely used for targeted cell ablation. We describe aligning the laser, mounting the worms, cutting specific neurons, and assessing subsequent regeneration. The system provides the ability to cut large numbers of neurons in multiple worms during one experiment. Thus, laser axotomy as described herein is an efficient system for initiating and analyzing the process of regeneration. 相似文献
14.
15.
16.
Genetic mapping of the structural gene for phospholipase C of Pseudomonas aeruginosa PAO. 总被引:1,自引:0,他引:1 下载免费PDF全文
An insertion mutation constructed by gene replacement methods was used to map the gene corresponding to the hemolytic phospholipase C (plcS gene) in Pseudomonas aeruginosa PAO1 by R68.45-mediated conjugation. plcS mapped approximately at 67 min on the 75-min chromosomal map (B. W. Holloway, K. O'Hoy, and H. Matsumoto, p. 213-221, in S. J. O'Brien, ed., Genetic Maps 1987, vol. 4, 1987), between the markers pur-67 and pru-375 and considerably distal to the regulatory genes plcA and plcB, which are located at approximately 12 min. 相似文献
17.
18.
19.
Clara Torres-Barceló Flor I. Arias-Sánchez Marie Vasse Johan Ramsayer Oliver Kaltz Michael E. Hochberg 《PloS one》2014,9(9)
The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches. 相似文献