首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The common marmoset (Callithrix jacchus) is considered a novel experimental animal model of non-human primates. However, due to antibody unavailability, immunological and pathological studies have not been adequately conducted in various disease models of common marmoset. Quantitative real-time PCR (qPCR) is a powerful tool to examine gene expression levels. Recent reports have shown that selection of internal reference housekeeping genes are required for accurate normalization of gene expression. To develop a reliable qPCR method in common marmoset, we used geNorm applets to evaluate the expression stability of eight candidate reference genes (GAPDH, ACTB, rRNA, B2M, UBC, HPRT, SDHA and TBP) in various tissues from laboratory common marmosets. geNorm analysis showed that GAPDH, ACTB, SDHA and TBP were generally ranked high in stability followed by UBC. In contrast, HPRT, rRNA and B2M exhibited lower expression stability than other genes in most tissues analyzed. Furthermore, by using the improved qPCR with selected reference genes, we analyzed the expression levels of CD antigens (CD3ε, CD4, CD8α and CD20) and cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12β, IL-13, IFN-γ and TNF-α) in peripheral blood leukocytes and compared them between common marmosets and humans. The expression levels of CD4 and IL-4 were lower in common marmosets than in humans whereas those of IL-10, IL-12β and IFN-γ were higher in the common marmoset. The ratio of Th1-related gene expression level to that of Th2-related genes was inverted in common marmosets. We confirmed the inverted ratio of CD4 to CD8 in common marmosets by flow cytometric analysis. Therefore, the difference in Th1/Th2 balance between common marmosets and humans may affect host defense and/or disease susceptibility, which should be carefully considered when using common marmoset as an experimental model for biomedical research.  相似文献   

3.
The validation of housekeeping genes (HKGs) for normalization of RNA expression in Real-Time PCR is crucial to obtain the most reliable results. There is limited information on reference genes used in the study of gene expression in milk somatic cells and the frozen whole blood of goats. Thus, the aim of this study was to propose the most stable housekeeping genes that can be used as a reference in Real-Time PCR analysis of milk somatic cells and whole blood of goats infected with caprine arthritis encephalitis virus (CAEV). Animals were divided into two groups: non-infected (N = 13) and infected with CAEV (N = 13). Biological material (milk somatic cells and whole blood) was collected 4 times during the lactation period (7, 30, 100 and 240 days post-partum). The expression levels of candidate reference genes were analyzed using geNorm and NormFinder software. The stability of candidates for reference gene expression was analyzed for CAEV-free (control) and CAEV-infected groups, and also for both groups together (combined group). The stability of expression of β-actin (ACTB), glyceraldehyde-3P-dehydrogenase (GAPDH), cyclophilin A (PPIA), RNA18S1, ubiquilin (UBQLN1) and ribosomal protein large subunit P0 (RPLP0) was determined in milk somatic cells, while ACTB, PPIA, RPLP0, succinate dehydrogenase complex subunit A (SDHA), zeta polypeptide (YWHAZ), battenin (CLN3), eukaryotic translation initiation factor 3K (EIF3K) and TATA box-binding protein (TBP) were measured in frozen whole blood of goats. PPIA and RPLP0 were considered as the most suitable internal controls as they were stably expressed in milk somatic cells regardless of disease status, according to NormFinder software. Furthermore, geNorm results indicated the expression of PPIA/RPLP0 genes as the best combination under these experimental conditions. The results of frozen whole blood analysis using NormFinder software revealed that the most stable reference gene in control, CAEV-infected and combined groups is YWHAZ, and – according to the geNorm results – the combined expression of PPM/YWHAZ genes is the best reference in the presented experiment. The usefulness in gene expression analysis of whole blood samples frozen immediately in liquid nitrogen and stored at -80 °C was also proved.  相似文献   

4.
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.  相似文献   

5.
The selection of proper housekeeping genes for studies requiring genes expression normalization is an important step in the appropriate interpretation of results. The expression of housekeeping genes is regulated by many factors including age, gender, type of tissue or disease. The aim of the study was to identify optimal housekeeping genes in the corpus luteum obtained from cyclic or pregnant cows. The mRNA expression of thirteen housekeeping genes: C2orf29, SUZ12, TBP, TUBB2B, ZNF131, HPRT1, 18s RNA, GAPDH, SF3A1, SDHA, MRPL12, B2M and ACTB was measured by Real-time PCR. Range of cycle threshold (Ct) values of the tested genes varied between 12 and 30 cycles, and 18s RNA had the highest coefficient of variation, whereas C2orf29 had the smallest coefficient. GeNorm software demonstrated C2orf29 and TBP as the most stable and 18s RNA and B2M as the most unstable housekeeping genes. Using the proposed cut-off value (0.15), no more than two of the best GeNorm housekeeping genes are proposed to be used in studies requiring gene expression normalization. NormFinder software demonstrated C2orf29 and SUZ12 as the best and 18s RNA and B2M as the worst housekeeping genes. The study indicates that selection of housekeeping genes may essentially affect the quality of the gene expression results.  相似文献   

6.
7.
8.
9.
Formalin-fixed paraffin-embedded (FFPE) tumour samples may provide crucial data regarding biomarkers for neoplasm progression. Analysis of gene expression is frequently used for this purpose. Therefore, mRNA expression needs to be normalized through comparison to reference genes. In this study, we establish which of the usually reported reference genes is the most reliable one in cutaneous malignant melanoma (MM) and cutaneous squamous cell carcinoma (CSCC). ACTB, TFRC, HPRT1 and TBP expression was quantified in 123 FFPE samples (74 MM and 49 CSCC biopsies) using qPCR. Expression stability was analysed by NormFinder and Bestkeeper softwares, and the direct comparison method between means and SD. The in-silico analysis with BestKeeper indicated that HPRT1 was more stable than ACTB and TFRC in MM (1.85 vs. 2.15) and CSCC tissues (2.09 vs. 2.33). The best option to NormFinder was ACTB gene (0.56) in MM and TFRC (0.26) in CSCC. The direct comparison method showed lower SD means of ACTB expression in MM (1.17) and TFRC expression in CSCC samples (1.00). When analysing the combination of two reference genes for improving stability, NormFinder indicated HPRT1 and ACTB to be the best for MM samples, and HPRT1 and TFRC genes for CSCC. In conclusion, HPRT1 and ACTB genes in combination are the most appropriate choice for normalization in gene expression studies in MM FFPE tissue, while the combination of HPRT1 and TFRC genes are the best option in analysing CSCC FFPE samples. These may be used consistently in forthcoming studies on gene expression in both tumours.  相似文献   

10.
11.
Oxidative stress-induced dysfunction in trabecular meshwork (TM) cells is considered a major alteration that can lead to glaucoma. Hydrogen peroxide (H2O2) is the most widely used agent for inducing oxidation in TM cells in vitro. Quantitative real-time PCR (qPCR) is an important method for studying alterations in gene expression, and suitable (i.e. invariant) reference genes must be defined to normalize expression levels. In this study, eight common reference genes, i.e. PRS18, ACTB, B2M, GAPDH, PPIA, HPRT1, YWHAZ, and TBP, were evaluated for use in studies of H2O2-induced dysfunction in TM cells. Three established algorithms, geNorm, NormFinder, and BestKeeper, were used to analyze the reference genes. ACTB expression was least affected by H2O2 treatment in TM cells, and the combination of PPIA and HPRT1 was the most suitable gene pair for normalization. GAPDH and TBP were the most unstable genes and accordingly should be avoided in experiments with TM cells. These results provide a foundation for analyses of the mechanisms underlying glaucoma, and emphasize the importance of selecting suitable reference genes for qPCR studies.  相似文献   

12.
13.
Selection of reference genes to normalize mRNA levels between samples is critical for gene expression studies because their expression can vary depending on the tissues or cells used and the experimental conditions. We performed ten cell cultures from samples of prostate cancer. Cells were divided into three groups: control (with no transfection protocol), cells transfected with siRNA specific to knockdown the androgen receptor and cells transfected with inespecific siRNAs. After 24 h, mRNA was extracted and gene expression was analyzed by Real-time qPCR. Nine candidates to reference genes for gene expression studies in this model were analyzed (aminolevulinate, delta-, synthase 1 (ALAS1); beta-actin (ACTB); beta-2-microglobulin (B2M); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); hypoxanthine phosphoribosyltransferase 1 (HPRT1); succinate dehydrogenase complex, subunit A, flavoprotein (Fp) (SDHA); TATA box binding protein (TBP); ubiquitin C (UBC); tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ)). Expression stability was calculated NormFinder algorithm to find the most stable genes. NormFinder calculated SDHA as the most stable gene and the gene with the lowest intergroup and intragroup variation, and indicated GAPDH and SDHA as the best combination of two genes for the purpose of normalization. Androgen receptor mRNA expression was evaluated after normalization by each candidate gene and showed statistical difference in the transfected group compared to control group only when normalized by combination of GAPDH and SDHA. Based on the algorithm analysis, the combination of SDHA and GAPDH should be used to normalize target genes mRNA levels in primary culture of prostate cancer cells submitted to transfection with siRNAs.  相似文献   

14.
15.
16.
17.
To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR) data, normalization relative to reliable reference gene(s) is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin), were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population), and abiotic (photoperiod, temperature) conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper) and one web-based comprehensive tool (RefFinder) were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK) and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.  相似文献   

18.
19.
In the last years, mesenchymal stem cells (MSCs) have been identified as an attractive cell population in regenerative medicine. In view of future therapeutic applications, the study of specific differentiation‐related gene expression is a pivotal prerequisite to define the most appropriate MSC source for clinical translation. In this context, it is crucial to use stable housekeeping genes (HGs) for normalization of qRT‐PCR to obtain validated and comparable results. By our knowledge, an exhaustive validation study of HGs comparing MSCs from different sources under various differentiation conditions is still missing. In this pivotal study, we compared the expression levels of 12 genes (ACTB, Β2M, EF1alpha, GAPDH, GUSB, PPIA, RPL13A, RPLP0, TBP, UBC, YWHAZ and 18S rRNA) to assess their suitability as HGs in MSCs during adipogenic, osteogenic and chondrogenic differentiation. We demonstrated that many of the most popular HGs including 18S rRNA, B2M and ACTB were inadequate for normalization, whereas TBP/YWHAZ/GUSB were frequently identified among the best performers. Moreover, we showed the dramatic effects of suboptimal HGs choice on the quantification of cell differentiation markers, thus interfering with a reliable comparison of the lineage potential properties among various MSCs. Thus, in the emerging field of regenerative medicine, the identification of the most appropriate MSC source and cell line is so crucial for the treatment of patients that being inaccurate in the first step of the stem cell characterization can bring important consequences for the patients and for the promising potential of stem cell therapy.  相似文献   

20.
《Journal of Asia》2020,23(2):336-344
Pagiophloeus tsushimanus is a newly and specialist wood-boring beetle of Cinnamomum camphora in China. RT-qPCR is an accurate quantitative method to quantify target genes expression, which relies on suitable reference genes for data normalization. Reference genes must to be stably expressed under specific experimental conditions. No suitable reference genes of P. tsushimanus have been reported so far. Therefore, it is necessary to identify and evaluate suitable reference genes for the study of functional genes of this pest. In this research, the expression stability of eight candidate reference genes (RPS3, 18S rRNA, GAPDH, TBP, RPL10, UBQ, GST, and RPS27A) were systematically evaluated in P. tsushimanus by five algorithms (geNorm, BestKeeper, NormFinder, delta Cq, and RefFinder) under different developmental stages, various tissues, and insects reared on different plants, and validated by the olfactory key gene odorant binding protein 33 (PtsuOBP33). The results showed that three stable reference genes combination were necessary for quantitative analysis of target gene. RPS3, RPL10, and UBQ were the optimal reference genes combination for gene expression analysis of developmental stages, while RPL10, RPS3, and 18S rRNA were recommended for different tissues, and 18S rRNA, TBP, and RPS3 were recommended for insects reared on different plants. The results indicated that suitable reference genes should be screened out for gene expression analysis under different conditions. This paper systematically analyzed and obtained suitable reference genes in P. tsushimanus for the first time, which would contribute to the functional analysis of genes and the in-depth mining of genetic resources in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号