首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways.  相似文献   

2.
One of the major symptoms of diabetes mellitus (DM) is delayed wound healing, which affects large populations of patients worldwide. However, the underlying mechanism behind this illness remains elusive. Skin wound healing requires a series of coordinated processes, including fibroblast cell proliferation and migration. Here, we simulate DM by application of high glucose (HG) in human foreskin primary fibroblast cells to analyze the molecular mechanism of DM effects on wound healing. The results indicate that HG, at a concentration of 30 mM, delay cell migration, but not cell proliferation. bFGF is known to promote cell migration that partially rescues HG effects on cell migration. Molecular and cell biology studies demonstrated that HG enhanced ROS production and repressed JNK phosphorylation, but did not affect Rac1 activity. JNK and Rac1 activation were known to be important for bFGF regulated cell migration. To further confirm DM effects on skin repair, a type 1 diabetic rat model was established, and we observed the efficacy of bFGF on both normal and diabetic rat skin repair. Furthermore, proteomic studies identified an increase of Annexin A2 protein nitration in HG-stressed fibroblasts and the nitration was protected by activation of bFGF signaling. Treatment with FGFR1 and JNK inhibitors delayed cell migration and increased Annexin A2 nitration levels, indicating that Annexin A2 nitration is modulated by bFGF signaling via activation of JNK. Together with these results, our data suggests that the HG-mediated delay of cell migration is linked to the inhibition of bFGF signaling, specifically through JNK suppression.  相似文献   

3.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase while platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to determine the signaling mechanisms of basic fibroblast growth factor (bFGF)-stimulated fibroblast-collagen matrix contraction. Both bFGF and LPA promoted equally collagen matrix contraction well. Three different inhibitors, LY294002 for phosphatidylinositol-3-kinase (PI3K), C3 exotransferase for Rho and Y27632 for Rho kinase, suppressed the bFGF-stimulated fibroblast-collagen matrix contraction. With bFGF stimulation, fibroblasts spread with prominent stress fiber network formation and focal adhesions. In the presence of Rho kinase inhibitor, focal adhesions and stress fibers were mostly lost. We demonstrated that bFGF stimulation for fibroblast caused transient Rac and Rho activation but did not activate Cdc42. In addition, bFGF enhanced fibroblast migration in wound healing assay. The present study implicates PI3K, Rac, Rho, and Rho kinase as being involved in bFGF-stimulated collagen matrix contraction. The elucidation of bFGF-triggered signal transduction may be an important clue to understand the roles of bFGF in wound healing.  相似文献   

4.
Epithelial cell migration during wound healing requires coordinated signaling pathways that direct polarization of the leading and trailing ends of the cells, cytoskeletal organization, and remodeling of focal adhesions. These inherently mechanical processes are disrupted by cyclic stretch (CS), but the specific signaling molecules involved in this disruption are not well understood. In this study, we demonstrate that inhibition of phosphatidylinositol 3-kinase (PI3K) or expression of a dominant-negative form of PI3K caused inhibition of airway epithelial cell wound closure. CS caused a sustained decrease in activation of PI3K and inhibited wound healing. Expression of constitutively active PI3K stimulated translocation of Tiam1 to the membrane, increased Rac1 activity, and increased wound healing of airway epithelial cells. Increased Rac1 activity resulted in increased phosphorylation of JNK1. PI3K activation was not regulated by association with focal adhesion kinase. Restoration of efficient cell migration during CS required coexpression of constitutively active PI3K, focal adhesion kinase, and JIP3.  相似文献   

5.
6.
The purpose of this study was to examine the role of phospholipase D1 (PLD1) in basic fibroblast growth factor (bFGF)-induced neurotrophin-3 (NT-3) expression and neurite outgrowth in H19-7 rat hippocampal neuronal progenitor cells. Overexpression of PLD1 increased bFGF-induced NT-3 expression, and dominant-negative-PLD1 or PLD1 siRNA abolished bFGF-induced NT-3 expression and neurite outgrowth. Treatment with bFGF activated the RhoA/Rho-associated kinase (ROCK)/c-jun N-terminal kinase (JNK) pathway, and bFGF-induced NT-3 expression was blocked by a dominant-negative RhoA as well as by a specific Rho-kinase inhibitor (Y27632) and a SAPK/JNK inhibitor (SP600125). Furthermore, bFGF-induced JNK activation was also blocked by Y27632. These results indicate that the RhoA/ROCK/JNK pathway acts as an upstream signaling pathway in bFGF-induced NT-3 expression. Also, phosphatidic acid, the product of PLD, increased NT-3 expression. We found that PLD regulated the RhoA/ROCK/JNK pathway, which then led to Elk-1 transactivation. When Elk-1 activity was blocked by Elk-1 siRNA, bFGF-induced NT-3 expression and neurite outgrowth decreased. NT-3 overexpression increased neurite outgrowth, indicating that NT-3 is important for neurite outgrowth. Taken together, these results suggest that PLD1 is an important regulator of bFGF-induced NT-3 expression and neurite outgrowth, which are mediated by the RhoA/ROCK/JNK pathway via Elk-1 in H19-7 cells.  相似文献   

7.
Angiogenesis, the process of new blood vessels formation, is a critical step for wound healing, tumour growth and metastasis, diabetic retinopathy, psoriasis, etc. The present study was designed to investigate whether c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for regulating basic fibroblastic growth factor (bFGF)-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Our results showed that bFGF-induced HUVECs proliferation, migration and tube formation with a concentration-dependent manner. Further results showed that bFGF induced the phosphorylation of JNK/SAPK at 15 min. Both JNK/SAPK inhibitor SP600125 and JNK/SAPK peptide inhibitor 420116 could inhibit bFGF-induced HUVECs proliferation, migration and tube formation, so did JNK/SAPK-specific siRNA. Moreover, when HUVECs were stimulated with bFGF, upstream signals of JNK/SAPK, SEK1/MKK4 and MKK7 were both activated at 2 min. In summary, our results indicate that JNK/SAPK signal pathway plays an important role in regulating bFGF-mediated angiogenesis in HUVECs, which may therefore be a new therapeutic approach for the treatment of angiogenesis-associated diseases.  相似文献   

8.
Repair of the airway epithelium after injury is critical for restoring normal lung. The reepithelialization process involves spreading and migration followed later by cell proliferation. Rho-GTPases are key components of the wound healing process in many different types of tissues, but the specific roles for RhoA and Rac1 vary and have not been identified in lung epithelial cells. We investigated whether RhoA and Rac1 regulate wound closure of bronchial epithelial cells. RhoA and Rac1 proteins were efficiently expressed in a cell line of human bronchial epithelial cells (16HBE) by adenovirus-based gene transfer. We found that both constitutively active RhoA and dominant negative RhoA inhibited wound healing, suggesting that both activation and inhibition of RhoA interfere with normal wound healing. Overexpression of wild-type Rac1 induced upregulation of RhoA, disrupted intercellular junctions, and inhibited wound closure. Dominant negative Rac1 also inhibited wound closure. Inhibition of the downstream effector of RhoA, Rho-kinase, with Y-27632 suppressed actin stress fibers and focal adhesion formation, increased Rac1 activity, and stimulated wound closure. The activity of both RhoA and Rac1 are influenced by the polymerization state of microtubules, and cell migration involves coordinated action of actin and microtubules. Microtubule depolymerization upon nocodazole treatment led to an increase in focal adhesions and decreased wound closure. We conclude that coordination of both RhoA and Rac1 activity contributes to bronchial epithelial wound repair mechanisms in vitro, that inhibition of Rho-kinase accelerates wound closure, and that efficient repair involves intact microtubules.  相似文献   

9.
Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.  相似文献   

10.
The small GTPases, Rac1 and RhoA, are pivotal regulators of several essential, but distinct cellular processes. Numerous G-protein-coupled receptors signal to these GTPases, but with different specificities. Specifically, Gi-coupled receptors (GiPCRs) are generally believed to activate Rac1, but not RhoA, a process involving Gbetagamma-dimers and phosphatidylinositol 3-kinase (PI3K). Here we show that, depending on the expression level of the 519 amino acid isoform of regulator of G-protein signalling 3 (RGS3L), prototypical GiPCRs, like M2 muscarinic, A1 adenosine, and alpha2-adrenergic receptors, activate either Rac1 or RhoA in human embryonic kidney cells and neonatal rat cardiomyocyte-derived H10 cells. The switch from Rac1 to RhoA activation in H10 cells was controlled by fibroblast growth factor-2 (FGF-2), lowering the expression of RGS3L. Activation of both, Rac1 and RhoA, seen at low and high expression levels of RGS3L, respectively, was sensitive to pertussis toxin and the PI3K inhibitor LY294002 and mediated by Gbetagamma-dimers. We conclude that RGS3L functions as a molecular switch, redirecting GiPCRs via Gbetagamma-dimers and PI3K from Rac1 to RhoA activation. Considering the essential roles of Rac1 and RhoA in many signalling pathways, this additional function of RGS3L indicates a specific role of this protein in cellular signalling networks.  相似文献   

11.
I Timokhina  H Kissel  G Stella    P Besmer 《The EMBO journal》1998,17(21):6250-6262
The receptor tyrosine kinase Kit plays critical roles in hematopoiesis, gametogenesis and melanogenesis. In mast cells, Kit receptor activation mediates several cellular responses including cell proliferation and suppression of apoptosis induced by growth factor deprivation and gamma-irradiation. Kit receptor functions are mediated by kinase activation, receptor autophosphorylation and association with various signaling molecules. We have investigated the role of phosphatidylinositol 3'-kinase (PI 3-kinase) and Src kinases in Kit-mediated cell proliferation and suppression of apoptosis induced both by factor deprivation and irradiation in bone marrow-derived mast cells (BMMC). Analysis of Kit-/- BMMC expressing mutant Kit receptors and the use of pharmacological inhibitors revealed that both signaling pathways contribute to these Kit-mediated responses and that elimination of both pathways abolishes them. We demonstrate that the PI 3-kinase and Src kinase signaling pathways converge to activate Rac1 and JNK. Analysis of BMMC expressing wild-type and dominant-negative mutant forms of Rac1 and JNK revealed that the Rac1/JNK pathway is critical for Kit ligand (KL)-induced proliferation of mast cells but not for suppression of apoptosis. In addition, KL was shown to inhibit sustained activation of JNK induced by gamma-irradiation and concomitant irradiation-induced apoptosis.  相似文献   

12.
The role of cell density in modulating basic fibroblast growth factor binding and activity was investigated. A primary corneal stromal fibroblast cell culture system was used, since these cells do not constitutively express heparan sulfate proteoglycans in vivo except after injury. A 3-5-fold reduction in bFGF binding per cell was observed as cell density increased from 1000 to 35,000 cells/cm2. The cell density-dependent change in bFGF binding was not the result of altered FGFR expression as determined by equilibrium binding experiments and by immunoblot analysis. However, bFGF-cell surface receptor binding affinities were measured to be 10-20-fold higher at low cell densities than at intermediate and high cell density. bFGF-induced cell proliferation was also cell density-dependent, with maximal stimulation of proliferation 190-280% greater at intermediate densities (15,000 cells/cm2) than at other cell densities. This effect was specific to bFGF as serum, epidermal growth factor, and transforming growth factor-beta did not exhibit the same density-dependent profile. Further, heparan sulfate proteoglycans and, specifically, syndecan-4 were implicated as the modulator of bFGF binding and activity. Pretreatment of cell cultures with heparinase resulted in reduced bFGF binding to the cells and abrogated bFGF induced proliferation. These data suggest a mechanism by which cell density regulates heparan sulfate proteoglycan expression and modulates the cellular response to bFGF. Modulation of heparan sulfate proteoglycan expression might be an important aspect of the regulation of stromal cell migration and proliferation during wound healing.  相似文献   

13.
Rho GTPases participate in a wide variety of signal transduction pathways regulating the actin cytoskeleton, gene expression, cellular migration and proliferation. The aim of this study was to evaluate the role of Rho GTPases in signal transduction pathways during acinus formation in a human salivary gland (HSG) cell line initiated by extracellular matrix (ECM; Matrigel) alone or in combination with epidermal growth factor, basic fibroblast growth factor and lysophosphatidic acid (LPA). Immunohistochemical and Western blotting analyses showed that HSG cells contained RhoA, RhoB, Rac1 and Cdc42 proteins. All growth factors enhanced the effects of ECM on acinus formation, in a pathway dependent on PI3-kinase and Rho GTPases. The role of ROCK, a major RhoA effector, seemed limited to cortical actin polymerization. LPA stimulated cell migration and acinus formation in a PI3-kinase-independent pathway. The results suggest that Rho proteins are important for epithelial-mesenchymal interactions during salivary gland development.This work was supported by FAPESP (grant numbers: 97/09507-6, 01/09047-2).  相似文献   

14.
Zhang M  Liu NY  Wang XE  Chen YH  Li QL  Lu KR  Sun L  Jia Q  Zhang L  Zhang L 《PloS one》2011,6(9):e25143

Background

Activin B has been reported to promote the proliferation and migration of keratinocytes in vitro via the RhoA-JNK signaling pathway, whereas its in vivo role and mechanism in wound healing process has not yet been elucidated.

Principal Findings

In this study, we explored the potential mechanism by which activin B induces epithelial wound healing in mice. Recombinant lentiviral plasmids, with RhoA (N19) and RhoA (L63) were used to infect wounded KM mice. The wound healing process was monitored after different treatments. Activin B-induced cell proliferation on the wounded skin was visualized by electron microscopy and analyzed by 5′-bromodeoxyuridine (BrdU) incorporation assay. Protein expression of p-JNK or p-cJun was determined by immunohistochemical staining and immunoblotting analysis. Activin B efficiently stimulated the proliferation of keratinocytes and hair follicle cells at the wound area and promoted wound closure. RhoA positively regulated activin B-induced wound healing by up-regulating the expression of p-JNK and p-cJun. Moreover, suppression of RhoA activation delayed activin B-induced wound healing, while JNK inhibition recapitulated phenotypes of RhoA inhibition on wound healing.

Conclusion

These results demonstrate that activin B promotes epithelial wound closure in vivo through the RhoA-Rock-JNK-cJun signaling pathway, providing novel insight into the essential role of activin B in the therapy of wound repair.  相似文献   

15.
Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.  相似文献   

16.
We investigated the extent to which phosphatidylinositol 3-kinase (PI 3-kinase) and Rac, a member of the Rho family of small GTPases, are involved in the signaling cascade triggered by tumor necrosis factor (TNF)-alpha leading to activation of c-fos serum response element (SRE) and c-Jun amino-terminal kinase (JNK) in Rat-2 fibroblasts. Inhibition of PI 3-kinase by LY294002 or wortmannin, two specific PI 3-kinase antagonists, or co-transfection with a dominant negative mutant of PI 3-kinase dose-dependently blocked stimulation of c-fos SRE by TNF-alpha. Similarly, LY294002 significantly diminished TNF-alpha-induced activation of JNK, suggesting that nuclear signaling triggered by TNF-alpha is dependent on PI 3-kinase-mediated activation of both c-fos SRE and JNK. We also found nuclear signaling by TNF-alpha to be Rac-dependent, as demonstrated by the inhibitory effect of transient co-transfection with a dominant negative Rac mutant, RacN17. Our findings suggest that Rac is situated downstream of PI 3-kinase in the TNF-alpha signaling pathway to the nucleus, and we conclude that PI 3-kinase and Rac each plays a pivotal role in the nuclear signaling cascade triggered by TNF-alpha.  相似文献   

17.
18.
Inactivation of PI 3-kinase (PI3K) signalling is critical for tumour suppression by PTEN. This is thought to be a unidirectional relationship in which PTEN degrades the lipids produced by PI3K, thus controlling cell proliferation, survival and migration. We now show that this relationship is in fact bidirectional, whereby PI3K reciprocally controls PTEN. We report that the p110delta PI3K negatively regulates PTEN, through a pathway involving inhibition of RhoA. Inactivation of p110delta in macrophages led to reduced Akt and Rac1 activation, but paradoxically to increased RhoA and PTEN activity. Partial inactivation of p190RhoGAP and a reduced binding of cytoplasmic RhoA to the cyclin-dependent kinase inhibitor p27 both contributed to the increased RhoA-GTP levels upon p110delta inactivation. Pharmacological inhibition of ROCK, a downstream effector kinase of RhoA, restored all signalling and functional defects of p110delta inactivation, including Akt phosphorylation, chemotaxis and proliferation. This work identifies the RhoA/ROCK pathway as a major target of p110delta-mediated PI3K signalling, and establishes for the first time that PI3K controls itself, via a feedback loop involving PTEN.  相似文献   

19.
The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA. The current study examines the role of Rac1 and Cdc42 in cell migration and whether their activities are polyamine-dependent. Polyamine depletion with alpha-difluoromethylornithine inhibited the activities of RhoA, Rac1, and Cdc42. This inhibition was prevented by supplying exogenous putrescine in the presence of alpha-difluoromethylornithine. IEC-6 cells transfected with constitutively active Rac1 and Cdc42 migrated more rapidly than vector-transfected cells, whereas cells expressing dominant negative Rac1 and Cdc42 migrated more slowly. Polyamine depletion had no effect on the migration of cells expressing Rac1 and only partially inhibited the migration of those expressing Cdc42. Although polyamine depletion caused the disappearance of actin stress fibers in cells transfected with empty vector, it had no effect on cells expressing Rac1. Constitutively active Rac1 increased RhoA and Cdc42 activity in both normal and polyamine-depleted cells. These results demonstrate that Rac1, RhoA, and Cdc42 are required for optimal epithelial cell migration and that Rac1 activity is sufficient for cell migration in the absence of polyamines due to its ability to activate RhoA and Cdc42 as well as its own effects on the process of cell migration. These data imply that the involvement of polyamines in cell migration occurs either at Rac1 itself or upstream from Rac1.  相似文献   

20.
Nischarin, a cytosolic protein that binds the alpha5beta1 integrin, plays an important role in fibroblast migration, and in regulation of the actin cytoskeleton. The effect of Nischarin on Rac induced migration and invasion by breast and colon epithelial cell lines has been determined. In these cells, Rac potently induced migration, as well as invasion of matrix; both of these events were strongly inhibited by overexpression of Nischarin. To understand the mechanism of Nischarin's inhibitory role in Rac induced cell migration, several effector domain mutants of Rac1 were employed. Nischarin was able to inhibit migration induced by Rac effector mutants that can activate PAK and JNK, but not migration stimulated by other Rac mutants. Further, Nischarin inhibited PAK induced cell migration, while not affecting migration induced by MEKK1, a Rac effector in the JNK pathway. In addition, Nischarin failed to inhibit migration induced by MEK1, a downstream effector in the Ras-Raf-MEK-Erk signaling cascade. Furthermore, Nischarin does not affect Rac mediated JNK and PI3K activities. However, Rac induced migration and invasion were effectively blocked by pharmacological inhibitors of PI-3 kinase and MEK. These results suggest that several pathways contribute to cell migration, but that Nischarin selectively inhibits Rac driven signaling cascades that affect migration through PAK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号