首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Currently no effective therapies exist for MPS IVA. In this work, production of a recombinant GALNS enzyme (rGALNS) in Escherichia coli BL21 strain was studied. At shake scale, the effect of glucose concentration on microorganism growth, and microorganism culture and induction times on rGALNS production were evaluated. At bench scale, the effect of aeration and agitation on microorganism growth, and culture and induction times were evaluated. The highest enzyme activity levels at shake scale were observed in 12 h culture after 2–4 h induction. At bench scale the highest enzyme activity levels were observed after 2 h induction. rGALNS amounts in inclusion bodies fraction were up to 17-fold higher than those observed in the soluble fraction. However, the highest levels of active enzyme were found in the soluble fraction. Western blot analysis showed the presence of a 50-kDa band, in both soluble and inclusion bodies fractions. These results show for the first time the feasibility and potential of production of active rGALNS in a prokaryotic system for development of enzyme replacement therapy for MPS IVA disease.  相似文献   

2.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme. Currently, specific therapies are not available for MPS IVA patients. In this study, a biologically active recombinant GALNS enzyme (rGALNS) produced in Escherichia coli was purified through a two-step chromatography process. The effect of temperature and pH on purified rGALNS stability was evaluated, as well as the stability in human serum. Finally, the uptake of rGALNS by HEK 293 cells and MPS IVA fibroblasts was evaluated. The use of a semi-continuous process allowed the production of an active extracellular rGALNS, which was used for protein purification. The purified rGALNS showed a specific activity of 0.29 U mg?1 and a production yield of 0.78 mg L?1. The rGALNS presented an optimal pH of 5.5 and was stable for 8 days at 4 °C. In human serum it was stable for up to 6 h. rGALNS was not taken up by the cultured cells, suggesting that N-linked oligosaccharides are not necessary for the production of an active enzyme or enzyme stability but for the cell uptake of protein. This study shows the first characterization of rGALNS produced by E. coli, and provides important information about purification, stability, and glycosylations effect for this type of enzymes.  相似文献   

3.
Mucopolysaccharidosis IVA is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase. The recent isolation and characterization of cDNA and genomic sequences encoding GALNS has facilitated identification of the molecular lesions that cause MPS IVA. We identified a common missense mutation among Caucasian MPS IVA patients. The mutation was originally detected by SSCP, and successive sequencing revealed an A→T transversion at nt 393. This substitution altered the isoleucine at position 113 to phenylalanine (I113F) in the 622 amino acid GALNS protein and was associated with a severe phenotype in a homozygote. Compound heterozygotes with one I113F-allele mutation have a wide range of clinical phenotypes. Transfection experiments in GALNS-deficient fibroblasts revealed that the mutation drastically reduces the enzyme activity of GALNS. Allele-specific oligonucleotide or SSCP analysis indicated that this mutation accounted for 22.5% (9/40) of unrelated MPS IVA chromosomes from 23 Caucasian patients, including 6 consanguineous cases. Of interest, the I1e 113→Phe substitution occurred in only Caucasian MPS IVA patients and in none of the GALNS alleles of 20 Japanese patients. These findings identify a frequent missense mutation among MPS IVA patients of Caucasian ancestry, that results in severe MPS IVA when homoallelic, and will facilitate molecular diagnosis of most such patients and identification of heterozygous carriers. In addition to this common mutation, 10 different point mutations and 2 small deletions were detected, suggesting allelic heterogeneity in GALNS gene.  相似文献   

4.
Lysosomal enzymes catalyze the breakdown of macromolecules in the cell. In humans, loss of activity of a lysosomal enzyme leads to an inherited metabolic defect known as a lysosomal storage disorder. The human lysosomal enzyme galactosamine-6-sulfatase (GALNS, also known as N-acetylgalactosamine-6-sulfatase and GalN6S; E.C. 3.1.6.4) is deficient in patients with the lysosomal storage disease mucopolysaccharidosis IV A (also known as MPS IV A and Morquio A). Here, we report the three-dimensional structure of human GALNS, determined by X-ray crystallography at 2.2 Å resolution. The structure reveals a catalytic gem diol nucleophile derived from modification of a cysteine side chain. The active site of GALNS is a large, positively charged trench suitable for binding polyanionic substrates such as keratan sulfate and chondroitin-6-sulfate. Enzymatic assays on the insect‐cell-expressed human GALNS indicate activity against synthetic substrates and inhibition by both substrate and product. Mapping 120 MPS IV A missense mutations onto the structure reveals that a majority of mutations affect the hydrophobic core of the structure, indicating that most MPS IV A cases result from misfolding of GALNS. Comparison of the structure of GALNS to paralogous sulfatases shows a wide variety of active‐site geometries in the family but strict conservation of the catalytic machinery. Overall, the structure and the known mutations establish the molecular basis for MPS IV A and for the larger MPS family of diseases.  相似文献   

5.
Mucopolysaccharidosis IV A (MPS IV A) is a lysosomal storage disease produced by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme. Although genotype–phenotype correlations have been reported, these approaches have not enabled to establish a complete genotype–phenotype correlation, and they have not considered a ligand–enzyme interaction. In this study, we expanded the in silico evaluation of GALNS mutations by using several bioinformatics tools. Tertiary GALNS structure was modeled and used for molecular docking against galactose-6-sulfate, N-acetylgalactosamine-6-sulfate, keratan sulfate, chondroitin-6-sulfate, and the artificial substrate 4-methylumbelliferyl-β-d-galactopyranoside-6-sulfate. Furthermore, we considered the evolutionary residue conservation, change conservativeness, position within GALNS structure, and the impact of amino acid substitution on the structure and function of GALNS. Molecular docking showed that amino acids involved in ligand interaction correlated with those observed in other human sulfatases, and mutations within the active cavity reduced affinity of all evaluated ligands. Combination of several bioinformatics approaches allowed to explaine 90 % of the missense mutations affecting GALNS, and the prediction of the phenotype for another 21 missense mutations. In summary, we have shown for the first time a docking evaluation of natural and artificial ligands for human GALNS, and proposed an update in genotype–phenotype correlation for Morquio A, based on the use of multiple parameters to predict the disease severity.  相似文献   

6.
Morquio A syndrome, or mucopolysaccharidosis (MPS IV A), is an inherited lysosomal storage disorder which belongs to the group of mucopolysaccharidoses (MPSs). It is caused by N-acetylgalactosamine-6-sulfatase (GALNS) activity deficiency, which results in impaired degradation of glycosaminoglycans (GAGs), including keratan sulfate (KS) and chondroitin-6-sulfate (CS). These compounds infiltrate and disrupt the architecture of the extracellular matrix, compromising the integrity of the connective tissue. Patients with Morquio A have also been noted for exhibiting abnormalities of the larynx and vocal tract. The aim of the study was to assess voice alterations using noninvasive acoustic and electroglottographic voice analysis. Electroglottographic signal and acoustic analyses revealed considerable changes in the voices of patients with Morquio A syndrome when compared to the voices of healthy controls. Affected patients tended toward tense voice, incomplete glottal closure, increased incidence of vocal fold nodules, dysphonia, and hoarse voice. Morquio A syndrome is characterized by connective tissue disease, which adversely affects voice quality. The use of objective voice analysis makes it possible to quantitatively monitor changes in the vocal apparatus over the course of disease progression, and also allows for assessment of the effects of the enzyme replacement therapy.  相似文献   

7.
Inherited defects in the ability to catabolize glycosaminoglycans result in lysosomal storage disorders known as mucopolysaccharidoses (MPS), causing severe pathology, particularly in the brain. Enzyme replacement therapy has been used to treat mucopolysaccharidoses; however, neuropathology has remained refractory to this approach. To test directly whether substrate reduction might be feasible for treating MPS disease, we developed a genetic model for substrate reduction therapy by crossing MPS IIIa mice with animals partially deficient in heparan sulfate biosynthesis due to heterozygosity in Ext1 and Ext2, genes that encode the copolymerase required for heparan sulfate chain assembly. Reduction of heparan sulfate by 30–50% using this genetic strategy ameliorated the amount of disease-specific biomarker and pathology in multiple tissues, including the brain. In addition, we were able to demonstrate that substrate reduction therapy can improve the efficacy of enzyme replacement therapy in cell culture and in mice. These results provide proof of principle that targeted inhibition of heparan sulfate biosynthetic enzymes together with enzyme replacement might prove beneficial for treating mucopolysaccharidoses.  相似文献   

8.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive lysosomal storage disorder caused by a genetic defect in N-acetylgalactosamine-6-sulfate sulfatase (GALNS). In previous studies, we have found two common mutations in Caucasians and Japanese, respectively. To characterize the mutational spectrum in various ethnic groups, mutations in the GALNS gene in Colombian MPS IVA patients were investigated, and genetic backgrounds were extensively analyzed to identify racial origin, based on mitochondrial DNA (mtDNA) lineages. Three novel missense mutations never identified previously in other populations and found in 16 out of 19 Colombian MPS IVA unrelated alleles account for 84.2% of the alleles in this study. The G301C and S162F mutations account for 68.4% and 10.5% of mutations, respectively, whereas the remaining F69V is limited to a single allele. The skewed prevalence of G301C in only Colombian patients and haplotype analysis by restriction fragment length polymorphisms in the GALNS gene suggest that G301C originated from a common ancestor. Investigation of the genetic background by means of mtDNA lineages indicate that all our patients are probably of native American descent. Received: 2 January 1997 / Accepted: 10 June 1997  相似文献   

9.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine-6-sulfatase (GALNS). We found two separate deletions of nearly 8.0 and 6.0 kb in the GALNS gene, including some exons. There are Alu repetitive elements near the breakpoints of the 8.0-kb deletion, and this deletion resulted from an Alu—Alu recombination. The other 6.0-kb deletion involved illegitimate recombinational events between incomplete short direct repeats of 8 bp at deletion breakpoints. The same rearrangement has been observed in a heteroallelic state in four unrelated patients. This is the first documentation of a common double deletion a gene that is not a member of a gene cluster.  相似文献   

10.
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked, recessive, lysosomal storage disorder caused by deficiency of iduronate-2-sulfatase. Early bone involvement leads to decreased growth velocity and short stature in nearly all patients. Our analysis aimed to investigate the effects of enzyme replacement therapy (ERT) with idursulfase (Elaprase) on growth in young patients with mucopolysaccharidosis type II. Analysis of longitudinal anthropometric data of MPS II patients (group 1, n = 13) who started ERT before 6 years of age (range from 3 months to 6 years, mean 3.6 years, median 4 years) was performed and then compared with retrospective analysis of data for MPS II patients naïve to ERT (group 2, n = 50). Patients in group 1 received intravenous idursulfase at a standard dose of 0.58 mg/kg weekly for 52–288 weeks. The course of average growth curve for group 1 was very similar to growth pattern in group 2. The average value of body height in subsequent years in group 1 was a little greater than in group 2, however, the difference was not statistically significant. In studied patients with MPS II, idursulfase did not appear to alter the growth patterns.  相似文献   

11.

Background

Although enzyme replacement therapy (ERT) is available for several lysosomal storage disorders, the benefit of this treatment to the skeletal system is very limited. Our previous work has shown the importance of the Toll-like receptor 4/TNF-alpha inflammatory pathway in the skeletal pathology of the mucopolysaccharidoses (MPS), and we therefore undertook a study to examine the additive benefit of combining anti-TNF-alpha therapy with ERT in a rat model of MPS type VI.

Methodology/Principal Findings

MPS VI rats were treated for 8 months with Naglazyme® (recombinant human N-acetyl-galactosamine-4-sulfatase), or by a combined protocol using Naglazyme® and the rat-specific anti-TNF-alpha drug, CNTO1081. Both protocols led to markedly reduced serum levels of TNF-alpha and RANKL, although only the combined treatment reduced TNF-alpha in the articular cartilage. Analysis of cultured articular chondrocytes showed that the combination therapy also restored collagen IIA1 expression, and reduced expression of the apoptotic marker, PARP. Motor activity and mobility were improved by ERT, and these were significantly enhanced by combination treatment. Tracheal deformities in the MPS VI animals were only improved by combination therapy, and there was a modest improvement in bone length. Ceramide levels in the trachea also were markedly reduced. MicroCT analysis did not demonstrate any significant positive effects on bone microarchitecture from either treatment, nor was there histological improvement in the bone growth plates.

Conclusions/Significance

The results demonstrate that combining ERT with anti-TNF- alpha therapy improved the treatment outcome and led to significant clinical benefit. They also further validate the usefulness of TNF-alpha, RANKL and other inflammatory molecules as biomarkers for the MPS disorders. Further evaluation of this combination approach in other MPS animal models and patients is warranted.  相似文献   

12.
Experimental autoimmune neuritis (EAN) is an animal model of Guillain–Barré syndrome, an inflammatory demyelination disease of the peripheral nervous system. Although this disease has been extensively studied on peripheral nerves, the pathology of the central nervous system has not been fully understood. Previous studies demonstrate that expression of keratan sulfate (KS), the sugar chain of proteoglycan, is associated with activated microglia/macrophages accumulated after neuronal injuries. Unexpectedly, we found here that KS is rather diminished in rat EAN. KS was restrictively expressed in microglia in the spinal cord of normal rats. KS was positive in 50% microglia in the ventral horn and 20% in the dorsal horn. In EAN, microglia increased in number and expressed the activation marker CD68, but KS expression was abolished. Concomitantly, pro-inflammatory cytokines, i.e., interferon (IFN)-γ, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, were increased in the spinal cord of EAN rats, whereas anti-inflammatory cytokines, such as IL-4 and IL-10, were decreased. In addition, silencing of KSGal6ST attenuated KS expression on the primary cultured microglia and upregulated expression of some activation markers (TNF-α, IL-1β, and iNOS) under the stimulation with lipopolysaccharide and IFN-γ. This study demonstrates for the first time a close association of EAN and disappearance of KS on microglia. KS expression could be a useful marker to evaluate the status of polyneuropathy.  相似文献   

13.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Molecular mutational analysis was performed by PCR product sequencing for fourteen exons and exon–intron boundaries of GALNS gene in 21 patients from 19 unrelated families with severe MPS IVA in South China. We identified fifteen different mutations, including 10 reported mutations (p.P125L, p.G290S, p.M318R, p.G340D, p.L366P, p.R386C, p.A392V, c.1243-1G>C, p.L440RfsX54 and p.X523E) and five novel mutations (p.N177S, p.G290R, p.F306S, p.W403_T404delinsCS, p.W520X). All five novel mutations were inherited from parents of the patients and not found in 100 normal control alleles. Three mutations, p.M318R, p.L366P and p.R386C were common, accounting for 36.8% of mutant alleles investigated. One patient homozygous of p.A392V and the other two unrelated patients homozygous of p.L366P presented classical disease course. The results show that the GALNS gene has a different mutational spectrum in South China as compared to other regions. The p.A392V and p.L366P mutations were associated with severe phenotype of MPS IVA.  相似文献   

14.
Mucopolysaccharidosis type IVA (MPS IVA) or Morquio syndrome type A is an autosomal recessive disease caused by deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfatase (GALNS). We report molecular characterization of a patient who presents the new missense mutation p.C165Y in homozygosis. Bioinformatics analysis predicted this mutation as being probably pathogenic. To evaluate the possibility that this alteration was a polymorphism we tested 100 alleles and all the results were negative. These findings together with the observation that this alteration is not present in controls, suggest that it is a disease-causing mutation, which was correlated with the severe phenotype observed in our patient. We conclude that molecular analysis of the GALNS gene, in addition to enzyme assays, is important for diagnosis and contributes to the better understanding of the relationship between genotype and phenotype, which is important as enzyme replacement therapy (ERT) will soon become available and treatment decisions will have to be take in such cases.  相似文献   

15.
16.

Introduction

Kaposi sarcoma (KS) is the leading cause of cancer in Uganda and occurs in people with and without HIV. Human herpesvirus-8 (HHV-8) replication is important both in transmission of HHV-8 and progression to KS. We characterized the sites and frequency of HHV-8 detection in Ugandans with and without HIV and KS.

Methods

Participants were enrolled into one of four groups on the basis of HIV and KS status (HIV negative/KS negative, HIV positive/KS negative, HIV negative/KS positive, and HIV positive/KS positive). Participants collected oral swabs daily and clinicians collected oral swabs, anogenital swabs, and plasma samples weekly over 4 weeks. HHV-8 DNA at each site was quantified by polymerase chain reaction (PCR).

Results

78 participants collected a total of 2063 orals swabs and 358 plasma samples. Of these, 428 (21%) oral swabs and 96 (27%) plasma samples had detectable HHV-8 DNA. HHV-8 was detected more frequently in both the oropharynx of persons with KS (24 (57%) of 42 persons with KS vs. 8 (22%) of 36 persons without, p = 0.002) and the peripheral blood (30 (71%) of 42 persons with KS vs. 8 (22%) of 36 persons without, p<0.001). In a multivariate model, HHV-8 viremia was more frequent among men (IRR = 3.3, 95% CI = 1.7–6.2, p<0.001), persons with KS (IRR = 3.9, 95% CI = 1.7–9.0, p = 0.001) and persons with HIV infection (IRR = 1.7, 95% CI = 1.0–2.7, p = 0.03). Importantly, oral HHV-8 detection predicted the subsequent HHV-8 viremia. HHV-8 viremia was significantly more common when HHV-8 DNA was detected from the oropharynx during the week prior than when oral HHV-8 was not detected (RR = 3.3, 95% CI = 1.8–5.9 p<0.001). Genital HHV-8 detection was rare (9 (3%) of 272 swabs).

Conclusions

HHV-8 detection is frequent in the oropharynx and peripheral blood of Ugandans with endemic and epidemic KS. Replication at these sites is highly correlated, and viremia is increased in men and those with HIV. The high incidence of HHV-8 replication at multiple anatomic sites may be an important factor leading to and sustaining the high prevalence of KS in Uganda.  相似文献   

17.
In a feline model of mucopolysaccharidosis type VI (MPS VI), recombinant feline N-acetylgalactosamine-4-sulfatase (rf4S) administered at a dose of 1 mg/kg of body weight, altered the clinical course of the disease in two affected cats treated from birth. After 170 days of therapy, both cats were physically indistinguishable from normal cats with the exception of mild corneal clouding. Feline N-acetylgalactosamine-4-sulfatase was effective in reducing urinary glycosaminoglycan levels and lysosomal storage in all cell types examined except for corneal keratocytes and cartilage chondrocytes. In addition, skeletal pathology was nearly normalized as assessed by radiographic evidence and bone morphometric analysis. Comparison of results with a previous study in which recombinant human 4S (rh4S) was used at an equivalent dose and one 5 times higher indicated that rf4S had a more pronounced effect on reducing pathology than the same dose of rh4S, and in some instances such as bone pathology and lysosomal storage in aorta smooth muscle cells, it was as good as, or better than, the higher dose of rh4S. We conclude that in the feline MPS VI model the use of native or same species enzyme for enzyme replacement therapy has significant benefits.  相似文献   

18.
Human α-N-acetylglucosaminidase (Naglu) is a lysosomal acid hydrolase implicated in Mucopolysaccharidosis type IIIB (MPS IIIB). We utilize a Spodoptera frugiperda (Sf9) system to express Naglu fused to a synthetic protein transduction domain in hopes to facilitate delivery of Naglu across the blood–brain barrier, thus allowing enzyme replacement therapy to treat neurological symptoms.Although human recombinant Naglu was previously produced in Sf9, low expression levels suggested degradation via cryptic mRNA splicing. Two cryptic splice sites discovered within Naglu cDNA were altered by site-directed mutagenesis, reducing Naglu mRNA degradation. A native Naglu secretion-signaling peptide was efficiently recognized by the Sf9 system. Significantly higher enzyme activity was seen from multiple adherent Sf9 cultures stably expressing mutagenized Naglu over those expressing wildtype Naglu (P = 0.000; 3.4-fold average increased specific activity). Suspension cultures demonstrated a 4.0-fold increase in overall enzyme activity secreted post-mutagenesis. Thus elimination of cryptic splicing directly resulted in higher Naglu expression.  相似文献   

19.
Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc) as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1), and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs) in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (P = 0.001 after Bonferroni correction) and nominally associated with fasting glucose levels (P = 0.01) and sleep duration (P = 0.044). On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (P = 0.035) and intra-abdominal fat (P = 0.049), and SNP rs2267871 with insulin sensitivity (P = 0.037). Collectively, our results in Drosophila and humans argue that syndecan family members play a key role in the regulation of body metabolism.  相似文献   

20.
Seven different restriction fragment length polymorphisms (RFLPs) at the N-acetylgalactosamine-6-sulfate sulfatase (GALNS) locus were analyzed using Southern blotting and polymerase chain reaction based techniques to search for the frequency of each RFLP produced by StyI, SphI, HaeIII, StuI, HapII, XhoI, and BamHI restriction endonucleases, respectively, in 36 mutant alleles, including two sibling cases and 100 normal alleles. Calculation of heterozygosity indexes showed that these RFLPs were polymorphic, ranging from 0.31 to 0.69 in mucopolysaccharidosis IVA (MPS IVA) patients compared with 0.21 to 0.65 in normal individuals. There was some significant difference in several RFLPs and in the combination with four kinds of RFLPs (SphI, StuI, HapII, XhoI polymorphisms). The normal alleles were composed of 13 different RFLPs haplotypes; the most common among the Japanese population carrying normal alleles was haplotype 8 (bDEF1) (31.3%), the others being dispersed. The same haplotype 8 was the most frequent in the mutant alleles (44.4%), with seven further haplotypes. These findings revealed the striking variety of polymorphic haplotypes in the MPS IVA gene. By using these five kinds of RFLPs, we examined the theoretical informativity of haplotype analysis in heterozygote detection in nine unrelated MPS IVA families and ten unrelated normal families. All the members of the MPS IVA families studied were diagnosed as a patient, carrier, or noncarrier. We propose that prenatal diagnosis or family analysis in cases in which mutations have not been characterized is now feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号