首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy is an intracellular degradation process, through which cytosolic materials are delivered to the lysosome. Despite recent identification of many autophagy-related genes, how autophagosomes are generated remains unclear. Here, we examined the hierarchical relationships among mammalian Atg proteins. Under starvation conditions, ULK1, Atg14, WIPI-1, LC3 and Atg16L1 target to the same compartment, whereas DFCP1 localizes adjacently to these Atg proteins. In terms of puncta formation, the protein complex including ULK1 and FIP200 is the most upstream unit and is required for puncta formation of the Atg14-containing PI3-kinase complex. Puncta formation of both DFCP1 and WIPI-1 requires FIP200 and Atg14. The Atg12-Atg5-Atg16L1 complex and LC3 are downstream units among these factors. The punctate structures containing upstream Atg proteins such as ULK1 and Atg14 tightly associate with the ER, where the ER protein vacuole membrane protein 1 (VMP1) also transiently localizes. These structures are formed even when cells are treated with wortmannin to suppress autophagosome formation. These hierarchical analyses suggest that ULK1, Atg14 and VMP1 localize to the ER-associated autophagosome formation sites in a PI3-kinase activity-independent manner.Key words: autophagosome, PI3-kinase, isolation membrane, endoplasmic reticulum, ULK  相似文献   

2.
《Autophagy》2013,9(6):764-776
Autophagy is an intracellular degradation process, through which cytosolic materials are delivered to the lysosome. Despite recent identification of many autophagy-related genes, how autophagosomes are generated remains unclear. Here, we examined the hierarchical relationships among mammalian Atg proteins. Under starvation conditions, ULK1, Atg14, WIPI-1, LC3 and Atg16L1 target to the same compartment, whereas DFCP1 localizes adjacently to these Atg proteins. In terms of puncta formation, the protein complex including ULK1 and FIP200 is the most upstream unit and is required for puncta formation of the Atg14-containing PI3-kinase complex. Puncta formation of both DFCP1 and WIPI-1 requires FIP200 and Atg14. The Atg12-Atg5-Atg16L1 complex and LC3 are downstream units among these factors. The punctate structures containing upstream Atg proteins such as ULK1 and Atg14 tightly associate with the ER, where the ER protein Vacuole membrane protein 1 (VMP1) also transiently localizes. These structures are formed even when cells are treated with wortmannin to suppress autophagosome formation. These hierarchical analyses suggest that ULK1, Atg14 and VMP1 localize to the ER-associated autophagosome formation sites in a PI3-kinase activity-independent manner.  相似文献   

3.
Calcium can play an important role in the regulation of autophagy. We previously reported that exogenously introduced calcium in the form of calcium phosphate precipitates (CPP) induces autophagy. Here we showed that CPP-induced autophagy required the classical autophagic machinery, including the autophagosome initiating molecules FIP200 and Beclin 1, as well as molecules involved in the autophagosome membrane extension, Atg4, Atg5 and Atg3. On the other hand, Atg9 seemed to place a restriction on CPP-induced autophagy. Loss of Atg9 led to enhanced LC3 punctation and enhanced p62 degradation. CPP-induced autophagy was independent of mTOR and reactive oxygen species. It also did not affect MAP kinase activation and ER stress. DFCP1 is an ER-resident molecule that binds to phosphatidylinositol 3-phosphate. CPP activated DFCP1 punctation in a class III phosphatidylinositol-3-kinase and calcium dependent manner, and caused the association of DFCP1 puncta with the autophagosomes. Consistently, ER membranes, but not Golgi or mitochondrial membranes, colocalized with CPP-induced LC3 positive autophagosomes. These data suggest that CPP-induced autophagosome formation involves the interaction with the ER membrane.  相似文献   

4.
《Autophagy》2013,9(5):713-716
Class III phosphatidylinositol 3-kinase (PI3KC3) plays a pleiotropic role in autophagy and protein sorting pathways. The human core complex of PI3KC3 consists of three major components including PI3KC3/hVps34, p150 and Beclin 1. How the specificity of PI3KC3 complex is derived towards autophagy is not clear. Utilizing a sequential affinity purification coupled with Mass spectrometry approach, we have successfully purified a human Beclin 1 complex and cloned a novel protein we called Barkor (Beclin 1-associated autophagy-related key regulator). The function of Barkor in autophagy has been manifested in several assays, including stress-induced LC3 lipidation, autophagosome formation, and Salmonella typhimurium amplification. Mechanistically, Barkor competes with UV radiation resistance associated gene product (UVRAG) for interaction with Beclin 1, and orients Beclin1 to autophagosomes. Barkor shares considerable sequence homology with Atg14 in yeast, representing an evolutionary conserved autophagy specific regulatory step in early autophagosome formation.  相似文献   

5.
《Autophagy》2013,9(4):534-536
Vps34, a Class III phosphatidylinositol 3-kinase (PI3-kinase), produces phosphatidylinositol 3 phosphate (PI3P) and functions in various membrane traffic pathways including endocytosis, multivesicular body formation and autophagy. In mammalian cells, Vps34 forms a complex with Beclin 1, but it remains unclear how this Vps34 complex exerts its specific function on each membrane trafficking pathway. We recently identified mammalian Atg14, a new binding partner of the Vps34-Beclin 1 complex, using a computational approach. The Atg14 complex consists of Vps34, Beclin 1 and p150, but lacks UVRAG, which was previously reported to bind the Vps34-Beclin 1 complex. Atg14 localizes to isolation membrane/phagophore during starvation and is essential for autophagosome formation. In contrast, UVRAG primarily localizes to late endosomes. Since UVRAG shows homology with yeast Vps38, we speculate that it could be a mammalian Vps38 ortholog. These findings indicate that the Vps34-Beclin 1 complex has at least two distinct functions, which can be promoted by its binding partners Atg14 and UVRAG.  相似文献   

6.
Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.  相似文献   

7.
《Autophagy》2013,9(2):150-163
Autophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of the cytoplasm for delivery to the lysosome. Phosphatidylinositol 3-phosphate (PtdIns3P) produced by the class III phosphatidylinositol 3-kinase (PtdIns3K) complex is essential for canonical autophagosome formation. RAB5A, a small GTPase localized to early endosomes, has been shown to associate with the class III PtdIns3K complex, regulate its activity and promote autophagosome formation. However, little is known about how endosome-localized RAB5A functions with the class III PtdIns3K complex. Here we identified a novel endoplasmic reticulum (ER)-localized transmembrane protein, ER membrane protein complex subunit 6 (EMC6), which interacted with both RAB5A and BECN1/Beclin 1 and colocalized with the omegasome marker ZFYVE1/DFCP1. It was shown to regulate autophagosome formation, and its deficiency caused the accumulation of autophagosomal precursor structures and impaired autophagy. Our study showed for the first time that EMC6 is a novel regulator involved in autophagy.  相似文献   

8.
Self-eating from an ER-associated cup   总被引:1,自引:0,他引:1  
  相似文献   

9.
Autophagy is an intracellular degradation process to clear up aggregated proteins or aged and damaged organelles. The Beclin1-Vps34-Atg14L complex is essential for autophagosome formation. However, how the complex formation is regulated is unclear. Here, we show that Dapper1 (Dpr1) acts as a critical regulator of the Beclin1-Vps34-Atg14L complex to promote autophagy. Dpr1 ablation in the central nervous system results in motor coordination defect and accumulation of p62 and ubiquitinated proteins. Dpr1 increases autophagosome formation as indicated by elevated puncta formation of LC3, Atg14L and DFCP1 (Double FYVE-containing protein 1). Conversely, loss of Dpr1 impairs LC3 lipidation and causes p62/SQSTM1 accumulation. Dpr1 directly interacts with Beclin1 and Atg14L and enhances the Beclin1-Vps34 interaction and Vps34 activity. Together, our findings suggest that Dpr1 enhances the Atg14L-Beclin1-Vps34 complex formation to drive autophagy.  相似文献   

10.
Degradation of cytoplasmic components by autophagy requires the class III phosphatidylinositol 3 (PI(3))-kinase Vps34, but the mechanisms by which this kinase and its lipid product PI(3) phosphate (PI(3)P) promote autophagy are unclear. In mammalian cells, Vps34, with the proautophagic tumor suppressors Beclin1/Atg6, Bif-1, and UVRAG, forms a multiprotein complex that initiates autophagosome formation. Distinct Vps34 complexes also regulate endocytic processes that are critical for late-stage autophagosome-lysosome fusion. In contrast, Vps34 may also transduce activating nutrient signals to mammalian target of rapamycin (TOR), a negative regulator of autophagy. To determine potential in vivo functions of Vps34, we generated mutations in the single Drosophila melanogaster Vps34 orthologue, causing cell-autonomous disruption of autophagosome/autolysosome formation in larval fat body cells. Endocytosis is also disrupted in Vps34(-/-) animals, but we demonstrate that this does not account for their autophagy defect. Unexpectedly, TOR signaling is unaffected in Vps34 mutants, indicating that Vps34 does not act upstream of TOR in this system. Instead, we show that TOR/Atg1 signaling regulates the starvation-induced recruitment of PI(3)P to nascent autophagosomes. Our results suggest that Vps34 is regulated by TOR-dependent nutrient signals directly at sites of autophagosome formation.  相似文献   

11.
Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15–Vps34 and Atg14–Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate complex I formation.  相似文献   

12.
Autophagosome formation is a dynamic process that is strictly controlled by autophagy‐related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14‐ and phosphatidylinositol 3‐kinase‐independent manner. Atg16L1 deletion mutants, which lack the FIP200‐interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.  相似文献   

13.
Autophagy is a catabolic process that delivers cytoplasmic material to the lysosome for degradation. The mechanisms regulating autophagosome formation and size remain unclear. Here, we show that autophagosome formation was triggered by the overexpression of a dominant‐negative inactive mutant of Myotubularin‐related phosphatase 3 (MTMR3). Mutant MTMR3 partially localized to autophagosomes, and PtdIns3P and two autophagy‐related PtdIns3P‐binding proteins, GFP‐DFCP1 and GFP‐WIPI‐1α (WIPI49/Atg18), accumulated at sites of autophagosome formation. Knock‐down of MTMR3 increased autophagosome formation, and overexpression of wild‐type MTMR3 led to significantly smaller nascent autophagosomes and a net reduction in autophagic activity. These results indicate that autophagy initiation depends on the balance between PI 3‐kinase and PI 3‐phosphatase activity. Local levels of PtdIns3P at the site of autophagosome formation determine autophagy initiation and the size of the autophagosome membrane structure.  相似文献   

14.
The autophagosome, a double‐membrane structure mediating degradation of cytoplasmic materials by macroautophagy, is formed in close proximity to the endoplasmic reticulum (ER). However, how the ER membrane is involved in autophagy initiation and to which membrane structures the autophagy‐initiation complex is localized have not been fully characterized. Here, we were able to biochemically analyze autophagic intermediate membranes and show that the autophagy‐initiation complex containing ULK and FIP200 first associates with the ER membrane. To further characterize the ER subdomain, we screened phospholipid biosynthetic enzymes and found that the autophagy‐initiation complex localizes to phosphatidylinositol synthase (PIS)‐enriched ER subdomains. Then, the initiation complex translocates to the ATG9A‐positive autophagosome precursors in a PI3P‐dependent manner. Depletion of phosphatidylinositol (PI) by targeting bacterial PI‐specific phospholipase C to the PIS domain impairs recruitment of downstream autophagy factors and autophagosome formation. These findings suggest that the autophagy‐initiation complex, the PIS‐enriched ER subdomain, and ATG9A vesicles together initiate autophagosome formation.  相似文献   

15.
Cytokinesis is the final step in cell division that results in the separation of a parent cell into daughter cells. Unlike somatic cells that undergo symmetric division, meiotic division is highly asymmetric, allowing the preservation of maternal resources for embryo development. Beclin-1/BECN1, the mammalian homolog of yeast Atg6, is a key molecule of autophagy. As part of a class III phosphatidylinositol 3-kinase (PI3K-III) complex, BECN1 initiates autophagosome formation by coordinating membrane trafficking. However, emerging evidence suggests that BECN1 regulates chromosome segregation and cytokinesis during mitosis. Thus, we investigated the function of BECN1 during oocyte meiotic maturation. BECN1 was widely distributed during meiotic maturation forming small vesicles. Interestingly, BECN1 is also detected at the midbody ring during cytokinesis. Depletion of BECN1 impaired the cytokinetic abscission, perturbing the recruitment of ZFYVE26 at the midbody. Similar phenotypes were observed when PI3K-III activity was inhibited. However, inhibition of autophagy by depleting Atg14L did not disturb meiotic maturation. Therefore, our results not only demonstrate that BECN1 as a PI3K-III component is essential for cytokinesis, but also suggest that BECN1 is not associated with autophagy pathway in mouse oocytes.  相似文献   

16.
The autophagy core machinery is essentially conserved in eukaryotic cells for autophagy regulation. However, the underlying mechanisms for autophagosome formation in plant cells remain elusive. We have recently demonstrated that SH3 domain-containing protein 2 (SH3P2), a BAR (Bin-Amphiphysin-Rvs) domain protein, functions as a novel regulator for autophagosome biogenesis in Arabidopsis thaliana. Using SH3P2 and its GFP fusion as probes, we have characterized the dynamics and structures of autophagosome formation in plant cells. The phagophore assembly site, marked by SH3P2, is identified as having a close connection with the ER. SH3P2 also binds to phosphatidylinositol 3-phosphate (PtdIns3P) and functions downstream of the phosphatidylinositol 3-kinase (PtdIns3K) complex. Thus, SH3P2 serves as a novel membrane-associated protein in regulating autophagosome formation in Arabidopsis thaliana.  相似文献   

17.
The double‐membrane‐bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl‐inositol‐3‐phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER–plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E‐Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E‐Syt‐containing domains during autophagy and that inhibition of E‐Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E‐Syts are essential for autophagy‐associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER–plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy.  相似文献   

18.
《Autophagy》2013,9(6):876-877
Beclin 1 is an antitumor protein, required for mammalian autophagy, but its precise molecular function is poorly understood. Mass spectrometry analysis reveals that two novel proteins, Atg14L and Rubicon, associate with Beclin 1, together with a known Beclin 1-binding protein, UVRAG. The interactions of Atg14L and UVRAG with the Beclin 1-Vps34 (class III PI3-kinase)-Vps15 core complex are mutually exclusive; Rubicon associates with a subpopulation of UVRAG-containing complexes. The Atg14L complex, which positively regulates autophagy at an early step, localizes to the phagophore/isolation membrane, autophagosome and endoplasmic reticulum. In contrast, the Rubicon-UVRAG complex localizes to the late endosome/lysosome and negatively regulates both autophagy at a later step and the endocytic pathway. Thus, the Beclin 1-Vps34-Vps15 complex functions in autophagy and the endocytic pathway, but its function in a given context depends on the identity of its interacting subunits.  相似文献   

19.
The class III phosphatidylinositol 3-kinase (PI3KC3) plays a central role in autophagy. Rubicon, a RUN domain-containing protein, is newly identified as a PI3KC3 subunit through its association with Beclin 1. Rubicon serves as a negative regulator of PI3KC3 and autophagosome maturation. The molecular mechanism underlying the PI3KC3 and autophagy inhibition by Rubicon is largely unknown. Here, we demonstrate that Rubicon interacts with the PI3KC3 catalytic subunit hVps34 via its RUN domain. The RUN domain contributes to the efficient inhibition of PI3KC3 lipid kinase activity by Rubicon. Furthermore, a Rubicon RUN domain deletion mutant fails to complement the autophagy deficiency in Rubicon-depleted cells. Hence, these results reveal a critical role of the Rubicon RUN domain in PI3KC3 and autophagy regulation.  相似文献   

20.
Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defence against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, Infectious Bronchitis Virus (IBV) activates autophagy. A screen of individual IBV non-structural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses Mouse Hepatitis Virus, and Severe Acute Respiratory Syndrome Virus, and the equivalent nsp5-7 of the arterivirus Porcine Reproductive and Respiratory Syndrome Virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II-positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double FYVE-domain containing protein (DFCP) indicating localised concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signalling, activation of sirtuin1 or induction of ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号