首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Maintenance of phospholipid asymmetry of the plasma membrane is essential for cells to prevent phagocytic removal or acceleration of coagulation. Photodynamic treatment (PDT), which relies on the generation of reactive oxygen species to achieve inactivation of pathogens, might be a promising approach in the future for decontamination of red blood cell concentrates. To investigate whether PDT affects phospholipid asymmetry, erythrocytes were illuminated in the presence of 1,9-dimethyl-methylene blue (DMMB) as photosensitizer and subsequently labeled with FITC-labeled annexin V. This treatment resulted in about 10% annexin V positive cells, indicating exposure of phosphatidylserine (PS). Treatment of erythrocytes with N-ethylmaleimide (NEM) prior to illumination, to inhibit inward translocation of PS via the aminophospholipid translocase, resulted in enhanced PS exposure, while treatment with H(2)O(2) (previously shown to inhibit phospholipid scrambling) greatly diminished PS exposure, indicating the induction of phospholipid scrambling by PDT. Only erythrocytes illuminated in the presence of DMMB showed translocation of NBD-phosphatidylcholine (NBD-PC), confirming scrambling induction. Double label experiments indicated that PS exposure does not occur without concurrent scrambling activity. Induction of scrambling was only moderately affected by Ca(2+) depletion of the cells. In contrast, scavengers of singlet oxygen were found to prevent phospholipid scrambling induced by PDT. The results of this study show that phospholipid scrambling is induced in human erythrocytes by exposure to singlet oxygen.  相似文献   

2.
Apoptosis is generally accompanied by a late phase of ceramide (Cer) production, the significance of which is unknown. This study describes a previously unrecognized link between Cer accumulation and phosphatidylserine (PS) exposure at the cell surface, a characteristic of the execution phase of apoptosis resulting from a loss of plasma membrane phospholipid asymmetry. Using a fluorescent sphingomyelin (SM) analogue, N-(N-[6-[(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]caproyl]-sphingosylphosphorylcholine (C(6)-NBD-SM), we show that Cer is derived from SM, initially located in the outer leaflet of the plasma membrane, which gains access to a cytosolic SMase by flipping to the inner leaflet in a process of lipid scrambling paralleling PS externalization. Lipid scrambling is both necessary and sufficient for SM conversion: Ca(2+) ionophore induces both PS exposure and SM hydrolysis, whereas scrambling-deficient Raji cells do not show PS exposure or Cer formation. Cer is not required for mitochondrial or nuclear apoptotic features since these are still observed in Raji cells. SM hydrolysis facilitates cholesterol efflux to methyl-beta-cyclodextrin, which is indicative of a loss of tight SM-cholesterol interaction in the plasma membrane. We provide evidence that these biophysical alterations in the lipid bilayer are essential for apoptotic membrane blebbing/vesiculation at the cell surface: Raji cells show aberrant apoptotic morphology, whereas replenishment of hydrolyzed SM by C(6)- NBD-SM inhibits blebbing in Jurkat cells. Thus, SM hydrolysis, during the execution phase of apoptosis, results from a loss of phospholipid asymmetry and contributes to structural changes at the plasma membrane.  相似文献   

3.
Organization of the plasma membrane into specialized substructures in different blood lineages facilitates important biological functions including proper localization of receptors at the plasma membrane as well as the initiation of crucial intracellular signaling cascades. The eukaryotic plasma membrane is a lipid bilayer that consists of asymmetrically distributed phospholipids. This asymmetry is actively maintained by membrane-embedded lipid transporters, but there is only limited data available about the molecular identity of the predominantly active transporters and their substrate specificity in different leukocyte subsets. We demonstrate here that the P4-type ATPase ATP11C mediates significant flippase activity in all murine leukocyte subsets. Loss of ATP11C resulted in a defective internalization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in comparison to control cells. The diminished flippase activity caused increased PS exposure on 7-aminoactinomycin D (7-AAD) viable pro-B cells freshly isolated from the bone marrow of ATP11C-deficient mice, which was corrected upon a 2-hour resting period in vitro. Despite the impaired flippase activity in all immune cell subsets, the only other blood cell type with an accumulation of PS on the surface were viable 7-AAD developing T cells but this did not result in any discernable effect on their development in the thymus. These findings show that all leukocyte lineages exhibit flippase activity, and identify ATP11C as an aminophospholipid translocase in immune cells.  相似文献   

4.
Normal quescent cells maintain membrane lipid asymmetry by ATP-dependent membrane lipid transporters, which shuttle different phospholipids from one leaflet to the other against their respective concentration gradients. When cells are challenged, membrane lipid asymmetry can be perturbed resulting in exposure of phosphatidylserine [PS] at the outer cell surface. Translocation of PS from the inner to outer membrane leaflet of activated blood platelets and platelet-derived microvesicles provides a catalytic surface for interacting coagulation factors. This process is dramatically impaired in Scott syndrome, a rare congenital bleeding disorder, underscoring the indispensible role of PS in hemostasis. This also testifies to a defect of a protein-catalyzed scrambling of membrane phospholipids. The Scott phenotype is not restricted to platelets, but can be demonstrated in other blood cells as well. The functional aberrations observed in Scott syndrome have increased our understanding of transmembrane lipid movements, and may help to identify the molecular elements that promote the collapse of phospholipid asymmetry during cell activation and apoptosis.  相似文献   

5.
Lange Y  Ye J  Steck TL 《Biochemistry》2007,46(8):2233-2238
Cholesterol is predicted to associate more strongly with the outer than the inner leaflet of plasma membrane bilayers based on the relative in vitro affinities of their phospholipids. Complex formation with the high-affinity species (especially saturated sphingomyelins) is said to reduce the chemical activity (escape potential or fugacity) of the sterol. We therefore tested the hypothesis that scrambling the sidedness of plasma membrane phospholipids of intact cells will increase the chemical activity of outer surface cholesterol. Upon activating the plasma membrane scramblase in intact human red cells by introducing ionomycin to raise cytoplasmic Ca++, phosphatidylserine became exposed and, concomitantly, the chemical activity of exofacial cholesterol was increased. (This was gauged by its susceptibility to cholesterol oxidase and its rate of transfer to cyclodextrin.) Similar behavior was observed in human fibroblasts. Two other treatments known to activate cell surface cholesterol (namely, exposure to glutaraldehyde and to low-ionic-strength buffer) also brought phosphatidylserine to the cell surface but by a Ca++-independent mechanism. Given that phospholipid scrambling is important in blood coagulation and apoptosis, the concomitant activation of cell surface cholesterol could contribute to these and other pathophysiological signaling processes.  相似文献   

6.
The asymmetric transbilayer distribution of phospholipids in the plasma membrane and the regulation of phosphatidylserine (PS) exposure at the cell surface of animal cells are of high physiological significance. It has been shown previously that annexin V is one of the most sensitive tools with which the presence of small amounts of PS on the outer surface of eukaryotic cells can be detected. We present here the covalent coupling of annexin V molecules to magnetic nanoparticles of maghemite. The resulting annexin V-ferrofluid is used in the magnetic separation of PS exposing cells, as illustrated for human erythrocytes modified in their phospholipid transbilayer asymmetry by the use of a calcium ionophore. Results on stored human erythrocytes and comparison with results obtained using iodinated and fluorescein-labeled annexin V are also presented.  相似文献   

7.
The asymmetric transbilayer distribution of phosphatidylserine (PS) in the mammalian plasma membrane and secretory vesicles is maintained, in part, by an ATP-dependent transporter. This aminophospholipid "flippase" selectively transports PS to the cytosolic leaflet of the bilayer and is sensitive to vanadate, Ca(2+), and modification by sulfhydryl reagents. Although the flippase has not been positively identified, a subfamily of P-type ATPases has been proposed to function as transporters of amphipaths, including PS and other phospholipids. A candidate PS flippase ATP8A1 (ATPase II), originally isolated from bovine secretory vesicles, is a member of this subfamily based on sequence homology to the founding member of the subfamily, the yeast protein Drs2, which has been linked to ribosomal assembly, the formation of Golgi-coated vesicles, and the maintenance of PS asymmetry. To determine if ATP8A1 has biochemical characteristics consistent with a PS flippase, a murine homologue of this enzyme was expressed in insect cells and purified. The purified Atp8a1 is inactive in detergent micelles or in micelles containing phosphatidylcholine, phosphatidic acid, or phosphatidylinositol, is minimally activated by phosphatidylglycerol or phosphatidylethanolamine (PE), and is maximally activated by PS. The selectivity for PS is dependent upon multiple elements of the lipid structure. Similar to the plasma membrane PS transporter, Atp8a1 is activated only by the naturally occurring sn-1,2-glycerol isomer of PS and not the sn-2,3-glycerol stereoisomer. Both flippase and Atp8a1 activities are insensitive to the stereochemistry of the serine headgroup. Most modifications of the PS headgroup structure decrease recognition by the plasma membrane PS flippase. Activation of Atp8a1 is also reduced by these modifications; phosphatidylserine-O-methyl ester, lysophosphatidylserine, glycerophosphoserine, and phosphoserine, which are not transported by the plasma membrane flippase, do not activate Atp8a1. Weakly translocated lipids (PE, phosphatidylhydroxypropionate, and phosphatidylhomoserine) are also weak Atp8a1 activators. However, N-methyl-phosphatidylserine, which is transported by the plasma membrane flippase at a rate equivalent to PS, is incapable of activating Atp8a1 activity. These results indicate that the ATPase activity of the secretory granule Atp8a1 is activated by phospholipids binding to a specific site whose properties (PS selectivity, dependence upon glycerol but not serine, stereochemistry, and vanadate sensitivity) are similar to, but distinct from, the properties of the substrate binding site of the plasma membrane flippase.  相似文献   

8.
Unconjugated bilirubin increasingly binds to erythrocytes as the bilirubin-to-albumin molar ratio exceeds unity, leading to toxic manifestations that can culminate in cell lysis. Our previous studies showed that bilirubin induces the release of lipids from erythrocyte membranes. In the present work, those studies were extended in order to characterize the alterations of membrane lipid composition and evaluate whether bilirubin leads to a loss of phospholipid asymmetry. To this end, human erythrocytes were incubated with several bilirubin-to-albumin molar ratios (0.5 to 5), and cholesterol as well as the total and the individual classes of phospholipids were determined. To detect erythrocytes with phosphatidylserine at the outer surface, the number of annexin V-positive cells was determined following incubation with bilirubin, fixing its molar ratio to albumin at 3. The results demonstrate profound changes in erythrocyte membrane composition, including modified cholesterol and phospholipid content. The release of membrane cholesterol, as well as of total and individual classes of phospholipids at molar ratios ≥1, indicates that damage of erythrocytes may occur in severely ill jaundiced neonates. The loss of the inner-located phospholipids, phosphatidylethanolamine and phosphatidylserine, points to a redistribution of phospholipids in the membrane bilayer. This was confirmed by the exposure of phosphatidylserine at the outer cell surface. In conclusion, this study demonstrates that bilirubin induces loss of membrane lipids and externalization of phosphatidylserine in human erythrocytes. These features may facilitate hemolysis and erythrophagocytosis, thus contributing to enhanced bilirubin production and anemia during severe neonatal hyperbilirubinemia. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Influx of calcium in platelets and red cells produces formation of vesicles shed from the plasma membrane. The time course of the shedding process closely correlates with the ability of both cells to stimulate prothrombinase activity when used as a source of phospholipid in the prothrombinase assay. This reflects increased surface exposure of phosphatidylserine, presumably resulting from a loss in membrane asymmetry. Evidence is presented that the shed vesicles have a random phospholipid distribution, while the remnant cells show a progressive loss of membrane phospholipid asymmetry when more shedding occurs. Removal of intracellular calcium produces a decrease of procoagulant activity of the remnant cells but not of that of the shed vesicles. This is consistent with reactivation of aminophospholipid translocase activity, being first inhibited by intracellular calcium and subsequently reactivated upon calcium removal. Involvement of aminophospholipid translocase is further supported by the observation that reversibility of procoagulant activity is also dependent on metabolic ATP and reduced sulfhydryl groups. The finding that this reversibility process is not apparent in shed vesicles may be ascribed to the absence of translocase or to a lack of ATP. These data support and extend the suggestion made by Sims et al. [1989) J. Biol. Chem. 264, 17049-17057) that membrane fusion, which is required for shedding to occur, produces transient flip-flop sites for membrane phospholipids. Furthermore, the present results indicate that scrambling of membrane phospholipids can only occur provided that aminophospholipid translocase is inactive.  相似文献   

10.
Cells generally maintain an asymmetric distribution of phospholipids across the plasma membrane bilayer, restricting the phospholipid, phosphatidylserine (PS), to the inner leaflet of the plasma membrane. When cells undergo apoptosis, this asymmetric transbilayer distribution is lost, bringing PS to the surface where it acts as a signal for engulfment by phagocytes. The fluorescent dye merocyanine 540 specifically stains the plasma membrane of apoptotic cells which have lost their asymmetric distribution of phospholipids. However, it also stains non-apoptotic macrophages, suggesting that phospholipid asymmetry may not be maintained in these cells, and thus that they may express PS on their surface. Here, the PS-binding protein, annexin V, was used to show that in fact normal macrophages do express PS on their surface. Furthermore, pre-treating macrophages with annexin V was found to inhibit phagocytosis of apoptotic thymocytes and thymocytes on which PS expression was artificially induced, but did not inhibit phagocytosis of latex beads or Fc receptor-mediated phagocytosis of opsonized erythrocytes. These results indicate that PS is constitutively expressed on the surface of macrophages and is functionally significant for the phagocytosis of PS-expressing target cells.  相似文献   

11.
Amyloid-beta (1-42) [Abeta (1-42)] deposition in the brain is a hallmark of Alzheimer's disease (AD) and has been shown to induce apoptosis and disrupt cellular ion homeostasis. Abeta (1-42) induces membrane lipid peroxidation, and 4-hydroxynonenal (HNE) and 2-propenal (acrolein) are the two reactive products of lipid peroxidation, which structurally modify proteins by covalent interaction and inhibit enzyme function. Phosphatidylserine (PS), an aminophospholipid, is sequestered in the inner leaflet of the plasma membrane in nonstimulated cells. An early signal of synaptosomal apoptosis is the loss of phospholipid asymmetry and the appearance of phosphatidylserine in the outer leaflet of the membrane. The ATP-requiring enzyme, flippase, maintains phospholipid asymmetry of PS. Here, we have investigated the inactivation of the transmembrane enzyme aminophospholipid-translocase (or flippase) by Abeta (1-42). Flippase activity depends on a critical cysteine residue, a putative site of covalent modification by the Abeta (1-42)-induced lipid peroxidation products, HNE or acrolein. The present study is aimed to investigate the protective effects of tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester (FAEE) on Abeta (1-42) induced modulation in phospholipid asymmetry in the synaptosomal membranes. Pretreatment of synaptosomes with D609 and FAEE significantly protected Abeta (1-42)-induced loss of phospholipid asymmetry in synaptosomal membranes. Our results suggest that D609 and FAEE exert protective effects against Abeta (1-42) induced apoptosis. The increase in intracellular Ca(2+) might not be the sole cause for the loss of flippase activity. Rather, other mechanisms that could modulate the function of flippase might be important in the modulation of phospholipid asymmetry. The results of this study are discussed with relevance to neuronal loss in the AD brain.  相似文献   

12.
During the time that erythrocytes (RBC) spend in the circulation, a series of progressive events take place that lead to their removal and determine their apparent aging and limited survival. In addition, a fraction of RBC precursors will be removed during erythropoiesis by apoptotic processes, often described as "ineffective erythropoiesis". Both will determine the survival of erythroid cells and play an important role in red cell pathology, including hemoglobinopathies and red cell membrane disorders. The loss of phospholipid asymmetry, and the exposure of phosphatidylserine (PS) on the surface of plasma membranes may be a general trigger by which cells, including aging RBC and apoptotic cells, are removed. Oxidant stress and inactivation of the system that maintains phospholipid asymmetry play a central role in the events that will lead to PS exposure, death and removal.  相似文献   

13.
Smriti  Nemergut EC  Daleke DL 《Biochemistry》2007,46(8):2249-2259
The plasma membrane of most cells contains a number of lipid transporters that catalyze the ATP-dependent movement of phospholipids across the membrane and assist in the maintenance of lipid asymmetry. The most well-characterized of these transporters is the erythrocyte aminophospholipid flippase, which selectively transports phosphatidylserine (PS) from the outer to the inner monolayer. Previous work has demonstrated that PS and to a lesser extent phosphatidylethanolamine (PE) are substrates for the flippase and that other phospholipids move across the membrane only by passive flip-flop. The present study re-evaluates these results. The incorporation and transbilayer movement of a number of short-chain (dilauroyl) phospholipid analogues in human erythrocytes was measured by observing lipid-induced changes in cell morphology, and the effect of an ATPase inhibitor (vanadate) and a sulfyhdryl reagent (N-ethylmaleimide) was determined. Incubation of cells with these lipids causes the rapid formation of echinocytes, because of the accumulation of the lipid in the outer monolayer. While dilauroylphosphatidylcholine-treated cells retained this shape, cells treated with sn-1,2-DLP-l-S, sn-1,2-DLP-d-S, or N-methyl-DLPS rapidly changed morphology to stomatocytes, which is consistent with the transport and accumulation of the lipid in the inner monolayer. A similar, although slower, stomatocytic shape change was induced by sn-2,3-DLP-l-S. Other lipids that were tested (dilauroylphosphatidylhydroxypropionate, dilauroylphosphatidylhomoserine, DLPS-methyl ester, or sn-2,3-DLP-d-S) reverted to discocytes only. In all cases, pretreatment with vanadate or N-ethylmaleimide inhibited the conversion of echinocytes to discocytes or stomatocytes. This is the first report of a protein- and energy-dependent pathway for the inwardly directed transbilayer movement of lipids other than PS and PE in the erythrocyte membrane and suggests that the flippase has broader specificity for substrates or that other lipid transporters are present.  相似文献   

14.
The best understood consequence of the collapse of lipid asymmetry is exposure of phosphatidylserine (PS) in the external leaflet of the plasma membrane bilayer, where it is known to serve at least two major functions: providing a platform for development of the blood coagulation cascade and presenting the signal that induces phagocytosis of apoptotic cells. Lipid asymmetry is collapsed by activation of phospholipid scramblase(s) that catalyze bidirectional transbilayer movement of the major classes of phospholipid. The protein corresponding to this activity is not yet known. Observations on cells from patients with Scott syndrome, a rare hereditary bleeding disorder resulting from impaired lipid scrambling, have shown that there are multiple activation pathways that converge on scramblase activity.  相似文献   

15.
The plasma membrane is composed of two leaflets that are asymmetric with regard to their phospholipid composition with phosphatidylserine (PS) predominantly located within the inner leaflet whereas other phospholipids such as phosphatidylcholine (PC) are preferentially located in the outer leaflet. An intimate relationship between cellular physiology and the composition of the plasma membrane has been demonstrated, with for example apoptosis requiring PS exposure for macrophage recognition. In skeletal muscle development, differentiation also requires PS exposure in myoblasts to create cell-cell contact areas allowing the formation of multinucleate myotubes. Although it is clearly established that membrane composition/asymmetry plays an important role in cellular physiology, the role of cytokines in regulating this asymmetry is still unclear. When incubated with myoblasts, insulin-like growth factor I (IGF-1) has been shown to promote proliferation versus differentiation in a concentration dependent manner and therefore, may be a potential candidate regulating cell membrane asymmetry. We show, in non-apoptotic C2C12 cells, that relocation of an exogenous PS analogue, from the outer into the inner leaflet, is accelerated by IGF-1 in a concentration-dependent manner and that maintenance of membrane asymmetry triggered by IGF-1 is however independent of the PI3K inhibitor wortmannin.  相似文献   

16.
Cholesterol is known to affect several membrane functions, including membrane susceptibility to oxidative stress. In order to gain a better understanding of the relationship between cholesterol contents, structural integrity, and degree of survival in oxidatively stressed erythrocytes, here we analyzed the transbilayer phospholipid distribution, the morphology, and the degree of clearance observed in cholesterol-modified (enriched or depleted) and unmodified (control) erythrocytes exposed to tert-butylhydroperoxide. We report that the modification of cholesterol contents in erythrocytes promotes the externalization of phosphatidylserine (PS) to the membrane surface, which is consistent with a concomitant inhibition of aminophospholipid translocase (APLT) and an increased uptake of modified erythrocytes by macrophages. Moreover, cholesterol depletion modifies the transbilayer aminophospholipid distribution induced by oxidative stress to a great extent, significantly increasing PS externalization, which is associated with the strongest decrease in APLT activity. The loss of normal PS asymmetry is positively correlated with enhanced phagocytosis, and an increase in echinocyte forms is observed in all oxidized erythrocytes. We envisage that PS externalization could be due, at least in part, to the decrease in APLT activity induced by oxidative stress, the activity of which is also dependent on membrane cholesterol contents.  相似文献   

17.
The phospholipids in plasma membranes of erythrocytes, as well as platelets, lymphocytes and other cells are asymmetrically distributed, with sphingomyelin and phosphatidylcholine residing predominantly in the outer leaflet of the bilayer, and phosphatidylserine and phosphatidylethanolamine in the inner leaflet. It is known that Ca2+ can disrupt the phospholipid asymmetry by activation of a protein known as phospholipid scramblase, which affects bidirectional phospholipid movement in a largely non-selective manner. As Ca2+ also inhibits aminophospholipid translocase, whose Mg(2+)-ATPase activity is responsible for active translocation of aminophospholipids from the outer to the inner leaflet, it is important to accurately determine the sensitivity of scramblase to intracellular free Ca2+. In the present study we have utilized the favourable Kd of Mag-fura-2 for calcium in the high micromolar range to determine free Ca2+ levels associated with lipid scrambling in resealed human red cell ghosts. The Ca2+ sensitivity was measured in parallel to the translocation of a fluorescent-labelled lipid incorporated into the ghost bilayer. The phospholipid scrambling was found to be half-maximally activated at 63-88 microM free intracellular Ca2+. The wider applicability of the method and the physiological implications of the calcium sensitivity determined is discussed.  相似文献   

18.
Mature human erythrocytes circulate in blood for approximately 120 days, and senescent erythrocytes are removed by splenic macrophages. During this process, the cell membranes of senescent erythrocytes express phosphatidylserine, which is recognized as a signal for phagocytosis by macrophages. However, the mechanisms underlying phosphatidylserine exposure in senescent erythrocytes remain unclear. To clarify these mechanisms, we isolated senescent erythrocytes using density gradient centrifugation and applied fluorescence‐labelled lipids to investigate the flippase and scramblase activities. Senescent erythrocytes showed a decrease in flippase activity but not scramblase activity. Intracellular ATP and K+, the known influential factors on flippase activity, were altered in senescent erythrocytes. Furthermore, quantification by immunoblotting showed that the main flippase molecule in erythrocytes, ATP11C, was partially lost in the senescent cells. Collectively, these results suggest that multiple factors, including altered intracellular substances and reduced ATP11C levels, contribute to decreased flippase activity in senescent erythrocytes in turn to, present phosphatidylserine on their cell membrane. The present study may enable the identification of novel therapeutic approaches for anaemic states, such as those in inflammatory diseases, rheumatoid arthritis, or renal anaemia, resulting from the abnormally shortened lifespan of erythrocytes.  相似文献   

19.
The capacitating agent bicarbonate/CO(2) has been shown to induce profound changes in the architecture and dynamics within the sperm's plasma membrane lipid bilayer via a cAMP-dependent protein phosphorylation signaling pathway. Here we have investigated the effect of bicarbonate on surface exposure of endogenous aminophospholipids in boar spermatozoa, detecting phosphatidylserine (PS) with fluorescein-conjugated annexin V and phosphatidylethanolamine (PE) with fluorescein-conjugated streptavidin/biotinylated Ro-09-0198. Flow cytometric analyses revealed that incubation with 15 mM bicarbonate induced 30%-70% of live acrosome-intact cells to expose PE very rapidly; this exposure was closely related to a decrease in lipid packing order as detected by enhanced binding of merocyanine 540. PS exposure was detectable in the same proportion of cells, though its expression was slower. Confocal microscopy revealed that exposure of aminophospholipids in intact cells was restricted to the anterior acrosomal region of the head plasma membrane. Aminophospholipid exposure, merocyanine stainability, and a subsequent migration of cholesterol to the apical region of the head plasma membrane, were all under the control of the cAMP-dependent protein phosphorylation pathway. The close coupling of decreased lipid packing order with exposure of PE led us to conclude that bicarbonate was inducing phospholipid scrambling (i.e., collapse of asymmetric transverse distribution), and that the scrambling was a prerequisite for cholesterol relocation. There was no evidence whatever that the bicarbonate-induced scrambling was an apoptotic process. It was not accompanied by major loss of viability or by DNA degeneration or by loss of mitochondrial function, and it could not be blocked by the broad-specificity caspase inhibitors zVAD-fmk and BocD-fmk. In the absence of bicarbonate, scrambling could not be induced by the apoptotic agents UV, staurosporine, or cycloheximide. Bicarbonate-induced phospholipid scrambling thus appears to be an important and early physiological event in the capacitation process.  相似文献   

20.
Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号