首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like several other intracellular pathogens, Mycobacterium marinum (Mm) escapes from phagosomes into the host cytosol where it can polymerize actin, leading to motility that promotes spread to neighboring cells. However, only ∼25% of internalized Mm form actin tails, and the fate of the remaining bacteria has been unknown. Here we show that cytosolic access results in a new and intricate host pathogen interaction: host macrophages ubiquitinate Mm, while Mm shed their ubiquitinated cell walls. Phagosomal escape and ubiquitination of Mm occured rapidly, prior to 3.5 hours post infection; at the same time, ubiquitinated Mm cell wall material mixed with host-derived dense membrane networks appeared in close proximity to cytosolic bacteria, suggesting cell wall shedding and association with remnants of the lysed phagosome. At 24 hours post-infection, Mm that polymerized actin were not ubiquitinated, whereas ubiquitinated Mm were found within LAMP-1–positive vacuoles resembling lysosomes. Though double membranes were observed which sequestered Mm away from the cytosol, targeting of Mm to the LAMP-1–positive vacuoles was independent of classical autophagy, as demonstrated by absence of LC3 association and by Atg5-independence of their formation. Further, ubiquitination and LAMP-1 association did not occur with mutant avirulent Mm lacking ESX-1 (type VII) secretion, which fail to escape the primary phagosome; apart from its function in phagosome escape, ESX-1 was not directly required for Mm ubiquitination in macrophages or in vitro. These data suggest that virulent Mm follow two distinct paths in the cytosol of infected host cells: bacterial ubiquitination is followed by sequestration into lysosome-like organelles via an autophagy-independent pathway, while cell wall shedding may allow escape from this fate to permit continued residence in the cytosol and formation of actin tails.  相似文献   

2.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

3.
Phagocytosis by cells of the innate immune system, such as macrophages, and the subsequent successful maturation of the phagosome, is key for the clearance of pathogens. The fungal pathogen Cryptococcus neoformans is known to overcome killing by host phagocytes and both replicate within these cells and also escape via a non‐lytic process termed vomocytosis. Here we demonstrate that, during intracellular growth, cryptococci modify phagolysosome maturation. Live cryptococci, but not heat‐killed pathogens or inert targets, induce the premature removal of the early phagosome markers Rab5 and Rab11. In addition, significant acidification of the phagosome, calcium flux and protease activity is hindered, thus rendering the phagosome permissive for cryptococcal proliferation. Interestingly, several attenuated cryptococcal mutants retain this ability to subvert phagosomal maturation, suggesting that hitherto unidentified pathogen mechanisms regulate this process.  相似文献   

4.
Cryptococcus neoformans (Cn) is an encapsulated yeast that is a facultative intracellular pathogen and a frequent cause of human disease. The interaction of Cn with alveolar macrophages is critical for containing the infection , but Cn can also replicate intracellularly and lyse macrophages . Cn has a unique intracellular pathogenic strategy that involves cytoplasmic accumulation of polysaccharide-containing vesicles and intracellular replication leading to the formation of spacious phagosomes in which multiple cryptococcal cells are present . The Cn intracellular pathogenic strategy in macrophages and amoebas is similar, leading to the proposal that it originated as a mechanism for survival against phagocytic predators in the environment . Here, we report that under certain conditions, including phagosomal maturation, possible actin depolymerization, and homotypic phagosome fusion, Cn can exit the macrophage host through an extrusion of the phagosome, while both the released pathogen and host remain alive and able to propagate. The phenomenon of "phagosomal extrusion" indicates the existence of a previously unrecognized mechanism whereby a fungal pathogen can escape the intracellular confines of mammalian macrophages to continue propagation and, possibly, dissemination.  相似文献   

5.
6.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Previous studies have demonstrated that Cryptococcus binding and invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for transmigration across the blood-brain barrier. However, the molecular mechanism involved in the cryptococcal blood-brain barrier traversal is poorly understood. In this study we examined the signaling events in HBMEC during interaction with C. neoformans. Analysis with inhibitors revealed that cryptococcal association, invasion, and transmigration require host actin cytoskeleton rearrangement. Rho pulldown assays revealed that Cryptococcus induces activation of three members of RhoGTPases, e.g. RhoA, Rac1, and Cdc42, and their activations are required for cryptococcal transmigration across the HBMEC monolayer. Western blot analysis showed that Cryptococcus also induces phosphorylation of focal adhesion kinase (FAK), ezrin, and protein kinase C α (PKCα), all of which are involved in the rearrangement of host actin cytoskeleton. Down-regulation of FAK, ezrin, or PKCα by shRNA knockdown, dominant-negative transfection, or inhibitors significantly reduces cryptococcal ability to traverse the HBMEC monolayer, indicating their positive role in cryptococcal transmigration. In addition, activation of RhoGTPases is the upstream event for phosphorylation of FAK, ezrin, and PKCα during C. neoformans-HBMEC interaction. Taken together, our findings demonstrate that C. neoformans activates RhoGTPases and subsequently FAK, ezrin, and PKCα to promote their traversal across the HBMEC monolayer, which is the critical step for cryptococcal brain infection and development of meningitis.  相似文献   

7.
Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non‐lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti‐phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal‐infected macrophages and highlight areas for future research.  相似文献   

8.
Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as “phagosome resolution.” Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.  相似文献   

9.
The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.  相似文献   

10.
This study aimed to evaluate the participation of actin and tubulin in the process of internalisation, the interaction of bacterial phagosomes with lysosomes, the morphometric changes and the expression of inflammatory cytokines in Caco-2 cells infected with Campylobacter jejuni. Both actin and tubulin participated in the process of internalisation. Inside the cells, lysosomes fuse with phagosomes, which may lead to bacterial death because after 2 h, the bacteria were not detected by Transmission electron microscopy (TEM). There is increased expression of TGF-β3 during the early stages, and IL-8 was expressed after 60 min p.i. This work showed that C. jejuni invades and causes major morphometric changes in epithelial cells. In response, the cells increase their expression of cytokines that can lead to inflammation. The mechanisms of invasion are dependent on actin and tubulin, and once internalised, lysosomes fuse with phagosomes.  相似文献   

11.
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that can replicate within infected macrophages. The ability of M. tb to arrest phagosome maturation is believed to facilitate its intracellular multiplication. Rab GTPases regulate membrane trafficking, but details of how Rab GTPases regulate phagosome maturation and how M. tb modulates their localization during inhibiting phagolysosome biogenesis remain elusive. We compared the localization of 42 distinct Rab GTPases to phagosomes containing either Staphylococcus aureus or M. tb. The phagosomes containing S. aureus were associated with 22 Rab GTPases, but only 5 of these showed similar localization kinetics as the phagosomes containing M. tb. The Rab GTPases responsible for phagosome maturation, phagosomal acidification and recruitment of cathepsin D were examined in macrophages expressing the dominant-negative form of each Rab GTPase. LysoTracker staining and immunofluorescence microscopy revealed that Rab7, Rab20 and Rab39 regulated phagosomal acidification and Rab7, Rab20, Rab22b, Rab32, Rab34, Rab38 and Rab43 controlled the recruitment of cathepsin D to the phagosome. These results suggest that phagosome maturation is achieved by a series of interactions between Rab GTPases and phagosomes and that differential recruitment of these Rab GTPases, except for Rab22b and Rab43, to M. tb-containing phagosomes is involved in arresting phagosome maturation and inhibiting phagolysosome biogenesis.  相似文献   

12.
We have found that early in infection of the intracellular pathogen Listeria monocytogenes in Madin-Darby canine kidney epithelial cells expressing actin conjugated to green fluorescent protein, F-actin rapidly assembles (approximately 25 s) and disassembles (approximately 30 s) around the bacteria, a phenomenon we call flashing. L. monocytogenes strains unable to perform actin-based motility or unable to escape the phagosome were capable of flashing, suggesting that the actin assembly occurs on the phagosome membrane. Cycles of actin assembly and disassembly could occur repeatedly on the same phagosome. Indirect immunofluorescence showed that most bacteria were fully internalized when flashing occurred, suggesting that actin flashing does not represent phagocytosis. Escherichia coli expressing invA, a gene product from Yersinia pseudotuberculosis that mediates cellular invasion, also induced flashing. Furthermore, polystyrene beads coated with E-cadherin or transferrin also induced flashing after internalization. This suggests that flashing occurs downstream of several distinct molecular entry mechanisms and may be a general consequence of internalization of large objects by epithelial cells.  相似文献   

13.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.  相似文献   

14.
Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.  相似文献   

15.
The current study focuses on the molecular mechanisms responsible for actin assembly on a defined membrane surface: the phagosome. Mature phagosomes were surrounded by filamentous actin in vivo in two different cell types. Fluorescence microscopy was used to study in vitro actin nucleation/polymerization (assembly) on the surface of phagosomes isolated from J774 mouse macrophages. In order to prevent non-specific actin polymerization during the assay, fluorescent G-actin was mixed with thymosin beta4. The cytoplasmic side of phagosomes induced de novo assembly and barbed end growth of actin filaments. This activity varied cyclically with the maturation state of phagosomes, both in vivo and in vitro. Peripheral membrane proteins are crucial components of this actin assembly machinery, and we demonstrate a role for ezrin and/or moesin in this process. We propose that this actin assembly process facilitates phagosome/endosome aggregation prior to membrane fusion.  相似文献   

16.
We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galβ1,4Manα1-PO4 units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification.  相似文献   

17.
The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L.?monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O,?a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L.?monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst.  相似文献   

18.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.  相似文献   

19.
The intracellular pathogens Legionella micdadei and Legionella pneumophila are the two most common Legionella species that cause Legionnaires’ disease. Intracellular replication within pulmonary cells is the hallmark of Legionnaires’ disease. In the environment, legionellae are parasites of protozoans, and intracellular bacterial replication within protozoans plays a major role in the transmission of Legionnaires’ disease. In this study, we characterized the initial host signal transduction mechanisms involved during attachment to and invasion of the protozoan host Hartmannella vermiformis by L. micdadei. Bacterial attachment prior to invasion of H. vermiformis by L. micdadei is associated with tyrosine dephosphorylation of multiple host cell proteins, including a 170-kDa protein. We have previously shown that this 170-kDa protein is the galactose N-acetylgalactosamine (Gal/GalNAc)-inhibitable lectin receptor that mediates attachment to and invasion of H. vermiformis by L. pneumophila. Subsequent bacterial entry targets L. micdadei into a phagosome that is not surrounded by the rough endoplasmic reticulum (RER). In contrast, uptake of L. pneumophila mediated by attachment to the Gal/GalNAc lectin is followed by targeting of the bacterium into an RER-surrounded phagosome. These results indicate that despite similarities in the L. micdadei and L. pneumophila attachment-mediated signal transduction mechanisms in H. vermiformis, the two bacterial species are targeted into morphologically distinct phagosomes in their natural protozoan host.  相似文献   

20.
Summary Although it is known that actin polymerizes rapidly at the plasma membrane during the ingestion phase of phagocytosis, not yet fully understood are the mechanisms by which actin is recruited to form a phagoeytic cup and subsequently is dissociated from the phagosome. The aim of this study was to identify actin-binding proteins that mediated actin filament dynamics during phagosome formation and processing. We report that profilins I and II, which promote filament assembly, and cofilin, which stimulates filament disassembly, were constituents of phagosomes isolated fromDictyostelium discoideum fed latex beads, and associated with actin. Biochemical analyses detected one isoform only of cofilin, which bound actin in unstimulated cells as well as in cells engaged in phagocytosis, subjected to various stress treatments, and through development. At membranes of young phagosomes, profilins I and II colocalized with monomeric actin labeled with fluorescent DNase I, and cofilin colocalized with filamentous actin labeled with rhodamine phalloidin. Both immunocytochemical and quantitative immunoblotting data indicated that the kinetic loss of profilins I, II, and cofilin of maturing phagosomes closely followed the falling levels of actin associated with the vesicles. As evidence of vesicle processing,D. discoideum crystal protein (an esterase) was recruited rapidly to phagosomes and its levels increased while those of actin, profilins I, II, and cofilin jointly decreased. The localization data and concurrent losses of profilins and cofilin with actin from phagosomes are consistent with the roles of these actin-binding proteins in filament dynamics and indicated that they were involved in regulating the assembly and disassembly of the actin coat of phagosomes.Abbreviations DNase deoxyribonuclease - FITC fluorescein isothiocyanate - NEpHGE nonequilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号