首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
人乳头瘤病毒(Human papillomavirus,HPV)属于乳多空病毒科(Papovaviridae)的乳头瘤病毒属,是一种无包膜的双链DNA病毒,能诱发人的皮肤或粘膜产生疣和乳头状瘤,某些基因型与子宫颈癌密切相关.  相似文献   

3.
Many longstanding questions about dynamics of virus-cell interactions can be answered by combining fluorescence imaging techniques with fluorescent protein (FP) tagging strategies. Successfully creating a FP fusion with a cellular or viral protein of interest first requires selecting the appropriate FP. However, while viral architecture and cellular localization often dictate the suitability of a FP, a FP''s chemical and physical properties must also be considered. Here, we discuss the challenges of and offer suggestions for identifying the optimal FPs for studying the cell biology of viruses.  相似文献   

4.
Inactivation of progeny virions with chimeric virion-associated proteins represents a novel therapeutic approach against human immunodeficiency virus (HIV) replication. The HIV type 1 (HIV-1) Vpr gene product, which is packaged into virions, is an attractive candidate for such a strategy. In this study, we developed Vpr-based fusion proteins that could be specifically targeted into mature HIV-1 virions to affect their structural organization and/or functional integrity. Two Vpr fusion proteins were constructed by fusing to the first 88 amino acids of HIV-1 Vpr the chloramphenicol acetyltransferase enzyme (VprCAT) or the last 18 C-terminal amino acids of the HIV-1 Vpu protein (VprIE). These Vpr fusion proteins were initially designed to quantify their efficiency of incorporation into HIV-1 virions when produced in cis from the provirus. Subsequently, CD4+ Jurkat T-cell lines constitutively expressing the VprCAT or the VprIE fusion protein were generated with retroviral vectors. Expression of the VprCAT or the VprIE fusion protein in CD4+ Jurkat T cells did not interfere with cellular viability or growth but conferred substantial resistance to HIV replication. The resistance to HIV replication was more pronounced in Jurkat-VprIE cells than in Jurkat-VprCAT cells. Moreover, the antiviral effect mediated by VprIE was dependent on an intact p6gag domain, indicating that the impairment of HIV-1 replication required the specific incorporation of Vpr fusion protein into virions. Gene expression, assembly, or release was not affected upon expression of these Vpr fusion proteins. Indeed, the VprIE and VprCAT fusion proteins were shown to affect the infectivity of progeny virus, since HIV virions containing the VprCAT or the VprIE fusion proteins were, respectively, 2 to 3 times and 10 to 30 times less infectious than the wild-type virus. Overall, this study demonstrated the successful transfer of resistance to HIV replication in tissue cultures by use of Vpr-based antiviral genes.  相似文献   

5.
Molecules can enter the nucleus by passive diffusion or active transport mechanisms, depending on their size. Small molecules up to size of 50-60 kDa or less than 10 nm in diameter can diffuse passively through the nuclear pore complex (NPC), while most proteins are transported by energy driven transport mechanisms. Active transport of viral proteins is mediated by nuclear localization signals (NLS), which were first identified in Simian Virus 40 large T antigen and had subsequently been identified in a lar...  相似文献   

6.
Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.  相似文献   

7.
8.
The synthesis of vaccinia viral proteins has been studied in a cell-free system prepared from vaccinia virus-infected HeLa cells. The radioactively labeled proteins were identified as viral proteins by immunodiffusion, disc gel electrophoresis, and disc gel-immunoelectrophoresis. The cytoplasmic extracts, obtained from infected cells at different times during viral replication, synthesized the corresponding "early" or "late" viral proteins.  相似文献   

9.
Organization of Brain Synaptic Vesicle Proteins   总被引:2,自引:1,他引:1  
Abstract: The topographical arrangement of proteins and glycoproteins of mouse brain synaptic vesicles was studied with trypsin and galactose oxidase, reagents known to be impermeable with respect to other membranes. Incubation of vesicles with trypsin at a concentration of 1 μg/ml extensively degraded seven polypeptides of molecular weights (M.W.) (×10-3) 125, 107, 95, 83, 70, 60, and 36; higher concentrations degraded two additional species of 75,000 and 46,000 M.W., while leaving unaffected polypeptides of M.W. 66,000, 55,000, 33,000, 26,000, 22,000, 19,000, and 16,000. All of the trypsin-sensitive species of greater than 70,000 M.W. stained positively with the periodic acid-Schiff reagent; several other glycoproteins, all of M.W. less than 70,000, were identified, and all of these were insensitive to trypsin. Galactose oxidase-NaB3H4 treatment of synaptic vesicles heavily and exclusively labeled material of greater than 70,000 M.W. All of the polypeptides studied were sensitive to each reagent when the synaptic vesicles were first treated with detergents. Extraction of vesicles with 0.05 M-NaOH partially or completely removed a wide variety of polypeptides, including most of those in the M.W. range 46,000–83,000; none of the glycoproteins was solubilized. Essentially the opposite results were obtained when the vesicles were extracted with 0.5% Triton X-100. Most of the vesicle's species were insensitive to several bisimidate cross-linking reagents. These results suggest that: (a) The polypeptides of M.W. 125K, 107K, 95K, 83K, 75K, 70K, 60K, 46K, and 36K are externally oriented in the vesicle, whereas those of 66K, 55K, 33K, 26K, 22K, 19K, and 16K are internally oriented; (b) the vesicles contain two classes of glycoproteins, one consisting of high-molecular-weight, externally oriented species that are rich in galactose, and the other consisting of low-molecular-weight, internally oriented species of relatively low galactose content; (c) the vesicles contain a large class of nonglycosylated species that are relatively loosely attached to the membrane; and (d) most of the vesicles' polypeptides are probably freely mobile in the membrane. The organization of synaptic vesicle proteins is compared with that of the proteins of synaptosomal plasma membrane, with which the vesicle is believed to fuse.  相似文献   

10.
11.
12.
13.

Background

Host responses to viral infection include both immune activation and programmed cell death. The mitochondrial antiviral signaling adaptor, MAVS (IPS-1, VISA or Cardif) is critical for host defenses to viral infection by inducing type-1 interferons (IFN-I), however its role in virus-induced apoptotic responses has not been elucidated.

Principal Findings

We show that MAVS causes apoptosis independent of its function in initiating IFN-I production. MAVS-induced cell death requires mitochondrial localization, is caspase dependent, and displays hallmarks of apoptosis. Furthermore, MAVS−/− fibroblasts are resistant to Sendai virus-induced apoptosis. A functional screen identifies the hepatitis C virus NS3/4A and the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) nonstructural protein (NSP15) as inhibitors of MAVS-induced apoptosis, possibly as a method of immune evasion.

Significance

This study describes a novel role for MAVS in controlling viral infections through the induction of apoptosis, and identifies viral proteins which inhibit this host response.  相似文献   

14.
15.
16.
Human cytomegalovirus (HCMV) is a common, medically relevant human herpesvirus. The tegument layer of herpesvirus virions lies between the genome-containing capsids and the viral envelope. Proteins within the tegument layer of herpesviruses are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active and control viral entry, gene expression, and immune evasion. Most tegument proteins accumulate to high levels during later stages of infection, when they direct the assembly and egress of progeny virions. Thus, viral tegument proteins play critical roles at the very earliest and very last steps of the HCMV lytic replication cycle. This review summarizes HCMV tegument composition and structure as well as the known and speculated functions of viral tegument proteins. Important directions for future investigation and the challenges that lie ahead are identified and discussed.  相似文献   

17.
Membrane proteins that bind and transport lipids face special challenges. Since lipids typically have low water solubility, both accessibility of the substrate to the protein and delivery to the desired destination are problematical. The amphipathic nature of membrane lipids, and their relatively large molecular size, also means that these proteins must possess substrate-binding sites of a different nature than those designed to handle small polar molecules. This review considers two integral proteins whose function is to bind and transfer membrane lipids within or across a membrane. The first protein, MsbA, is a putative lipid flippase that is a member of the ATP-binding cassette (ABC) superfamily. The protein is found in the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria such as E. coli, where it is proposed to move lipid A from the inner to the outer membrane (OM) leaflet, an important step in the lipopolysaccharide biosynthetic pathway. Cholesterol is a major component of the plasma membrane in eukaryotic cells, where it regulates bilayer fluidity. The other lipid-binding protein discussed here, mammalian NPC1 (Niemann-Pick disease, Type C1), binds cholesterol inside late endosomes/lysosomes (LE/LY) and is involved in its transfer to the cytosol as part of a key intracellular sterol-trafficking pathway. Mutations in NPC1 lead to a devastating neurodegenerative condition, Niemann-Pick Type C disease, which is characterized by massive cholesterol accumulation in LE/LY. The accelerating pace of membrane protein structure determination over the past decade has allowed us a glimpse of how lipid binding and transfer by membrane proteins such as MsbA and NPC1 might be achieved.  相似文献   

18.
Previous papers in the series have shown that the surface membranes of herpesvirus-infected cells acquire new immunological specificities and that purified infected cell membrane preparations, characterized by their physical properties rather than topology in the cell, contain new glycoproteins genetically determined by the virus. In this study, we prepared purified plasma membrane identified by its 5' nucleotidase, fucose, and reduced nicotinamide adenine dinucleotide-diaphorase content. Analysis of the membrane proteins and glycoproteins by electrophoresis in acrylamide gels indicated the following. (i) Purified plasma membranes from infected cells contained two sets of proteins, i.e., host proteins were present both before and after infection and viral proteins were present only after infection. (ii) After infection, no appreciable selective or nonselective loss of host proteins from membranes was demonstrable. However, no new host proteins were made. (iii) Electropherograms of plasma membrane proteins from infected cells indicated the presence of at least 12 virus-specific proteins ranging in molecular weight from 25 x 10(3) to 126 x 10(3) daltons. Of these, at least nine were glycosylated. Proteins and glycoproteins with similar electrophoretic mobilities but in somewhat different ratios were also present in preparations of highly purified virions.  相似文献   

19.
20.
A major component of the protective antiviral host defense is contributed by the intracellular actions of the proteins encoded by interferon-stimulated genes (ISGs); among these are the interferon-induced proteins with tetratricopeptide repeats (IFITs), consisting of four members in human and three in mouse. IFIT proteins do not have any known enzyme activity. Instead, they inhibit virus replication by binding and regulating the functions of cellular and viral proteins and RNAs. Although all IFITs are comprised of multiple copies of the degenerate tetratricopeptide repeats, their distinct tertiary structures enable them to bind different partners and affect host-virus interactions differently. The recent use of Ifit knockout mouse models has revealed novel antiviral functions of these proteins and new insights into the specificities of ISG actions. This article focuses on human and murine IFIT1 and IFIT2 by reviewing their mechanisms of action, their critical roles in protecting mice from viral pathogenesis, and viral strategies to evade IFIT action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号