共查询到20条相似文献,搜索用时 0 毫秒
1.
In many types of network, the relationship between structure and function is of great significance. We are particularly interested in community structures, which arise in a wide variety of domains. We apply a simple oscillator model to networks with community structures and show that waves of regular oscillation are caused by synchronised clusters of nodes. Moreover, we show that such global oscillations may arise as a direct result of network topology. We also observe that additional modes of oscillation (as detected through frequency analysis) occur in networks with additional levels of topological hierarchy and that such modes may be directly related to network structure. We apply the method in two specific domains (metabolic networks and metropolitan transport) demonstrating the robustness of our results when applied to real world systems. We conclude that (where the distribution of oscillator frequencies and the interactions between them are known to be unimodal) our observations may be applicable to the detection of underlying community structure in networks, shedding further light on the general relationship between structure and function in complex systems. 相似文献
2.
3.
In complex networks, it is of great theoretical and practical significance to identify a set of critical spreaders which help to control the spreading process. Some classic methods are proposed to identify multiple spreaders. However, they sometimes have limitations for the networks with community structure because many chosen spreaders may be clustered in a community. In this paper, we suggest a novel method to identify multiple spreaders from communities in a balanced way. The network is first divided into a great many super nodes and then k spreaders are selected from these super nodes. Experimental results on real and synthetic networks with community structure show that our method outperforms the classic methods for degree centrality, k-core and ClusterRank in most cases. 相似文献
4.
Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm''s running time is less than the commonly used Louvain algorithm while it gives competitive performance. 相似文献
5.
6.
We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the network’s degree distribution. We show that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks. 相似文献
7.
Tian Zhu Bin Wu Bai Wang Chuanxi Zhu 《Journal of biomolecular structure & dynamics》2013,31(5):573-579
Abstract Complex network analysis has received increasing interest in recent years, which provides a remarkable tool to describe complex systems of interacting entities, particular for biological systems. In this paper, we propose a methodology for identifying the significant nodes of the networks, including core nodes, bridge nodes and high-influential nodes, based on the idea of community and two new ranking measures, InterRank and IntraRank. The results show the significant nodes form a small number in biological networks, and uncover the relative small number of which has advantage for reducing the dimensions of the network and possibly help to define new biological targets. 相似文献
8.
9.
With ever-increasing available data, predicting individuals'' preferences and helping them locate the most relevant information has become a pressing need. Understanding and predicting preferences is also important from a fundamental point of view, as part of what has been called a “new” computational social science. Here, we propose a novel approach based on stochastic block models, which have been developed by sociologists as plausible models of complex networks of social interactions. Our model is in the spirit of predicting individuals'' preferences based on the preferences of others but, rather than fitting a particular model, we rely on a Bayesian approach that samples over the ensemble of all possible models. We show that our approach is considerably more accurate than leading recommender algorithms, with major relative improvements between 38% and 99% over industry-level algorithms. Besides, our approach sheds light on decision-making processes by identifying groups of individuals that have consistently similar preferences, and enabling the analysis of the characteristics of those groups. 相似文献
10.
11.
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies. 相似文献
12.
Community structure detection has proven to be important in revealing the underlying organisation of complex networks. While most current analyses focus on static networks, the detection of communities in dynamic data is both challenging and timely. An analysis and visualisation procedure for dynamic networks is presented here, which identifies communities and sub-communities that persist across multiple network snapshots. An existing method for community detection in dynamic networks is adapted, extended, and implemented. We demonstrate the applicability of this method to detect communities in networks where individuals tend not to change their community affiliation very frequently. When stability of communities cannot be assumed, we show that the sub-community model may be a better alternative. This is illustrated through test cases of social and biological networks. A plugin for Gephi, an open-source software program used for graph visualisation and manipulation, named “DyCoNet”, was created to execute the algorithm and is freely available from https://github.com/juliemkauffman/DyCoNet. 相似文献
13.
14.
This paper investigates a method to identify uncertain system parameters and unknown topological structure in general complex networks with or without time delay. A complex network, which has uncertain topology and unknown parameters, is designed as a drive network, and a known response complex network with an input controller is designed to identify the drive network. Under the proposed input controller, the drive network and the response network can achieve anticipatory projective synchronization when the system is steady. Lyapunov theorem and Barbǎlat’s lemma guarantee the stability of synchronization manifold between two networks. When the synchronization is achieved, the system parameters and topology in response network can be changed to equal with the parameters and topology in drive network. A numerical example is given to show the effectiveness of the proposed method. 相似文献
15.
Duchenne Muscular Dystrophy (DMD) is an important pathology associated with the human skeletal muscle and has been studied extensively. Gene expression measurements on skeletal muscle of patients afflicted with DMD provides the opportunity to understand the underlying mechanisms that lead to the pathology. Community structure analysis is a useful computational technique for understanding and modeling genetic interaction networks. In this paper, we leverage this technique in combination with gene expression measurements from normal and DMD patient skeletal muscle tissue to study the structure of genetic interactions in the context of DMD. We define a novel framework for transforming a raw dataset of gene expression measurements into an interaction network, and subsequently apply algorithms for community structure analysis for the extraction of topological communities. The emergent communities are analyzed from a biological standpoint in terms of their constituent biological pathways, and an interpretation that draws correlations between functional and structural organization of the genetic interactions is presented. We also compare these communities and associated functions in pathology against those in normal human skeletal muscle. In particular, differential enhancements are observed in the following pathways between pathological and normal cases: Metabolic, Focal adhesion, Regulation of actin cytoskeleton and Cell adhesion, and implication of these mechanisms are supported by prior work. Furthermore, our study also includes a gene-level analysis to identify genes that are involved in the coupling between the pathways of interest. We believe that our results serve to highlight important distinguishing features in the structural/functional organization of constituent biological pathways, as it relates to normal and DMD cases, and provide the mechanistic basis for further biological investigations into specific pathways differently regulated between normal and DMD patients. These findings have the potential to serve as fertile ground for therapeutic applications involving targeted drug development for DMD. 相似文献
16.
17.
Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a “classic” approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (“micro”) to a different scale level (“macro”), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability. 相似文献
18.
Laura Bennett Aristotelis Kittas Songsong Liu Lazaros G. Papageorgiou Sophia Tsoka 《PloS one》2014,9(11)
Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply ‘hubs’, i.e. proteins with many interaction partners but with a more specific biochemical role. 相似文献
19.
The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstanding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule. 相似文献
20.
The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally defined quantities of nodes and edges, such as node degrees, edge weights and –more recently– correlations between neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric, which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of algebraic methods to complex systems. 相似文献