首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》2020,1861(5-6):148115
Green plants protect against photodamage by dissipating excess energy in a process called non-photochemical quenching (NPQ). In vivo, NPQ is activated by a drop in the luminal pH of the thylakoid membrane that triggers conformational changes of the antenna complexes, which activate quenching channels. The drop in pH also triggers de-epoxidation of violaxanthin, one of the carotenoids bound within the antenna complexes, into zeaxanthin, and so the amplitude of NPQ in vivo has been shown to increase in the presence of zeaxanthin. In vitro studies on light-harvesting complex II (LHCII), the major antenna complex in plants, compared different solubilization environments, which give rise to different levels of quenching and so partially mimic NPQ in vivo. However, in these studies both completely zeaxanthin-independent and zeaxanthin-dependent quenching have been reported, potentially due to the multiplicity of solubilization environments. Here, we characterize the zeaxanthin dependence of the photophysics in LHCII in a near-physiological membrane environment, which produces slightly enhanced quenching relative to detergent solubilization, the typical in vitro environment. The photophysical pathways of dark-adapted and in vitro de-epoxidized LHCIIs are compared, representative of the low-light and high-light conditions in vivo, respectively. The amplitude of quenching as well as the dissipative photophysics are unaffected by zeaxanthin at the level of individual LHCIIs, suggesting that zeaxanthin-dependent quenching is independent of the channels induced by the membrane. Furthermore, our results demonstrate that additional factors beyond zeaxanthin incorporation in LHCII are required for full development of NPQ.  相似文献   

2.
Johnson MP  Zia A  Ruban AV 《Planta》2012,235(1):193-204
The xanthophylls of the light-harvesting complexes of photosystem II (LHCII), zeaxanthin, and lutein are thought to be essential for non-photochemical quenching (NPQ). NPQ is a process of photoprotective energy dissipation in photosystem II (PSII). The major rapidly reversible component of NPQ, qE, is activated by the transmembrane proton gradient, and involves the quenching of antenna chlorophyll excited states by the xanthophylls lutein and zeaxanthin. Using diaminodurene (DAD), a mediator of cyclic electron flow around photosystem I, to enhance ΔpH we demonstrate that qE can still be formed in the absence of lutein and light-induced formation of zeaxanthin in chloroplasts derived from the normally qE-deficient lut2npq1 mutant of Arabidopsis. The qE induced by high ΔpH in lut2npq1 chloroplasts quenched the level of fluorescence when all PSII reaction centers were in the open state (F o state), protected PSII reaction centers from photoinhibition, was sensitive to the uncoupler nigericin, and was accompanied by absorption changes in the 410–565 nm region. Titrations show the ΔpH threshold for activation of qE in lut2npq1 chloroplasts lies outside the normal physiological range and is highly cooperative. Comparison of quenching in isolated trimeric (LHCII) and monomeric (CP26) light-harvesting complexes from lut2npq1 plants revealed a similarly shifted pH dependency compared with wild-type LHCII. The implications for the roles of lutein and zeaxanthin as direct quenchers of excitation energy are discussed. Furthermore, we argue that the control over the proton-antenna association constant, pK, occurs via influence of xanthophyll structure on the interconnected phenomena of light-harvesting antenna reorganization/aggregation and hydrophobicity.  相似文献   

3.
Lhcb6 (CP24) is a monomeric antenna protein of photosystem II, which has been shown to play special roles in photoprotective mechanisms, such as the Non-Photochemical Quenching and reorganization of grana membranes in excess light conditions. In this work we analyzed Lhcb6 in vivo and in vitro: we show this protein, upon activation of the xanthophyll cycle, accumulates zeaxanthin into inner binding sites faster and to a larger extent than any other pigment-protein complex. By comparative analysis of Lhcb6 complexes violaxanthin or zeaxanthin binding, we demonstrate that zeaxanthin not only down-regulates chlorophyll singlet excited states, but also increases the efficiency of chlorophyll triplet quenching, with consequent reduction of singlet oxygen production and significant enhancement of photo-stability. On these bases we propose that Lhcb6, the most recent addition to the Lhcb protein family which evolved concomitantly to the adaptation of photosynthesis to land environment, has a crucial role in zeaxanthin-dependent photoprotection.  相似文献   

4.
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants, which dissipates excess energy and further protects the photosynthetic apparatus under high light stress. NPQ can be dissected into a number of components: qE, qZ, and qI. In general, NPQ is catalyzed by two independent mechanisms, with the faster-activated quenching catalyzed by the monomeric light-harvesting complex (LHCII) proteins and the slowly activated quenching catalyzed by LHCII trimers, both processes depending on zeaxanthin but to different extent. Here, we studied the NPQ of the intertidal green macroalga, Ulva prolifera, and found that the NPQ of U. prolifera lack the faster-activated quenching, and showed much greater sensitivity to dithiothreitol (DTT) than to dicyclohexylcarbodiimide (DCCD). Further results suggested that the monomeric LHC proteins in U. prolifera included only CP29 and CP26, but lacked CP24, unlike Arabidopsis thaliana and the moss Physcomitrella patens. Moreover, the expression levels of CP26 increased significantly following exposure to high light, but the concentrations of the two important photoprotective proteins (PsbS and light-harvesting complex stress-related [LhcSR]) did not change upon the same conditions. Analysis of the xanthophyll cycle pigments showed that, upon exposure to high light, zeaxanthin synthesis in U. prolifera was gradual and much slower than that in P. patens, and could effectively be inhibited by DTT. Based on these results, we speculate the enhancement of CP26 and slow zeaxanthin accumulation provide an atypical NPQ, making this green macroalga well adapted to the intertidal environments.  相似文献   

5.
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid ΔpH in excess light and depends on the xanthophyll cycle, in which violaxanthin and antheraxanthin are deepoxidized to form zeaxanthin. To investigate the xanthophyll dependence of qE, we identified suppressor of zeaxanthin-less1 (szl1) as a suppressor of the Arabidopsis thaliana npq1 mutant, which lacks zeaxanthin. szl1 npq1 plants have a partially restored qE but lack zeaxanthin and have low levels of violaxanthin, antheraxanthin, and neoxanthin. However, they accumulate more lutein and α-carotene than the wild type. szl1 contains a point mutation in the lycopene β-cyclase (LCYB) gene. Based on the pigment analysis, LCYB appears to be the major lycopene β-cyclase and is not involved in neoxanthin synthesis. The Lhcb4 (CP29) and Lhcb5 (CP26) protein levels are reduced by 50% in szl1 npq1 relative to the wild type, whereas other Lhcb proteins are present at wild-type levels. Analysis of carotenoid radical cation formation and leaf absorbance changes strongly suggest that the higher amount of lutein substitutes for zeaxanthin in qE, implying a direct role in qE, as well as a mechanism that is weakly sensitive to carotenoid structural properties.  相似文献   

6.
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.  相似文献   

7.
The light-harvesting antenna of higher plant photosystem II (LHCII) has the intrinsic capacity to dissipate excess light energy as heat in a process termed nonphotochemical quenching (NPQ). Recent studies suggest that zeaxanthin and lutein both contribute to the rapidly relaxing component of NPQ, qE, possibly acting in the minor monomeric antenna complexes and the major trimeric LHCII, respectively. To distinguish whether zeaxanthin and lutein act independently as quenchers at separate sites, or alternatively whether zeaxanthin fulfills an allosteric role regulating lutein-mediated quenching, the kinetics of qE and the qE-related conformational changes (ΔA535) were compared in Arabidopsis (Arabidopsis thaliana) mutant/antisense plants with altered contents of minor antenna (kolhcb6, aslhcb4), trimeric LHCII (aslhcb2), lutein (lut2, lut2npq1, lut2npq2), and zeaxanthin (npq1, npq2). The kinetics of the two components of NPQ induction arising from zeaxanthin-independent and zeaxanthin-dependent qE were both sensitive to changes in the protein composition of the photosystem II antenna. The replacement of lutein by zeaxanthin or violaxanthin in the internal Lhcb protein-binding sites affected the kinetics and relative amplitude of each component as well as the absolute chlorophyll fluorescence lifetime. Both components of qE were characterized by a conformational change leading to nearly identical absorption changes in the Soret region that indicated the involvement of the LHCII lutein 1 domain. Based on these observations, we suggest that both components of qE arise from a common quenching mechanism based upon a conformational change within the photosystem II antenna, optimized by Lhcb subunit-subunit interactions and tuned by the synergistic effects of external and internally bound xanthophylls.The chlorophyll a/b-binding light-harvesting antenna of photosystem II (PSII of higher plants is responsible for the efficient collection and transfer of excitation energy to the reaction center. The PSII antenna comprises the main trimeric light-harvesting complex, LHCII, which is composed of the Lhcb1 to -3 polypeptides, and the minor light-harvesting complexes, CP29, CP26, and CP24, composed of Lhcb4, -5, and -6, respectively. In Arabidopsis (Arabidopsis thaliana), four LHCII trimers associate with two copies each of CP24, CP26, and CP29 and a core dimer of PSII (CP43/D1/D2/CP47) to form the C2S2M2 LHCII-PSII supercomplex (Dekker and Boekema, 2005). In addition, depending upon the growth conditions, two or three extra LHCII trimers per PSII may be present in LHCII-only regions of the grana, providing additional light-harvesting capacity.The PSII antenna is a highly dynamic system that is able to tune the amount of excitation delivered to the PSII reaction center to match physiological need (Horton et al., 1996). The regulation of energy flow occurs by control of the thermal dissipation of excess excitation within the PSII antenna, a process termed nonphotochemical quenching (NPQ). NPQ is heterogeneous, comprising a slowly reversible qI component and a rapidly reversible qE component (Horton et al., 1996). The trigger for qE is the buildup of the transmembrane proton gradient or ΔpH (Briantais et al., 1979). The ΔpH is sensed by the PsbS protein (Li et al., 2004), without which the rapidly reversible behavior of NPQ is lost (Li et al., 2000). Full expression of qE in vivo is associated with the enzymatic deepoxidation of the epoxy-xanthophyll violaxanthin to zeaxanthin, via the action of the xanthophyll cycle (Demmig-Adams, 1990). The majority of the photoconvertible xanthophyll cycle pool is associated with trimeric LHCII, bound at the external V1 binding site (Ruban et al., 1999, 2002a; Caffarri et al., 2001; Liu et al., 2004). Trimeric LHCII binds two other types of xanthophylls internally: two all-trans-luteins at the L1 and L2 sites associated with the central membrane-spanning α-helices; and a 9-cis-neoxanthin at the N1 site associated with the C-helix chlorophyll b domain (Liu et al., 2004). The minor monomeric complexes CP24, CP26, and CP29 all bind lutein at the L1 site. In addition, CP29 binds two xanthophyll cycle carotenoids and one-half to one neoxanthin, CP24 binds two xanthophyll cycle carotenoids, while CP26 binds one xanthophyll cycle carotenoid and one neoxanthin (Peter and Thornber, 1991; Bassi et al., 1993; Ruban et al., 1994, 1999; Morosinotto et al., 2002).Although there is strong evidence that qE occurs in the PSII antenna light-harvesting proteins and that xanthophylls are involved, the mechanism of energy dissipation remains unclear. There is evidence for two distinct quenching mechanisms, one involving zeaxanthin (type I) and the other lutein (type II). In the type I mechanism, it is proposed that qE obligatorily depends upon zeaxanthin acting as a quencher of excited chlorophyll via the formation of a charge transfer state. Evidence for type I is the formation of a carotenoid radical cation absorbing at approximately 1,000 nm that correlates with the extent of qE (Holt et al., 2005). Recently, evidence was obtained that formation of the zeaxanthin radical cation occurs exclusively at the L2 binding site of the minor antenna complexes (Ahn et al., 2008; Avenson et al., 2008), quenching therefore requiring reversible insertion of zeaxanthin into this internal site. Because the effect of this cation on the excited-state lifetime of the minor antenna complexes was found to be very small, it was suggested that in vivo, under the influence of the ΔpH, a large population of complexes would adopt a conformation in which this species could form (Avenson et al., 2008). Evidence was also obtained that a zeaxanthin radical cation may form in trimeric LHCII (Amarie et al., 2007). Again, the effect on the chlorophyll excited-state lifetime was very small, leading these authors to conclude that the type I mechanism could not be responsible for qE (Amarie et al., 2007; Dreuw and Wormit, 2008).In the type II mechanism, qE is an inbuilt property of LHCII proteins; a protein conformational change alters the configuration of bound pigments and results in the xanthophyll bound at the L1 site (normally lutein) becoming an effective quencher of chlorophyll excited states (Ruban et al., 2007; Ilioaia et al., 2008). Evidence for a type II mechanism came from studies of trimeric LHCII aggregates (Ruban et al., 2007). Here, it was concluded that energy dissipation occurs by energy transfer from chlorophyll a to the S1 state (2Ag1) of lutein bound at the L1 site. Notably, this quenching mechanism decreases the chlorophyll excited-state lifetime by a magnitude sufficient to fully account for qE in vivo. A change in the conformation of another LHCII-bound xanthophyll (neoxanthin) correlates with the extent of quenching. This conformational change takes place in vivo with an amplitude that correlates with the amount of qE. In the model for type II quenching proposed by Horton and coworkers (1991, 2005), zeaxanthin acts not as a quencher but as an allosteric modulator of the ΔpH sensitivity of this intrinsic LHCII quenching process.Although the type I and type II mechanisms involve different xanthophylls operating at different sites, there are similarities: in particular, both are proposed to involve a ΔpH-triggered, PsbS-mediated conformational change (Ruban et al., 2007; Ahn et al., 2008). Indeed, it is possible that both mechanisms contribute to in vivo qE, since the process occurs in both the presence and absence of zeaxanthin (Adams et al., 1990; Crouchman et al., 2006). The crucial question is whether zeaxanthin-dependent and zeaxanthin-independent qE arise from the same mechanism (type II) or from two different ones (types I and II, respectively). The kinetics of NPQ formation upon the illumination of dark-adapted leaves comprise two components: the first forms rapidly and is zeaxanthin independent; the second, slower component correlates with violaxanthin deepoxidation and therefore is described as zeaxanthin dependent (Adams et al., 1990; Ruban and Horton, 1999). The two components of NPQ formation are of the qE type: both relax rapidly upon darkening (Adams et al., 1990); both are dependent upon PsbS (Li et al., 2000); and both are enhanced by PsbS overexpression (Li et al., 2002; Crouchman et al., 2006). Investigation of these kinetics provides an opportunity to determine whether a single mechanism can account for qE and to give clues to which type of mechanism is involved. Here, we test the hypothesis that the two components arise from different mechanisms: the zeaxanthin-dependent component arising in the minor monomeric antenna by a type I mechanism (Gilmore et al., 1998; Ahn et al., 2008; Avenson et al., 2008), and the zeaxanthin-independent component arising in the major trimeric LHCII by the type II mechanism. An alternative explanation for zeaxanthin-independent qE, at least under low-light conditions, when qE forms transiently, is that it is caused by quenching in the PSII reaction center (Finazzi et al., 2004). Several predictions emerge from this hypothesis. First, the removal of certain Lhcb proteins by mutation would differentially affect the two components of qE. Second, because the two components would be additive and could not compensate for the loss of one another (Niyogi et al., 1998; Pogson et al., 1998), they should each contribute a discrete component to the kinetics of qE formation and relaxation. Third, in mutants lacking lutein, the capacity of the type II mechanism would be reduced, while the zeaxanthin-dependent component would be unaffected. Finally, the two components may be expected to be characterized by different absorption changes in the Soret region, which reflect changes in the absorption spectra of bound pigments brought about by conformational changes within the PSII antenna upon qE formation (Ruban et al., 1993a, 1993b, 2002b; Bilger and Björkman, 1994). We tested this hypothesis by analysis of qE kinetics, fluorescence lifetimes, and qE-related absorption difference spectra. Contrary to the above predictions, the data indicated that both steady-state and transient qE arise from a common mechanism within the PSII antenna, in both the presence and absence of zeaxanthin.  相似文献   

8.
Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.  相似文献   

9.
Goss R  Opitz C  Lepetit B  Wilhelm C 《Planta》2008,228(6):999-1009
In the present study we address the question which factors during the synthesis of zeaxanthin determine its capacity to act as a non-photochemical quencher of chlorophyll fluorescence. Our results show that zeaxanthin has to be synthesized in the presence of a transmembrane proton gradient. However, it is not essential that the proton gradient is generated by the light-driven electron transport. NPQ-effective zeaxanthin can also be formed by an artificial proton gradient in the dark due to ATP hydrolysis. Zeaxanthin that is synthesized in the dark in the absence of a proton gradient by the low pH-dependent activation of violaxanthin de-epoxidase is not able to induce NPQ. The second important factor during the synthesis of zeaxanthin is the pH-value of the stromal side of the thylakoid membrane. Here we show that the stromal side has to be neutral or slightly basic in order to generate zeaxanthin which is able to induce NPQ. Thylakoid membranes in reaction medium pH 5.2, which experience low pH-values on both sides of the membrane, are unable to generate NPQ-effective zeaxanthin, even in the presence of an additional light-driven proton gradient. Analysing the pigment contents of purified photosystem II light-harvesting complexes we are further able to show that the NPQ ineffectiveness of zeaxanthin formed in the absence of a proton gradient is not caused by changes in its rebinding to the light-harvesting proteins. Purified monomeric and trimeric light-harvesting complexes contain comparable amounts of zeaxanthin when they are isolated from thylakoid membranes enriched in either NPQ-effective or ineffective zeaxanthin.  相似文献   

10.
Moya I  Silvestri M  Vallon O  Cinque G  Bassi R 《Biochemistry》2001,40(42):12552-12561
We have studied the time-resolved fluorescence properties of the light-harvesting complexes (Lhc) of photosystem II (Lhcb) in order to obtain information on the mechanism of energy dissipation (non-photochemical quenching) which is correlated to the conversion of violaxanthin to zeaxanthin in excess light conditions. The chlorophyll fluorescence decay of Lhcb proteins LHCII, CP29, CP26, and CP24 in detergent solution is mostly determined by two lifetime components of 1.2-1.5 and 3.6-4 ns while the contribution of the faster component is higher in CP29, CP26, and CP24 with respect to LHCII. The xanthophyll composition of Lhc proteins affects the ratio of the lifetime components: when zeaxanthin is bound into the site L2 of LHCII, the relative amplitude of the faster component is increased and, consequently, the chlorophyll fluorescence quenching is enhanced. Analysis of quenching in mutants of Arabidopsis thaliana, which incorporate either violaxanthin or zeaxanthin in their Lhc proteins, shows that the extent of quenching is enhanced in the presence of zeaxanthin. The origin of the two fluorescence lifetimes was analyzed by their temperature dependence: since lifetime heterogeneity was not affected by cooling to 77 K, it is concluded that each lifetime component corresponds to a distinct conformation of the Lhc proteins. Upon incorporation of Lhc proteins into liposomes, a quenching of chlorophyll fluorescence was observed due to shortening of all their lifetime components: this indicates that the equilibrium between the two conformations of Lhcb proteins is displaced toward the quenched conformation in lipid membranes or thylakoids with respect to detergent solution. By increasing the protein density in the liposomes, and therefore the probability of protein-protein interactions, a further decrease of fluorescence lifetimes takes place down to values typical of quenched leaves. We conclude that at least two major factors determine the quenching of chlorophyll fluorescence in Lhcb proteins, i.e., intrasubunit conformational change and intersubunit interactions within the lipid membranes, and that these processes are both important in the photoprotection mechanism of nonphotochemical quenching in vivo.  相似文献   

11.
The main trimeric light-harvesting complex of higher plants (LHCII) consists of three different Lhcb proteins (Lhcb1-3). We show that Arabidopsis thaliana T-DNA knockout plants lacking Lhcb3 (koLhcb3) compensate for the lack of Lhcb3 by producing increased amounts of Lhcb1 and Lhcb2. As in wild-type plants, LHCII-photosystem II (PSII) supercomplexes were present in Lhcb3 knockout plants (koLhcb3), and preservation of the LHCII trimers (M trimers) indicates that the Lhcb3 in M trimers has been replaced by Lhcb1 and/or Lhcb2. However, the rotational position of the M LHCII trimer was altered, suggesting that the Lhcb3 subunit affects the macrostructural arrangement of the LHCII antenna. The absence of Lhcb3 did not result in any significant alteration in PSII efficiency or qE type of nonphotochemical quenching, but the rate of transition from State 1 to State 2 was increased in koLhcb3, although the final extent of state transition was unchanged. The level of phosphorylation of LHCII was increased in the koLhcb3 plants compared with wild-type plants in both State 1 and State 2. The relative increase in phosphorylation upon transition from State 1 to State 2 was also significantly higher in koLhcb3. It is suggested that the main function of Lhcb3 is to modulate the rate of state transitions.  相似文献   

12.
Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.  相似文献   

13.
Light-harvesting antenna system possesses an inherent property of photoprotection. The single-helix proteins found in cyanobacteria play role in photoprotection and/or pigment metabolism. The photoprotective functions are also manifested by the two- and four-helix proteins. The photoprotection mechanism evolved earlier to the mechanism of light-harvesting of the antenna complex. Here, the light-harvesting complex genes of photosystems I and II from Arabidopsis are enlisted, and almost similar set of genes are identified in rice. Also, the three-helix early light-inducible proteins (ELIPs), two-helix stress-enhanced proteins (SEPs) and one-helix high light-inducible proteins [one-helix proteins (OHPs)] are identified in rice. Interestingly, two independent genomic loci encoding PsbS protein are also identified with implications on additional mode of non-photochemical quenching (NPQ) mechanism in rice. A few additional LHC-related genes are also identified in rice (LOC_Os09g12540, LOC_Os02g03330). This is the first report of identification of light-harvesting complex genes and light-inducible genes in rice.Key words: Lhca and Lhcb proteins, Lhc proteins evolution, light-inducible proteins, protein alignment, PsbSThe light-harvesting proteins are present in different taxa. The proteins of light-harvesting systems from higher plants, cyano-bacteria, purple bacteria and green sulphur bacteria share no sequence similarity however little structural similarity can be seen.1 Apparently, the light-harvesting systems in these different taxa might have evolved independently from each other.1 To enable efficient transfer of excitation energy into the reaction centers, where charge separation takes place, different proteins are recruited in order to coordinate the photosynthetic pigment molecules. The light-harvesting and light dissipation are tightly coupled processes involving the higher plant light-harvesting antenna. Here, genome-wide analysis of the light-harvesting chlorophyll a/b-binding proteins and light-inducible proteins in Arabidopsis thaliana L. and Oryza sativa L. (rice) is conducted. This study wherein genes coding for antenna proteins are identified and named can be used as a nomenclature guide to the light-harvesting complex gene family members and their relatives in rice.  相似文献   

14.
Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen.  相似文献   

15.
In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do not directly contribute to the chlorophyll triplet quenching. The largest part of the triplets is quenched by the lutein bound in site L1, which is located in close proximity to the chlorophylls responsible for the low energy state of the complex. The lutein in the L2 site is also active in triplet quenching, and it shows a longer triplet lifetime than the lutein in the L1 site. This lifetime difference depends on the occupancy of the N1 binding site, where neoxanthin acts as an oxygen barrier, limiting the access of O(2) to the inner domain of the Lhc complex, thereby strongly contributing to the photostability. The carotenoid triplet decay of monomeric Lhcb1, Lhcb4, and Lhcb5 is mono-exponential, with shorter lifetimes than observed for trimeric LHCII, suggesting that their inner domains are more accessible for O(2). As for trimeric LHCII, only the xanthophylls in sites L1 and L2 are active in triplet quenching. Although the chlorophyll to carotenoid triplet transfer is efficient (95%) in all complexes, it is not perfect, leaving 5% of the chlorophyll triplets unquenched. This effect appears to be intrinsically related to the molecular organization of the Lhcb proteins.  相似文献   

16.
Nonphotochemical quenching (NPQ) is the photoprotective dissipation of energy in photosynthetic membranes. The hypothesis that the DeltapH-dependent component of NPQ (qE) component of non-photochemical quenching is controlled allosterically by the xanthophyll cycle has been tested using Arabidopsis mutants with different xanthophyll content and composition of Lhcb proteins. The titration curves of qE against DeltapH were different in chloroplasts containing zeaxanthin or violaxanthin, proving their roles as allosteric activator and inhibitor, respectively. The curves differed in mutants deficient in lutein and specific Lhcb proteins. The results show that qE is determined by xanthophyll occupancy and the structural interactions within the antenna that govern allostericity.  相似文献   

17.
Xanthophylls (oxygen derivatives of carotenes) are essential components of the plant photosynthetic apparatus. Lutein, the most abundant xanthophyll, is attached primarily to the bulk antenna complex, light-harvesting complex (LHC) II. We have used mutations in Arabidopsis thaliana that selectively eliminate (and substitute) specific xanthophylls in order to study their function(s) in vivo. These include two lutein-deficient mutants, lut1 and lut2, the epoxy xanthophyll-deficient aba1 mutant and the lut2aba1 double mutant. Photosystem stoichiometry, antenna sizes and xanthophyll cycle activity have been related to alterations in nonphotochemical quenching of chlorophyll fluorescence (NPQ). Nondenaturing polyacrylamide gel electrophoresis indicates reduced stability of trimeric LHC II in the absence of lutein (and/or epoxy xanthophylls). Photosystem (antenna) size and stoichiometry is altered in all mutants relative to wild type (WT). Maximal ΔpH-dependent NPQ (qE) is reduced in the following order: WT>aba1>lut1lut2>lut2aba1, paralleling reduction in Photosystem (PS) II antenna size. Finally, light-activation of NPQ shows that zeaxanthin and antheraxanthin present constitutively in lut mutants are not qE active, and hence, the same can be inferred of the lutein they replace. Thus, a direct involvement of lutein in the mechanism of qE is unlikely. Rather, altered NPQ in xanthophyll biosynthetic mutants is explained by disturbed macro-organization of LHC II and reduced PS II-antenna size in the absence of the optimal, wild-type xanthophyll composition. These data suggest the evolutionary conservation of lutein content in plants was selected for due to its unique ability to optimize antenna structure, stability and macro-organization for efficient regulation of light-harvesting under natural environmental conditions.  相似文献   

18.
Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.  相似文献   

19.
CP24 is a minor antenna complex of Photosystem II, which is specific for land plants. It has been proposed that this complex is involved in the process of excess energy dissipation, which protects plants from photodamage in high light conditions. Here, we have investigated the functional architecture of the complex, integrating mutation analysis with time-resolved spectroscopy. A comprehensive picture is obtained about the nature, the spectroscopic properties, and the role in the quenching in solution of the pigments in the individual binding sites. The lowest energy absorption band in the chlorophyll a region corresponds to chlorophylls 611/612, and it is not the site of quenching in CP24. Chlorophylls 613 and 614, which are present in the major light-harvesting complex of Photosystem appear to be absent in CP24. In contrast to all other light-harvesting complexes, CP24 is stable when the L1 carotenoid binding site is empty and upon mutations in the third helix, whereas mutations in the first helix strongly affect the folding/stability of the pigment-protein complex. The absence of lutein in L1 site does not have any effect on the quenching, whereas substitution of violaxanthin in the L2 site with lutein or zeaxanthin results in a complex with enhanced quenched fluorescence. Triplet-minus-singlet measurements indicate that zeaxanthin and lutein in site L2 are located closer to chlorophylls than violaxanthin, thus suggesting that they can act as direct quenchers via a strong interaction with a neighboring chlorophyll. The results provide the molecular basis for the zeaxanthin-dependent quenching in isolated CP24.Under limiting light conditions, plants need to harvest all of the available light to drive the photosynthetic process. To this aim, they are provided with a large antenna system composed of members of the Lhc2 (light-harvesting complex) family (1), which coordinate chlorophylls (Chls) and carotenoids and increase the absorption cross-section of the system. Under high light conditions, the amount of photons harvested by the photosynthetic complexes exceeds the need of the chloroplast, and to avoid major damage (2), the excess energy is dissipated as heat in a process called nonphotochemical quenching (NPQ) (3, 4). Although the molecular mechanism of this process has not been fully clarified yet, it is clear that Lhcb proteins are involved (58). These complexes have thus a double and opposite role of harvesting light under low light conditions and of dissipating the excess energy in high light. Six Chl-binding proteins compose the antenna system of Photosystem II (PSII) of higher plants. The main complex, LHCII, which is the product of Lhcb1–3 genes (9), is present in trimeric form in the membrane. The trimers are located at the periphery of the PSII supercomplex and are connected to the core (which contains the reaction center, where the charge separation occurs) via three other Lhcb members, the so called minor antenna complexes, the products of the genes Lhcb4 (also called CP29), Lhcb5 (CP26), and Lhcb6 (CP24) (10). These proteins are present as monomers in the membrane (11).Only the structure of LHCII has been obtained at nearly atomic resolution (12, 13), showing the presence of three transmembrane helices, four carotenoids, and 14 Chl molecules per monomeric subunit. Sequence comparison suggests a very similar folding for the other members of the family (1), although biochemical data indicate that the minor antenna complexes bind a smaller number of pigments (14).CP24 is with Lhcb3 the most recent member of the Lhc family, and it has evolved after the splitting between land plants and algae (15). It is also smaller than the other antenna complexes, lacking the amphipathic helix at the C-terminal domain and having a shorter luminal loop (see Fig. 1). At present, little information is available about this protein because of difficulties in purifying it in its native state (14, 16, 17). This complex was obtained by in vitro reconstitution showing that it coordinates 10 Chl molecules and two xanthophylls (18, 19). The recombinant complex was shown to have properties identical to those of the native one (18).Open in a separate windowFIGURE 1.Sequence alignment of predicted Lhcb proteins of Arabidopsis. In the figure, conserved features are highlighted: red, the N terminus (N-term); violet, transmembrane helices; green, Chl binding sites (nomenclature from reference 12); blue, Arg residues involved in ion pairs between helices B and A; and yellow, the stromal loop.The analysis of the CP24 knock-out mutant of Arabidopsis thaliana has indicated that the absence of this protein strongly influences the packing of PSII in the membrane and thus the efficiency of photosynthesis (20, 21). Moreover, plants lacking CP24 are strongly affected in their photoprotection efficiency. Indeed, among all mutants lacking individual Lhcb subunits, CP24ko and CP26/CP24ko double mutant (which has restored photosynthetic efficiency) are the ones showing the strongest effect on the kinetics of NPQ, suggesting that CP24 is a site of zeaxanthin-dependent quenching (21). Recently, it has been proposed that CP24, together with the other minor antenna complexes, is the site of formation of a zeaxanthin radical cation, and thus it is directly involved in NPQ (22, 23). It was also shown that during NPQ a complex consisting of CP29, CP24, and an LHCII trimer dissociates from the Photosystem II supercomplex (24). It was proposed that this dissociation allows PsbS, one of the major players in NPQ (25), to interact directly with CP29 and CP24, switching them to the dissipative conformation. Interestingly, green algae, which lack CP24 (26), have evolved different mechanisms of NPQ (2729), thus suggesting a correlation between the presence of CP24 (and Lhcb3) and the development of NPQ in land plants.In this work we have analyzed in detail the properties of the individual chromophores associated with CP24 with particular attention to their role in light harvesting and photoprotection. The data indicate that CP24 differs from the other members of the Lhc family, supporting the hypothesis of a different role for this subunit.  相似文献   

20.
The role of the light-harvesting complex Lhcb4 (CP29) in photosynthesis was investigated in Arabidopsis thaliana by characterizing knockout lines for each of the three Lhcb4 isoforms (Lhcb4.1/4.2/4.3). Plants lacking all isoforms (koLhcb4) showed a compensatory increase of Lhcb1 and a slightly reduced photosystem II/I ratio with respect to the wild type. The absence of Lhcb4 did not result in alteration in electron transport rates. However, the kinetic of state transition was faster in the mutant, and nonphotochemical quenching activity was lower in koLhcb4 plants with respect to either wild type or mutants retaining a single Lhcb4 isoform. KoLhcb4 plants were more sensitive to photoinhibition, while this effect was not observed in knockout lines for any other photosystem II antenna subunit. Ultrastructural analysis of thylakoid grana membranes showed a lower density of photosystem II complexes in koLhcb4. Moreover, analysis of isolated supercomplexes showed a different overall shape of the C2S2 particles due to a different binding mode of the S-trimer to the core complex. An empty space was observed within the photosystem II supercomplex at the Lhcb4 position, implying that the missing Lhcb4 was not replaced by other Lhc subunits. This suggests that Lhcb4 is unique among photosystem II antenna proteins and determinant for photosystem II macro-organization and photoprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号