共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle 总被引:1,自引:0,他引:1
Sun Z Singh N Mullican SE Everett LJ Li L Yuan L Liu X Epstein JA Lazar MA 《The Journal of biological chemistry》2011,286(38):33301-33309
Many human diseases result from the influence of the nutritional environment on gene expression. The environment interacts with the genome by altering the epigenome, including covalent modification of nucleosomal histones. Here, we report a novel and dramatic influence of diet on the phenotype and survival of mice in which histone deacetylase 3 (Hdac3) is deleted postnatally in heart and skeletal muscle. Although embryonic deletion of myocardial Hdac3 causes major cardiomyopathy that reduces survival, we found that excision of Hdac3 in heart and muscle later in development leads to a much milder phenotype and does not reduce survival when mice are fed normal chow. Remarkably, upon switching to a high fat diet, the mice begin to die within weeks and display signs of severe hypertrophic cardiomyopathy and heart failure. Down-regulation of myocardial mitochondrial bioenergetic genes, specifically those involved in lipid metabolism, precedes the full development of cardiomyopathy, suggesting that HDAC3 is important in maintaining proper mitochondrial function. These data suggest that loss of the epigenomic modifier HDAC3 causes dietary lethality by compromising the ability of cardiac mitochondria to respond to changes of nutritional environment. In addition, this study provides a mouse model for diet-inducible heart failure. 相似文献
4.
5.
6.
p300-mediated Acetylation of Histone H3 Lysine 56 Functions in DNA Damage Response in Mammals 总被引:1,自引:0,他引:1
Rahul K. Vempati Ranveer S. Jayani Dimple Notani Amrita Sengupta Sanjeev Galande Devyani Haldar 《The Journal of biological chemistry》2010,285(37):28553-28564
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis. 相似文献
7.
8.
Mersman DP Du HN Fingerman IM South PF Briggs SD 《The Journal of biological chemistry》2012,287(4):2652-2665
Histone H3 lysine 4 (H3K4) methyltransferases are conserved from yeast to humans, assemble in multisubunit complexes, and are needed to regulate gene expression. The yeast H3K4 methyltransferase complex, Set1 complex or complex of proteins associated with Set1 (COMPASS), consists of Set1 and conserved Set1-associated proteins: Swd1, Swd2, Swd3, Spp1, Bre2, Sdc1, and Shg1. The removal of the WD40 domain-containing subunits Swd1 and Swd3 leads to a loss of Set1 protein and consequently a complete loss of H3K4 methylation. However, until now, how these WD40 domain-containing proteins interact with Set1 and contribute to the stability of Set1 and H3K4 methylation has not been determined. In this study, we identified small basic and acidic patches that mediate protein interactions between the C terminus of Swd1 and the nSET domain of Set1. Absence of either the basic or acidic patches of Set1 and Swd1, respectively, disrupts the interaction between Set1 and Swd1, diminishes Set1 protein levels, and abolishes H3K4 methylation. Moreover, these basic and acidic patches are also important for cell growth, telomere silencing, and gene expression. We also show that the basic and acidic patches of Set1 and Swd1 are conserved in their human counterparts SET1A/B and RBBP5, respectively, and are needed for the protein interaction between SET1A and RBBP5. Therefore, this charge-based interaction is likely important for maintaining the protein stability of the human SET1A/B methyltransferase complexes so that proper H3K4 methylation, cell growth, and gene expression can also occur in mammals. 相似文献
9.
Neda Delgoshaie Xiaojing Tang Evgeny D. Kanshin Elizabeth C. Williams Adam D. Rudner Pierre Thibault Mike Tyers Alain Verreault 《The Journal of biological chemistry》2014,289(19):13186-13196
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCFCdc4 and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCFCdc4. Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCFCdc4. 相似文献
10.
11.
12.
Jayshree Mishra Satya Sridhar Karanki Narendra Kumar 《The Journal of biological chemistry》2012,287(49):41386-41391
Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase expressed in both hematopoietic and nonhematopoietic cells. Although mutations that abrogate Jak3 functions cause different immunological disorders, its constitutive activation leads to various types of cancer. Previously, we demonstrated that Jak3 interacted with actin-binding protein villin, thereby facilitating cytoskeletal remodeling and wound repair. In this study, we characterize the structural determinants that regulate the interactions between Jak3 and cytoskeletal proteins of the villin/gelsolin family. Functional reconstitution of kinase activity by recombinant full-length (wt) Jak3 using Jak3-wt or villin/gelsolin-wt as substrate showed that Jak3 autophosphorylation was the rate-limiting step during interactions between Jak3 and cytoskeletal proteins. Determination of kinetic parameters showed that phosphorylated (P) Jak3-wt binds to P-villin-wt with a dissociation constant (Kd) of 23 nm and a Hill''s coefficient of 3.7. Pairwise binding between Jak3 mutants and P-villin-wt showed that the FERM domain of Jak3 was sufficient for binding to P-villin-wt with a Kd of 40.0 nm. However, the SH2 domain of Jak3 prevented P-villin-wt from binding to the FERM domain of nonphosphorylated protein. We demonstrate that the intramolecular interaction between the FERM and SH2 domains of nonphosphorylated Jak3 prevented Jak3 from binding to villin and that tyrosine autophosphorylation of Jak3 at the SH2 domain decreased these intramolecular interactions and facilitated binding of the FERM domain to villin. Thus we demonstrate the molecular mechanism of interactions between Jak3 and cytoskeletal proteins where tyrosine phosphorylation of the SH2 domain acted as an intramolecular switch for the interactions between Jak3 and cytoskeletal proteins. 相似文献
13.
14.
15.
Sawako Yamashiro David S. Gokhin Zhenhua Sui Sarah E. Bergeron Peter A. Rubenstein Velia M. Fowler 《The Journal of biological chemistry》2014,289(17):11616-11629
Tropomodulins (Tmods) are F-actin pointed end capping proteins that interact with tropomyosins (TMs) and cap TM-coated filaments with higher affinity than TM-free filaments. Here, we tested whether differences in recognition of TM or actin isoforms by Tmod1 and Tmod3 contribute to the distinct cellular functions of these Tmods. We found that Tmod3 bound ∼5-fold more weakly than Tmod1 to α/βTM, TM5b, and TM5NM1. However, surprisingly, Tmod3 was as effective as Tmod1 at capping pointed ends of skeletal muscle α-actin (αsk-actin) filaments coated with α/βTM, TM5b, or TM5NM1. Tmod3 only capped TM-coated αsk-actin filaments more weakly than Tmod1 in the presence of recombinant αTM2, which is unacetylated at its NH2 terminus, binds F-actin weakly, and has a disabled Tmod-binding site. Moreover, both Tmod1 and Tmod3 were similarly effective at capping pointed ends of platelet β/cytoplasmic γ (γcyto)-actin filaments coated with TM5NM1. In the absence of TMs, both Tmod1 and Tmod3 had similarly weak abilities to nucleate β/γcyto-actin filament assembly, but only Tmod3 could sequester cytoplasmic β- and γcyto-actin (but not αsk-actin) monomers and prevent polymerization under physiological conditions. Thus, differences in TM binding by Tmod1 and Tmod3 do not appear to regulate the abilities of these Tmods to cap TM-αsk-actin or TM-β/γcyto-actin pointed ends and, thus, are unlikely to determine selective co-assembly of Tmod, TM, and actin isoforms in different cell types and cytoskeletal structures. The ability of Tmod3 to sequester β- and γcyto-actin (but not αsk-actin) monomers in the absence of TMs suggests a novel function for Tmod3 in regulating actin remodeling or turnover in cells. 相似文献
16.
Lu P Hankel IL Hostager BS Swartzendruber JA Friedman AD Brenton JL Rothman PB Colgan JD 《The Journal of biological chemistry》2011,286(20):18311-18319
17.
Nowak AJ Alfieri C Stirnimann CU Rybin V Baudin F Ly-Hartig N Lindner D Müller CW 《The Journal of biological chemistry》2011,286(26):23388-23396
Drosophila Nurf55 is a component of different chromatin-modifying complexes, including the PRC2 (Polycomb repressive complex 2). Based on the 1.75-Å crystal structure of Nurf55 bound to histone H4 helix 1, we analyzed interactions of Nurf55 (Nurf55 or p55 in fly and RbAp48/46 in human) with the N-terminal tail of histone H3, the first helix of histone H4, and an N-terminal fragment of the PRC2 subunit Su(z)12 using isothermal calorimetry and pulldown experiments. Site-directed mutagenesis identified the binding site of histone H3 at the top of the Nurf55 WD40 propeller. Unmodified or K9me3- or K27me3-containing H3 peptides were bound with similar affinities, whereas the affinity for K4me3-containing H3 peptides was reduced. Helix 1 of histone H4 and Su(z)12 bound to the edge of the β-propeller using overlapping binding sites. Our results show similarities in the recognition of histone H4 and Su(z)12 and identify Nurf55 as a versatile interactor that simultaneously contacts multiple partners. 相似文献
18.
19.
Yeran Li Weili Cai Chao Wang Changfu Yao Xiaomin Bao Huai Deng Jack Girton J?rgen Johansen Kristen M. Johansen 《The Journal of biological chemistry》2013,288(27):19441-19449
The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein. 相似文献