首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Hünefeld, F. and Beutel, R.G. 2011. The female postabdomen of the enigmatic Nannochoristidae (Insecta: Mecopterida) and its phylogenetic significance. —Acta Zoologica (Stockholm) 00: 1–8. External and internal features of the female postabdomen of Nannochorista neotropica are described in detail. The conditions found in females of Nannochoristidae come closest to the ground plan of Mecopterida. This lineage is characterised by telescoping postabdominal segments, a presumptive autapomorphic feature that is modified in some antliophoran groups, but displayed by the nannochoristid species in a typical manner. More potential autapomorphies of Mecopterida, all present in Nannochoristidae, are the neo‐formation of an intersegmental muscle, a transverse muscle spanning between the genital appendages of segment VIII, a muscle connecting these appendages and the genital chamber and the loss of an intersegmental muscle. Plesiomorphic features of Nannochoristidae are the presence of paired genital appendages on segments VIII and IX. Information on the egg‐depositing substrates of the females is not available. The telescoping postabdomen is suitable for oviposition in soft substrates such as moist soil, or rotten plant materials in the riparian zone, and this is possibly a ground‐plan feature of Mecopterida. The results of recent phylogenetic analyses based on morphological data support a placement of Nannochoristidae in Antliophora, whereas the exact position of the group remains ambiguous. No characters of the female postabdomen were found supporting the monophyly of Mecoptera as conventionally circumscribed, that is Nannochoristidae + Boreidae + Pistillifera.  相似文献   

2.
The sperm pumps of Strepsiptera and Antliophora (Hexapoda)   总被引:4,自引:0,他引:4  
Male genital structures of representatives of Strepsiptera, Siphonaptera and Diptera are described in detail, with special emphasis on sperm pumps. The parts involved in the apparatus are evaluated with respect to their homology. Functional interpretations are presented based on the morphological observations. The phylogenetic significance of characters related to the male genital apparatus is discussed. The sperm pumps differ strongly in Strepsiptera and Antliophora (s.s.) and are not homologous. The strepsipteran type, which lacks any sclerotized parts, has evolved independently. Autapomophies of the male genital apparatus are the compact testes, the large balloon‐shaped vesicula seminalis, the strongly developed musculature of the proximal ductus ejaculatorius, the strongly simplified copulatory organ, the unusual muscles of segments VIII and IX, and the complete absence of accessory glands. The median fusion and almost globular shape of the vesicula are potential autapomorphies of Corioxenidae. The absence of the furrow separating the testes from the vesicula seminalis is a derived condition found in Xenos and Myrmecolax. A sperm pump is absent in Boreus (Mecoptera) and Culicomorpha and the functionally relevant parts and their arrangement differ strongly in Siphonaptera, Pistillifera and Diptera (excl. Culicomorpha). The presence of a functional and homologous pumping apparatus does not belong to the groundplan of Antliophora, which implies that this alleged autapomorphy of the clade is invalid. A sperm pump belongs to the groundplan of Diptera and was secondarily reduced in Culicomorpha, many representatives of Bibionomorpha, and in Diopsidae. It was very likely primarily absent in Mecoptera. However, the precise reconstruction of the groundplan depends on the position of Nannochoristidae within Mecoptera and on the possible affinities of Siphonaptera and Boreidae. Sperm pumps should be considered as a functional term and not be used as a character for phylogenetic reconstruction, unless specific similarities are included in the character definition.  相似文献   

3.
External and internal features of the head of adults of Merope tuber were examined and described in detail. The results were compared to conditions found in other members of Mecoptera and other antliophoran lineages. A list of characters of different body parts and life stages is presented. The parsimony analysis and a recent evaluation of thoracic features suggest a basal placement of Merope within monophyletic Pistillifera. The monophyly of Mecoptera was not supported by our data set. Nannochoristidae (Nannomecoptera) was placed as sistertaxon of a clade comprising Diptera and Siphonaptera. Cephalic features supporting this group are modifications of the mouthparts linked to feeding on liquid substrates. Considering recent results of extensive morphological and molecular investigations we consider this placement of Nannochoristidae and the implied mecopteran paraphyly as a possible artefact. Potential cephalic autapomorphies of Mecoptera are the presence of a tooth-like projection of the gena and a prepharyngeal tube, the absence of M. frontolabralis, and the origin of M. tentoriooralis on the middle region of the anterior tentorial arm. Despite of the conspicuous morphological differences between Caurinus and the other boreid genera the family forms a well supported clade. A sistergroup relationship between Boreidae and Pistillifera is confirmed. A unique synapomorphy is the presence of specialized dilator muscles of the salivary duct. The reconstruction of the relationships of the pistilliferan taxa is strongly impeded by a serious lack of morphological data. However, a group comprising Eomeropidae, Choristidae, Apteropanorpidae, Panorpidae and Panorpodidae is supported in our analyses. Further well documented anatomical data are needed for a reliable reconstruction of mecopteran relationships. The collecting and morphological study of larvae should also have high priority. Inherent problems are extreme secondary modifications of cephalic features of Caurinus and Nannochorista.  相似文献   

4.
External and internal thoracic structures of Nannochorista spp. are described in detail. The results are compared with conditions found in other endopterygote taxa, especially in members of Antliophora. Seventy-seven characters potentially useful for phylogenetic reconstruction are discussed, coded, presented as a data matrix and analysed cladistically. The thorax of Nannochorista shows a number of plesiomorphic characters compared with other mecopterans (except for Merope ) and members of the other antliophoran groups (e.g. presence of prospina and associated muscles). No specific affinities of thoracic features of Nannochoristidae and Diptera were found. The cladistic analysis results in strongly supported Antliophora (e.g. intraprofurcal muscle and ventral pleural arms present; bundle of M. mesonoto-pleuralis posterior originates on pleural arm). The thoracic characters do not support the monophyly of Mecoptera. This is possibly an artefact of the analysis. Several potential thoracic autapomorphies of the order are inapplicable in Boreidae, Siphonaptera and Diptera. Boreidae and Siphonaptera share a suite of characters related with flightlessness and are retrieved as sistertaxa when characters associated with wing reduction are predefined as irreversible. Merope appears exceptionally plesiomorphic in its thoracic morphology. Pistillifera (excluding Meropidae) and Panorpoidea (Panorpidae + Panorpodidae) are supported as clades. Due to the strongly modified thoracic morphology of Siphonaptera, the position of this group remains uncertain. The phylogenetic reconstruction using thoracic features alone is clearly impeded by far reaching modifications in Diptera in correlation with an advanced type of anteromotorism, and complex suites of reductional features in the secondary wingless forms.  相似文献   

5.
External and internal head structures of Nannochorista species were examined and described in detail. The characters are discussed with regard to their functional and phylogenetic implications. The structure of the mouthparts indicates that adults of Nannochorista feed on fluids. The loss of the mandibular muscles and the precerebral pharyngeal dilators are presumptive autapomorphies of the genus. A possible clade comprising Nannomecoptera, Siphonaptera and Diptera is supported by the presence of a labral food channel, the absence of the galea, a sheath for the paired mouthparts formed by the labium, very strongly developed labial palp muscles and cibarial dilators, and the presence of a well‐defined postcerebral pharyngeal pumping chamber. Closer affinities of Nannomecoptera with Diptera are suggested by the presence of a unique sensorial groove on the third maxillary palpomere. Further potential synapomorphies are the presence of a frontal apodeme and a primarily lamelliform mandible without teeth. The presence of a salivary channel on the laciniae and a subdivided labrum are shared derived features of Nannochorista and Siphonaptera. A derived condition present in Mecoptera including Boreidae but excluding Nannochoristidae is the secretion with a strongly developed intrinsic muscle of the salivary duct. The loss of the lateral labral retractor, the cranial muscle of the cardo, and of two of the three premental retractors, and the absence of transverse epipharyngeal muscles are potential autapomorphies of Antliophora. The formation of a maxillolabial complex is a possible synapomorphy of Hymenoptera and Mecopterida.  相似文献   

6.
External and internal head structures of Caurinus dectes were examined and described in detail. The features are compared to conditions found in other groups of Antliophora. Caurinus is obviously crucial for the reconstruction of the mecopteran and antliophoran groundplan. It displays a remarkable series of plesiomorphic character states such as a complete clypeolabral suture, the presence of M. hypopharyngomandibularis (M. 13) and M. frontohypopharyngalis (M. 41), a subdivided clypeus, a short head without rostrum, a dorsal tentorial arm attached to the head capsule, the absence of a cranial dilator of the antenna, and large mandibles with a well developed apical tooth, two distinct subapical teeth, and a basal molar part. The first three plesiomorphic features render potential autapomorphies of Mecoptera in the traditional sense invalid. Autapomorphies of Caurinus are the distinctly flattened labrum, the absence of the labroepipharyngeal muscle, the very large size of M. 13, the strongly enlarged penultimate palpomeres, the partition of M. 41, the very strongly developed precerebral sucking chamber, strongly curved optic lobes, the presence of a large protocerebral extension in the genal region and deep posterior excavations of the protocerebrum. The maxillolabial plate, the absence of cardines as separate structures, the reduction of ocelli, and the origin of maxillary palp muscles on a median ridge or area of the maxillolabial plate are likely autapomorphies of Boreidae. Another potential autapomorphy of the family is the presence of longitudinal furrows on the mandibles. However, they are absent in Boreus. The thick strongly sclerotised, median ridge of the maxillolabial plate, the missing retractibility of the prementum, the absence of extrinsic labial muscles, and the presence of a median ridge on the prepharyngeal roof suggest a clade Boreus + Hesperoboreus. The origin of extrinsic maxillary muscles from the clypeus has probably evolved independently in Boreus and Hesperoboreus, and in Panorpa, respectively. The absence of M. craniolacinialis and the presence of a row of several subapical mandibular teeth are autapomorphies of Boreus. The presence of a specific intrinsic muscle of the salivary duct and a membranous galea enclosing the labrum and mandibular base are derived features shared by Boreidae and Pistillifera (galea absent in Nannochorista, Siphonaptera and Diptera). The loss of M. frontolabralis (M. 8) is a potential apomorphy of Mecoptera incl. Siphonaptera. A sister group relationship between Boreidae and Siphonaptera is not supported by characters of the adult head. Head structures of Siphonaptera are extremely modified in correlation with ectoparasitic habits.  相似文献   

7.
In the present article homology issues, character evolution and phylogenetic implications related to the female postabdomen of the holometabolan insects are discussed, based on an earlier analysis of a comprehensive morphological data set. Hymenoptera, the sistergroup of the remaining Holometabola, are the only group where the females have retained a fully developed primary ovipositor of the lepismatid type. There are no characters of the female abdomen supporting a clade Coleopterida + Neuropterida. The invagination of the terminal segments is an autapomorphy of Coleoptera. The ovipositor is substantially modified in Raphidioptera and distinctly reduced in Megaloptera and Neuroptera. The entire female abdomen is extremely simplified in Strepsiptera. The postabdomen is tapering posteriorly in Mecopterida and retractile in a telescopic manner (oviscapt). The paired ventral sclerites of segments VIII and IX are preserved, but valvifers and valvulae are not distinguishable. In Amphiesmenoptera sclerotizations derived from the ventral appendages VIII are fused ventromedially, forming a solid plate, and the appendages IX are reduced. The terminal segments are fused and form a terminal unit which bears the genital opening subapically. The presence of two pairs of apophyses and the related protraction of the terminal unit by muscle force are additional autapomorphies, as is the fusion of the rectum with the posterior part of the genital chamber (cloaca). Antliophora are supported by the presence of a transverse muscle between the ventral sclerites of segment VIII. Secondary egg laying tubes have evolved independently within Boreidae (absent in Caurinus) and in Tipulomorpha. The loss of two muscle associated with the genital chamber are likely autapomorphies of Diptera. The secondary loss of the telescopic retractability of the postabdomen is one of many autapomorphies of Siphonaptera.  相似文献   

8.
The sperm structure of the enigmatic mecopteran species Caurinus dectes (Boreidae) is described for the first time. Diagnostic features are the bi-layered acrosome, a cylindric nucleus provided with two longitudinal opposite grooves, and a simple 9 + 2 axoneme which degenerates in the posterior tail end. The results are conform with the monophyly of Mecoptera including Boreidae. A possible autapomorphy of the order is the presence of the two longitudinal opposite grooves along the nucleus, and the presence of two electron-dense fibres beneath the axoneme. Some apparently plesiomorphic features are preserved in the sperm of Caurinus. Features characterizing the distal part of the flagellum, including the presence of an axial cylindrical structure and the distinctive type of axoneme degeneration, are potential synapomorphies of Caurinus and Boreus, i.e. autapomorphic traits of Boreidae.  相似文献   

9.
The win structure of the New Zealand nannochoristid currently known as Microchorista philgotti: (Tillyard, 1917) is described and discussed. Tubular wing vein sclerotizations are developed in the uper win cuticle only. Shortening of the hindwing CuP-A anastomosis to a single point cannot ge uphed as a nannochoristid autapomorphy. Absence of the Rs3-Rs4 crossvein (the diagnostic character for Microchorista) and, perhaps, presence of specialized microtrichia patches on the fore wing are autapomorphic of the New Zealand species. Since the genus Nannochorista, comprising the Australian/Tasmanian and S. American nannochoristids, according to available evidence is paraphyletic in terms of Microchorista the latter is synonymized with the former.  相似文献   

10.
The eruciform larvae of holometabolous insects are primarily characterized by bearing a varying number of abdominal prolegs in addition to three pairs of thoracic legs. However, whether the prolegs are evolutionarily homologous among different insect orders is still a disputable issue. We examined the embryonic features and histological structure of the prolegs of the scorpionfly Panorpa byersi Hua and Huang (Mecoptera: Panorpidae) and the Oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) to investigate whether the prolegs are homologous between these two holometabolous insect orders. In the scorpionfly, paired lateral process primordia arise on abdominal segments I–VIII (A1–A8) in line with the thoracic legs in early embryonic stages, but degenerate into triangular protuberances in later stages, and paired medial processes appear along the midventral line before dorsal closure and eventually develop into unjointed, cone‐shaped prolegs. Histological observation showed that the lumina of the prolegs are not continuous with the hemocoel, differing distinctly from that of the basic appendicular plan of thoracic legs. These results suggest that the prolegs are likely secondary outgrowths in Mecoptera. In the armyworm, lateral process primordia appear on A1–A10 in alignment with the thoracic legs in the early embryonic stages, although only the rudiments on A3–A6 and A10 develop into segmented prolegs with the lumina continuous with the hemocoel and others degenerate eventually, suggesting that the prolegs are true segmental appendages serially homologous with the thoracic legs in Lepidoptera. Therefore, we conclude that the larval prolegs are likely not evolutionarily homologous between Mecoptera and Lepidoptera. J. Morphol. 277:585–593, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Pterygotes lack abdominal appendages except for pleuropods and prolegs. The larvae of some holometabolous insects develop prolegs, which are used for locomotion. We analyzed the role of the homeotic genes abd-A and Abd-B in lepidopteran proleg development using mutant analysis and embryonic RNAi in the silkworm Bombyx mori. The EMu mutant developed extra prolegs in its posterior abdomen and showed the misexpression of both genes, suggesting their involvement in proleg formation. The depletion of Abd-B by embryonic RNAi caused the development of extra prolegs on all segments posterior to A6, indicating the suppressive function of Abd-B. The abd-A RNAi animals failed to develop prolegs. These results indicate that abd-A and Abd-B are involved in proleg development in B. mori.  相似文献   

12.
Abstract The stemmata of last–instar Nannochoristalarvae are compound eyes composed of 10 or more ommatidia. Each ommatidium has four Semper cells, four distal and four proximal retinula cells which form a cruciform and layered rhabdom. The ommatidia are separated by epidermal cells (possibly rudimentary pigment cells). Corneal lenses are lacking. At the posterior edge, aberrant stemma units may be present which lack a dioptric apparatus and have a star–shaped rhabdom composed of at least six retinula cells. The stemmata of Nannochoristaappear to be derived from stemmata of the Panorpa-type (Mecoptera-Panorpidae). Differences between the stemmata of Nannochoristaand Panorpacan be explained as adaptations to aquatic life (flat cornea) or as regression. A compound larval eye is ascribed to the ground plan of the Mecoptera sensu latoand is considered a genuine plesiomorphy. The identical basic number (seven) of stemmata in the Neuropteroid/Coleoptera assemblage, Amphiesmenoptera and some Mecoptera (Bittacidae, Boreidae) is attributed to parallel evolution.  相似文献   

13.
Larvae of the sawfly, Athalia rosae, have remarkable abdominal prolegs. We analyzed the morphogenesis of appendages and the expression of decapentaplegic and Distal-less genes during embryonic development to characterize the origin of prolegs. Proleg primordia in abdominal segments A1–A9 appeared shortly after the inner lobes (endites) of gnathal appendages were formed. These were located on the ventral plates, medioventral to the appendages of the other segments in light of serial homology. Nothing was seen where the main axis of the appendage should develop in abdominal segments. The primordia in A1 and A9 disappeared before larval hatching. Anal prolegs appeared separate from cerci, the main axes of appendages, which were formed temporarily in A11. The expression of decapentaplegic, which reflects the primary determination of appendages, was detected in the lateral juxtaposition with the prolegs. Distal-less was expressed in the main axes of appendages, protruding endites and the cerci, but not in prolegs and anal prolegs or the gnathal endites which do not protrude. These findings suggest a possibility that the abdominal and anal prolegs of A. rosae are outgrowths of ventral plates which derived from coxopodal elements, but not main axes of appendages.  相似文献   

14.
The phylogenetic system of the Mecoptera   总被引:9,自引:0,他引:9  
Abstract. Many families like the Mesochoristidae, Agetopanorpidae and Permopanorpidae, which were believed by earlier writers to be Mecoptera, are members of the stem group of the Antliophora (Diptera Mecoptera+Siphonaptera) or of stem groups of monophyletic groups of even higher rank (e.g. Mecopteroidea). Others - like the so-called 'Pro-tomecoptera' from the Permian of the Kusnetsk Basin - are not even closely related to the Mecopteroidea. Only the families mentioned in the following phylogenetic system of the Mecoptera are definitely members of the order:
1 Nannomecoptera (Nannochoristidae)
2 Pistillifera
2.1 Raptipedia (Neorthophlebiidae, Bittacidae, Cimbrophlebiidae)
2.2 Opisthogonopora
2.2.1 Boreomorpha (Boreidae)
2.2.2 Meropomorpha (Meropeidae)
2.2.3 Panorpomorpha
2.2.3.1 Eomeropina (Eomeropidae=Notiothaumidae)
2.2.3.2 Panorpina
2.2.3.2.1 Apteropanorpini (Apteropanorpidae)
2.2.3.2.2 Panorpini
2.2.3.2.2.1 Choristoidea (Choristidae)
2.2.3.2.2.2 Panorpoidea (Orthophlebiidae, Dinopanorpidae, Austropan-orpidae, Muchoriidae, Panorpodidae, Panorpidae)
The Orthophlebiidae and Neorthophlebiidae are not monophyletic. There are, however, no characters preserved which would allow a clarification of the exact relations between members of these two groups and the families derived from them. The fossil Xenochoristidae, Triasso-choristidae, Mesopanorpodidae and Robinjohniidae may be further members of the Mecoptera. Their exact phylogenetic relations, however, are unknown.  相似文献   

15.
External features of the embryonic development of Stylops ovinae (Strepsiptera) were examined. Eighteen distinct embryological stages are suggested. Many embryological traits are closely correlated to the parasitic life style of the first instar larvae or to vivipary. The high number of eggs, their small size, the characteristic egg membrane, and the lack of micropyles are derived groundplan features of Strepsiptera. The development with a semi-long germ embryo is shared with several other groups of Holometabola. The reduction of the labrum and antennae are autapomorphies of Strepsiptera. The cephalic ventral plate of the first instar larva of S. ovinae is formed by parts of the head capsule and the anlagen of the maxillae and labium. It is involved in the formation of the specific entognathous condition, and the entire character complex is autapomorphic for Stylopidae. The trochanter is recognizable in the anlagen of all three legs. Its fusion with the femur in the later stages is an autapomorphy of Stylopidia. The extreme spiralization and compression of the abdomen during blastokinesis is a derived feature, like the reduction of the anlagen of the anterior abdominal appendages. The caudal bristles on segment XI are possibly re-activated cerci. The same is likely in the case of segment XI.  相似文献   

16.
The principal locomotory appendages of the Manduca sexta caterpillar, the prolegs, are present on the third through sixth abdominal segments (anal prolegs located on the terminal segment were not included in this study). Previous studies have characterized some of the proleg retractor muscles and their motoneurons. In the present study we identified additional proleg motoneurons and their putative homologs in the non-proleg-bearing segments. One of the motoneurons present in the proleg-bearing segments is absent in the non-proleg-bearing segments. At pupation the prolegs are lost, their muscles degenerate, and some of their motoneurons regress structurally. Subsequently, subsets of the proleg motoneurons and their homologs in other segments die in a segment-specific pattern. This is the first report of segment-specific motoneurons, and of segment-specific death of identified motoneurons, in Manduca. During adult development the surviving proleg motoneurons innervate the tergosternal muscle (TSM) and grow bilateral dendritic arbors. Dendritic growth is completed by about the 12th of the 18 days of adult development. Following adult emergence all but one of the respecified proleg motoneurons dies. The hormonal dependence of dendritic outgrowth was tested by isolating abdomens to eliminate the ecdysteroid-secreting glands in the thorax. Between the second and fifth days after pupation the motoneurons became progressively more competent to undergo dendritic outgrowth following abdomen isolation. The extent of dendritic outgrowth paralleled the degree of morphological development attained by isolated abdomens. It is concluded that ecdysteroids are required for motoneuron outgrowth, but our findings suggest that, unless an abdominal source of ecdysteroids exists in pupae, a relatively small exposure may be sufficient.  相似文献   

17.
The Mecoptera are thought to be one of the most primitive groups in the Holometabola, but their embryology is rarely studied. By means of scanning electron microscopy, we studied the external features of the embryo of the scorpionfly Panorpa emarginata in middle and late development. The embryo remains in the superficial position until hatching. Embryonic development can be divided into 10 stages along with the first‐instar larva. The external features are described from the germ band to the first‐instar larva, with special reference to the components and segmentation of the head, the segmentation of abdomen and the formation of abdominal prolegs. Our results confirm that the head consists of an anterior‐most acron and six trunk segments: the labral, antennal, intercalary, mandibular, maxillary, and labial segments. The labrum is confirmed to derive from the paired appendages. Our observations also provide additional direct evidence that the abdominal prolegs are not serially homologous with the thoracic legs. The presence of the eleventh abdominal segment is clarified. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Phylogenetic significance of the wing-base of the Holometabola (Insecta)   总被引:3,自引:0,他引:3  
The present knowledge of the wing-base morphology of the holometabolous insects is summarized, and the value of these structures for phylogenetic analysis is demonstrated. An autapomorphy of the Holometabola is a locking mechanism composed of a knob on the basalare and a corresponding cavity on the ventral wing-base. Two synapomorphic hindwing-base characters support a sister-group relationship of Coleoptera and Neuropterida. Only few data are available on the wing-base of the Hymenoptera. An autapomorphy of the taxon is a modification of the wing locking mechanism with reduced size of the basalare and its knob. It is demonstrated that wing-base characters are helpful for the analysis of the relationships between strepsipteran families. However, characters of the wing-base support neither a relationship of Strepsiptera and Coleoptera nor of Strepsiptera and Antliophora.  相似文献   

19.
20.
Amphids, and the cephalic and labial papillae of Meloidogyne incognita males were examined in detail by electron microscopy. Each amphid basically consists of an amphidial gland, a nerve bundle and an amphidial duct. The gland is a broad microvillous organ with a narrow anterior process, which is closely associated with the amphidial duct. A posterior process of the gland contains secretory organelles and proceeds along the esophagus with the lateral cephalic nerve bundle. The nerve bundle penetrates the broad portion of the gland and, subsequently, individual nerve processes (dendrites) separate from one another, thus forming the sensilla pouch which is enveloped by the gland. Anterior to the pouch, the dendrites converge as they enter and eventually terminate in the amphidial duct. The external opening of the duct is a broad slit which separates the cheek, the outermost part of the lateral lip, from the remainder of the lip region. M. incognita males have six inner labial papillae and four outer cephalic papillae which are each innervated by two and one cilia, respectively. In labial papillae, the cilia appear to terminate at the base of a pore opening, whereas in cephalic papillae each cilium terminates beneath the labial cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号