首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Filamin A (FLNa) is an actin-crosslinking protein necessary for stabilizing the cell surface, organizing protrusive activity and for promoting efficient cellular translocation. Recently, our group demonstrated the requirement of FLNa for the internalization of the chemokine receptor CCR2B.

Methodology and Principal Findings

In order to study the role of FLNa in vitro and in real-time, we have developed a fluorescent FLNa-EGFP construct. In this novel imaging tool, we introduced the EGFP-tag inside the flexible hinge 1 region of FLNa between two calpain cleavage sites. Our findings indicate that the FLNa-EGFP construct was correctly expressed, cleaved by calpain and colocalized with actin filaments as shown by immunostaining experiments in the human melanoma cell lines A7 (FLNa-repleted) and M2 (FLNa-deficient). In addition, scanning-electron microscopy (SEM) and micropatterning studies also provided clear evidence that the cell rigidity was restored. FLNa-EGFP allowed us to demonstrate the interaction of FLNa with the chemokine receptor CCR2B in endocytic vesicles after CCL2 ligand stimulation. Through live-cell imaging studies we show that the CCR2B receptor in Rab5-positive vesicles moves along filamin A-positive fibers.

Significance

Taken together, these results outline the functionality of the FLNa-EGFP and the importance of filamin A for receptor internalization and movement into endocytic vesicles.  相似文献   

2.
The monocyte chemoattractant protein 1 (MCP-1)-driven activation of CC-type chemokine receptor 2 (CCR2) is one of the early key events to induce monocyte migration toward centers of inflammation. In this work, the authors analyzed MCP-1 internalization into primary human monocytes using partially automated liquid handling, automated fluorescence microscopic imaging, and a specific image analysis algorithm. A fluorophore-conjugated form of MCP-1 was rapidly endocytosed and retained by the monocytes. The CCR2 dependency of the MCP-1 internalization was demonstrated by the use of BMS CCR2 22, a CCR2-specific antagonist. The apparent inhibitory potencies of a series of small-molecule CCR2 antagonists were determined and compared in five assay formats, including the high-content analysis assay described in this work. Interestingly, some but not all antagonists showed markedly different inhibitory behaviors in the five readout systems, with an up to more than 100-fold difference between the highest and the lowest apparent inhibitory potencies. These findings raise the distinct possibility that some CCR2 antagonists are capable of discriminating between different functional states of the CCR2 receptor(s) and suggest strategies for the identification of functionally selective CCR2 antagonists with increased therapeutic advantage over nonselective antagonists.  相似文献   

3.
The biological actions of insulin are associated with a rapid reorganization of the actin cytoskeleton within cells in culture. Even though this event requires the participation of actin-binding proteins, the effect of filamin A (FLNa) on insulin-mediated signaling events is still unknown. We report here that human melanoma M2 cells lacking FLNa expression exhibited normal insulin receptor (IR) signaling, whereas FLNa-expressing A7 cells were unable to elicit insulin-dependent Shc tyrosine phosphorylation and p42/44 MAPK activation despite no significant defect in IR-stimulated phosphorylation of insulin receptor substrate-1 or activation of the phosphatidylinositol 3-kinase/AKT cascade. Insulin-dependent translocation of Shc, SOS1, and MAPK to lipid raft microdomains was markedly attenuated by FLNa expression. Coimmunoprecipitation experiments and in vitro binding assays demonstrated that FLNa binds constitutively to IR and that neither insulin nor depolymerization of actin by cytochalasin D affected this interaction. The colocalization of endogenous FLNa with IR was detected at the surface of HepG2 cells. Ectopic expression of a C-terminal fragment of FLNa (FLNaCT) in HepG2 cells blocked the endogenous IR-FLNa interaction and potentiated insulin-stimulated MAPK phosphorylation and transactivation of Elk-1 compared with vector-transfected cells. Expression of FLNaCT had no major effect on insulin-induced phosphorylation of the IR, insulin receptor substrate-1, or AKT, but it elicited changes in actin cytoskeletal structure and ruffle formation in HepG2 cells. Taken together, these results indicate that FLNa interacts constitutively with the IR to exert an inhibitory tone along the MAPK activation pathway.  相似文献   

4.
CCR5 is a G protein-coupled receptor that binds several natural chemokines but it is also a coreceptor for the entry of M tropic strains of HIV-1 into cells. Levels of CCR5 on the cell surface are important for the rate of HIV-1 infection and are determined by a number of factors including the rates of CCR5 internalization and recycling. Here we investigated the involvement of the actin cytoskeleton in the control of ligand-induced internalization and recycling of CCR5. Cytochalasin D, an actin depolymerizing agent, inhibited chemokine-induced internalization of CCR5 and recycling of the receptor in stably transfected CHO cells and in the monocytic cell line, THP-1. CCR5 internalization and recycling were inhibited by Toxin B and C(3) exoenzyme treatment in CHO and THP-1 cells, confirming activation of members of the RhoGTPase family by CCR5. The specific Rho kinase inhibitor Y27632, however, had no effect on CCR5 internalization or recycling. Ligand-induced activation of CCR5 leads to Rho kinase-dependent formation of focal adhesion complexes. These data indicate that CCR5 internalization and recycling are regulated by actin polymerization and activation of small G proteins in a Rho-dependent manner.  相似文献   

5.
Two isoforms of human CCR2, the receptor for monocyte chemoattractant protein-1 (MCP-1), have been identified but their relative expression in monocytes and contribution to inflammatory responses mediated by MCP-1 remain uncertain. All available information on CCR2 expression is based on mRNA data because isoform-specific antibodies were not available until now. To analyze the relative expression of each isoform, we made two antibodies that specifically recognized CCR2A and CCR2B. Examination of receptor protein with these isoform-specific antibodies showed that the total expression of CCR2B in monocytes was about 10-fold higher than that of CCR2A with an equal distribution between the cell surface and intracellular pools. A detailed analysis using purified plasma membranes demonstrated that about 90% of all CCR2 on the cell surface were composed of CCR2B. The relatively abundant expression of CCR2B on the cell surface suggests a principal role of this isoform as a mediator of monocyte responses to MCP-1 in inflammation.  相似文献   

6.
Monocytes are recruited from the circulation into the subendothelial space where they differentiate into mature macrophages and internalize modified lipoproteins to become lipid-laden foam cells. The accumulation of monocytes is mediated by the interaction of locally produced chemoattractant protein-1 (MCP-1) with its receptor CCR2. The objective of the present study is to demonstrate the differential effects of plasma lipoproteins on monocyte CCR2 expression. The CCR2 expression was increased about 2.4-fold in monocytes isolated from hypercholesterolemic patients, compared to monocytes from normal controls. There was a significant correlation between CCR2 expression and plasma low density lipoprotein (LDL). Elevated levels of high density lipoprotein (HDL) blunted and even reverted the effects of LDL on CCR2 expression, both in vivo and in vitro. The causal relationship between plasma lipoproteins and CCR2 expression was further confirmed by modulating the lipoprotein profile. Estrogen supplement therapy decreased plasma LDL cholesterol, increased plasma HDL cholesterol, and reduced CCR2 expression in hypercholesterolemic postmenopausal women, but had no effect on the plasma lipid profile or CCR2 expression in normocholesterolemic subjects. The physiological significance of altered CCR2 expression was tested by chemotaxis assay, and our results demonstrated that treatment of THP-1 monocytes with LDL induced CCR2 expression and substantially enhanced the chemotaxis elicited by MCP-1. Our findings suggest that plasma lipoproteins differentially control monocyte function and that monocytes from hypercholesterolemic subjects are hyperresponsive to chemotactic stimuli. This may increase their accumulation in the vessel wall and accelerate the pathogenic events of atherogenesis.  相似文献   

7.
Despite sharing considerable homology with the members of the monocyte chemoattractant protein (MCP) family, the CC chemokine eotaxin (CCL11) has previously been reported to signal exclusively via the receptor CC chemokine receptor 3 (CCR3). Using the monocyte cell line THP-1, we investigated the relative abilities of eotaxin and MCPs 1-4 to induce CCR2 signaling, employing assays of directed cell migration and intracellular calcium flux. Surprisingly, 1 microm concentrations of eotaxin were able to recruit THP-1 cells in chemotaxis assays, and this migration was sensitive to antagonism of CCR2 but not CCR3. Radiolabeled eotaxin binding assays performed on transfectants bearing CCR2b or CCR3 confirmed eotaxin binding to CCR2 with a K(d) of 7.50 +/- 3.30 nm, compared with a K(d) of 1.68 +/- 0.91 nm at CCR3. In addition, whereas 1 microm concentrations of eotaxin were able to recruit CCR2b transfectants, substimulatory concentrations of eotaxin inhibited MCP-1-induced chemotaxis of CCR2b transfectants and also inhibited MCP-1-induced intracellular calcium flux of THP-1 cells. Collectively, these findings suggest that eotaxin is a partial agonist of the CCR2b receptor. A greater understanding of the interaction of CCR2 with all of its ligands, both full and partial agonists, may aid the rational design of specific antagonists that hold great promise as future therapeutic treatments for a variety of inflammatory disorders.  相似文献   

8.
Sphingosine kinase 1 (SphK1) catalyzes the phosphorylation of sphingosine to produce the potent lipid mediator sphingosine-1-phosphate (S1P), which plays a critical role in cell motility via its cell surface receptors. Here, we have identified filamin A (FLNa), an actin-cross-linking protein involved in cell movement, as a bona fide SphK1-interacting protein. Heregulin stimulated SphK1 activity only in FLNa-expressing A7 melanoma cells but not in FLNa-deficient cells and induced its translocation and colocalization with FLNa at lamellipodia. SphK1 was required for heregulin-induced migration, lamellipodia formation, activation of PAK1, and subsequent FLNa phosphorylation. S1P directly stimulated PAK1 kinase, suggesting that it may be a target of intracellularly generated S1P. Heregulin also induced colocalization of S1P1 (promotility S1P receptor) but not S1P2, with SphK1 and FLNa at membrane ruffles. Moreover, an S1P1 antagonist inhibited the lamellipodia formation induced by heregulin. Hence, FLNa links SphK1 and S1P1 to locally influence the dynamics of actin cytoskeletal structures by orchestrating the concerted actions of the triumvirate of SphK1, FLNa, and PAK1, each of which requires and/or regulates the actions of the others, at lamellipodia to promote cell movement.  相似文献   

9.
10.
The presence of HOCl-modified epitopes inside and outside monocytes/macrophages and the presence of HOCl-modified apolipoprotein B in atherosclerotic lesions has initiated the present study to identify scavenger receptors that bind and internalize HOCl-low density lipoprotein (LDL). The uptake of HOCl-LDL by THP-1 macrophages was not saturable and led to cholesterol/cholesteryl ester accumulation. HOCl-LDL is not aggregated in culture medium, as measured by dynamic light scattering experiments, but internalization of HOCl-LDL could be inhibited in part by cytochalasin D, a microfilament disrupting agent. This indicates that HOCl-LDL is partially internalized by a pathway resembling phagocytosis-like internalization (in part by fluid-phase endocytosis) as measured with [14C]sucrose uptake. In contrast to uptake studies, binding of HOCl-LDL to THP-1 cells at 4 degrees C was specific and saturable, indicating that binding proteins and/or receptors are involved. Competition studies on THP-1 macrophages showed that HOCl-LDL does not compete for the uptake of acetylated LDL (a ligand to scavenger receptor class A) but strongly inhibits the uptake of copper-oxidized LDL (a ligand to CD36 and SR-BI). The binding specificity of HOCl-LDL to class B scavenger receptors could be demonstrated by Chinese hamster ovary cells overexpressing CD36 and SR-BI and specific blocking antibodies. The lipid moiety isolated from the HOCl-LDL particle did not compete for cell association of labeled HOCl-LDL to CD36 or SR-BI, suggesting that the protein moiety of HOCl-LDL is responsible for receptor recognition. Experiments with Chinese hamster ovary cells overexpressing scavenger receptor class A, type I, confirmed that LDL modified at physiologically relevant HOCl concentrations is not recognized by this receptor.  相似文献   

11.
Kim MY  Byeon CW  Hong KH  Han KH  Jeong S 《FEBS letters》2005,579(7):1597-1601
The CC chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a crucial role in the initiation of atherosclerosis and has direct effects that promote angiogenesis. To develop a specific inhibitor for MCP-1-induced angiogenesis, we performed in vitro selection employing phage display random peptide libraries. Most of the selected peptides were found to be homologous to the second extracellular loops of CCR2 and CCR3. We synthesized the peptide encoding the homologous sequences of the receptors and tested its effect on the MCP-1 induced angiogenesis. Surface plasmon resonance measurements demonstrated specific binding of the peptide to MCP-1 but not to the other homologous protein, MCP-3. Flow cytometry revealed that the peptide inhibited the MCP-1 binding to THP-1 monocytes. Moreover, CAM and rat aortic ring assays showed that the peptide inhibited MCP-1 induced angiogenesis. Our observations indicate that the MCP-1-binding peptide exerts its anti-angiogenic effect by interfering with the interaction between MCP-1 and its receptor.  相似文献   

12.
Monocyte chemoattractant protein-1 (MCP-1) is a chemotactic cytokine mainly acting on monocytes and T cells that elicits its biological effects by interacting with the seven-transmembrane helix receptor CCR2B. The vaccinia virus strain Lister and many other poxviruses express soluble proteins (vCCI) that bind MCP-1 and other CC chemokines and inhibit their function. In order to define the interaction site of MCP-1 with vCCI from vaccinia, surface exposed residues of MCP-1 were identified and mutated to alanine. The MCP-1 variants were expressed, purified, and their interaction with vCCI was characterized. The site on MCP-1 for vCCI binding is dominated by arginine 18 with important additional contributions from tyrosine 13 and arginine 24. These residues define a binding site that largely overlaps with the CCR2B receptor interaction site. The viral chemokine-binding protein vCCI thus inhibits the biological function of MCP-1 by directly masking its CCR2B receptor-binding site.  相似文献   

13.
Prolactin (PRL) regulates cytoskeletal rearrangement and cell motility. PRL-activated Janus tyrosine kinase 2 (JAK2) phosphorylates the p21-activated serine-threonine kinase (PAK)1 and the Src homology 2 (SH2) domain-containing adapter protein SH2B1β. SH2B1β is an actin-binding protein that cross-links actin filaments, whereas PAK1 regulates the actin cytoskeleton by different mechanisms, including direct phosphorylation of the actin-binding protein filamin A (FLNa). Here, we have used a FLNa-deficient human melanoma cell line (M2) and its derivative line (A7) that stably expresses FLNa to demonstrate that SH2B1β and FLNa are required for maximal PRL-dependent cell ruffling. We have found that in addition to two actin-binding domains, SH2B1β has a FLNa-binding domain (amino acids 200-260) that binds directly to repeats 17-23 of FLNa. The SH2B1β-FLNa interaction participates in PRL-dependent actin rearrangement. We also show that phosphorylation of the three tyrosines of PAK1 by JAK2, as well as the presence of FLNa, play a role in PRL-dependent cell ruffling. Finally, we show that the actin- and FLNa-binding-deficient mutant of SH2B1β (SH2B1β 3Δ) abolished PRL-dependent ruffling and PRL-dependent cell migration when expressed along with PAK1 Y3F (JAK2 tyrosyl-phosphorylation-deficient mutant). Together, these data provide insight into a novel mechanism of PRL-stimulated regulation of the actin cytoskeleton and cell motility via JAK2 signaling through FLNa, PAK1, and SH2B1β. We propose a model for PRL-dependent regulation of the actin cytoskeleton that integrates our findings with previous studies.  相似文献   

14.
Type 2 diabetes (T2DM) is characterized by hyperglycemia, dyslipidemia, and increased inflammation. Previously, we showed that high glucose (HG) induces Toll-like receptor (TLR) expression, activity, and inflammation via NF-κB followed by cytokine release in vitro and in vivo. Here, we determined how HG-induced inflammation is affected by free fatty acids (FFA) in human monocytes. THP-1 monocytic cells, CD14(+) human monocytes, and transiently transfected HEK293 cells were exposed to various FFA (0-500 μM) and glucose (5-20 mM) for evaluation of TLR2, TLR4, NF-κB, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and superoxide release. In THP-1 cells, palmitate increased cellular TLR2 and TLR4 expression, generated reactive oxygen species (ROS), and increased NF-κB activity, IL-1β, and MCP-1 release in a dose- and time-dependent manner. Similar data were observed with stearate and FFA mixture but not with oleate. Conversely, NADPH oxidase inhibitor treatment repressed glucose- and palmitate-stimulated ROS generation and NF-κB activity and decreased IL-1β and MCP-1 expression. Silencing TLR2, TLR4, and p47phox with small inhibitory RNAs (siRNAs) significantly reduced superoxide release, NF-κB activity, IL-1β, and MCP-1 secretion in HG and palmitate-treated THP-1 cells. Moreover, data from transient transfection experiments suggest that TLR6 is required for TLR2 and MD2 for TLR4 to augment inflammation in FFA- and glucose-exposed cells. These findings were confirmed with human monocytes. We conclude that FFA exacerbates HG-induced TLR expression and activity in monocytic cells with excess superoxide release, enhanced NF-κB activity, and induced proinflammatory factor release.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

16.
17.
Recruitment of monocytes in the liver is a key pathogenic feature of hepatic inflammation in nonalcoholic steatohepatitis (NASH), but the mechanisms involved are poorly understood. Here, we studied migration of human monocytes in response to supernatants obtained from liver cells after inducing lipoapoptosis with saturated free fatty acids (FFA). Lipoapoptotic supernatants stimulated monocyte migration with the magnitude similar to a monocyte chemoattractant protein, CCL2 (MCP-1). Inhibition of c-Jun NH2-terminal kinase (JNK) in liver cells with SP600125 blocked migration of monocytes in a dose-dependent manner, indicating that JNK stimulates release of chemoattractants in lipoapoptosis. Notably, treatment of supernatants with Apyrase to remove ATP potently inhibited migration of THP-1 monocytes and partially blocked migration of primary human monocytes. Inhibition of the CCL2 receptor (CCR2) on THP-1 monocytes with RS102895, a specific CCR2 inhibitor, did not block migration induced by lipoapoptotic supernatants. Consistent with these findings, lipoapoptosis stimulated pathophysiological extracellular ATP (eATP) release that increased supernatant eATP concentration from 5 to ~60 nM. Importantly, inhibition of Panx1 expression in liver cells with short hairpin RNA (shRNA) decreased supernatant eATP concentration and inhibited monocyte migration, indicating that monocyte migration is mediated in part by Panx1-dependent eATP release. Moreover, JNK inhibition decreased supernatant eATP concentration and inhibited Pannexin1 activation, as determined by YoPro-1 uptake in liver cells in a dose-dependent manner. These results suggest that JNK regulates activation of Panx1 channels, and provide evidence that Pannexin1-dependent pathophysiological eATP release in lipoapoptosis is capable of stimulating migration of human monocytes, and may participate in the recruitment of monocytes in chronic liver injury induced by saturated FFA.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9456-5) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.

Background

Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. The chemotaxis and adhesion of monocytes to the endothelium in the early atherosclerosis is important. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the chemotaxis and adhesion of monocytes.

Methods

Peripheral blood was sampled from 54 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of C-C chemokine receptor 2 (CCR2). The effect of intermittent hypoxia on the regulation and function of CCR2 was investigated on THP-1 monocytic cells and monocytes. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. Transwell filter migration assay and cell adhesion assay were performed to study the chemotaxis and adhesion of monocytes.

Results

Monocytic CCR2 gene expression was found to be increased in severe OSA patients and higher levels were detected after sleep. Intermittent hypoxia increased the CCR2 expression in THP-1 monocytic cells even in the presence of TNF-α and CRP. Intermittent hypoxia also promoted the MCP-1-mediated chemotaxis and adhesion of monocytes to endothelial cells. Furthermore, inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of monocytic CCR2 expression by intermittent hypoxia.

Conclusions

This is the first study to demonstrate the increase of CCR2 gene expression in monocytes of severe OSA patients. Monocytic CCR2 gene expression can be induced under intermittent hypoxia which contributes to the chemotaxis and adhesion of monocytes.  相似文献   

20.
The chemotaxis and adhesion of monocytes to the injured endothelium in the early atherosclerosis is important. Cilostazol, a specific phosphodiesterase type III inhibitor, is known to exhibit anti-atherosclerotic effects mediated by different mechanisms. This study aimed to investigate the modulating effect of cilostazol on the MCP-1-induced chemotaxis and adhesion of monocytes. The gene expression of CCR2, the major receptor of MCP-1 in THP-1 monocytes, was also analyzed. The chemotaxis of monocytes toward MCP-1 was investigated using the transwell filter assay. Cilostazol dose-dependently inhibited the MCP-1-induced chemotaxis of monocytes which was shown to be cAMP-dependent. Using western blot analysis and flow cytometry method, we demonstrated the decrease of CCR2 protein at the cell membrane of monocytes by cilostazol treatment. Results from RT/real-time PCR confirmed the decrease of CCR2 mRNA expression by cilostazol which was also mediated by cAMP. Similar inhibition was also noted in human peripheral monocytes. The post-CCR2 signaling pathways including p44/42 and p38 MAPK were examined by western blot analysis. Result confirmed the inhibitory effect of cilostazol on the phosphorylation of p44/42 and p38 MAPK after MCP-1 stimulation. The activation of monocytes after MCP-1 treatment exhibited enhanced adhesion to vascular endothelial cells which was dose-dependently suppressed by cilostazol. Together, cilostazol was demonstrated, for the first time, to inhibit the CCR2 gene expression and MCP-1-induced chemotaxis and adhesion of monocytes which might therefore reduce the infiltration of monocytes during the early atherosclerosis. The present study provides an additional molecular mechanism underlying the anti-atherosclerotic effects of cilostazol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号