首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiplex PCR analyses of DNAs from genotypically unique Escherichia coli strains isolated from the feces of 138 humans and 376 domesticated animals from Jeonnam Province, South Korea, performed using primers specific for the chuA and yjaA genes and an unknown DNA fragment, TSPE4.C2, indicated that none of the strains belonged to E. coli phylogenetic group B2. In contrast, phylogenetic group B2 strains were detected in about 17% (8 of 48) of isolates from feces of 24 wild geese and in 3% (3 of 96) of isolates obtained from the Yeongsan River in Jeonnam Province, South Korea. The distribution of E. coli strains in phylogenetic groups A, B1, and D varied depending on the host examined, and there was no apparent seasonal variation in the distribution of strains in phylogenetic groups among the Yeongsan River isolates. The distribution of four virulence genes (eaeA, hlyA, stx1, and stx2) in isolates was also examined by using multiplex PCR. Virulence genes were detected in about 5% (38 of 707) of the total group of unique strains examined, with 24, 13, 13, and 9 strains containing hlyA, eaeA, stx2, and stx1, respectively. The virulence genes were most frequently present in phylogenetic group B1 strains isolated from beef cattle. Taken together, results of these studies indicate that E. coli strains in phylogenetic group B2 were rarely found in humans and domesticated animals in Jeonnam Province, South Korea, and that the majority of strains containing virulence genes belonged to phylogenetic group B1 and were isolated from beef cattle. Results of this study also suggest that the relationship between the presence and types of virulence genes and phylogenetic groupings may differ among geographically distinct E. coli populations.Escherichia coli is a normal inhabitant of the lower intestinal tract of warm-blooded animals and humans. While the majority of E. coli strains are commensals, some are known to be pathogenic, causing intestinal and extraintestinal diseases, such as diarrhea and urinary tract infections (42). Phylogenetic studies done using multilocus enzyme electrophoresis and 72 E. coli strains in the E. coli reference collection showed that E. coli strains can be divided into four phylogenetic groups (A, B1, B2, and D) (20, 41, 48). Recently, a potential fifth group (E) has also been proposed (11). Since multiplex PCR was developed for analysis of phylogenetic groups (6), a number of studies have analyzed a variety of E. coli strains for their phylogenetic group association (10, 12, 17, 18, 23, 54). Duriez et al. (10) reported the possible influence of geographic conditions, dietary factors, use of antibiotics, and/or host genetic factors on the distribution of phylogenetic groups among 168 commensal E. coli strains isolated from human stools from three geographically distinct populations in France, Croatia, and Mali. Random-amplified polymorphic DNA analysis of the intraspecies distribution of E. coli in pregnant women and neonates indicated that there was a correlation between the distribution of phylogenetic groups, random-amplified polymorphic DNA groups, and virulence factors (54). Moreover, based on comparisons of the distribution of E. coli phylogenetic groups among humans of different sexes and ages, it has been suggested that E. coli genotypes are likely influenced by morphological, physiological, and dietary differences (18). In addition, climate has also been proposed to influence the distribution of strains within E. coli phylogenetic groups (12). There are now several reports indicating that there is a potential relationship between E. coli phylogenetic groups, age, and disease. For example, E. coli isolates belonging to phylogenetic group B2 have been shown to predominate in infants with neonatal bacterial meningitis (27) and among urinary tract and rectal isolates (55). Also, Nowrouzian et al. (39) and Moreno et al. (37) reported that strains belonging to phylogenetic group B2 persisted among the intestinal microflora of infants and were more likely to cause clinical symptoms.Boyd and Hartl (2) reported that among the E. coli strains in the E. coli reference and the diarrheagenic E. coli collections, strains in phylogenetic group B2 carry the greatest number of virulence factors, followed by those in group D. Virulence factors carried by group B2 strains are thought to contribute to their strong colonizing capacity; a greater number of virulence genes have been detected in resident strains than in transient ones (38). Moreover, a mouse model of extraintestinal virulence showed that phylogenetic group B2 strains killed mice at greater frequency and possessed more virulence determinants than strains in other phylogenetic groups, suggesting a link between phylogeny and virulence genes in E. coli extraintestinal infection (45). In contrast, Johnson and Kuskowski (25) suggested that a group B2 ancestral strain might have simply acquired virulence genes by chance and that these genes were vertically inherited by group members during clonal expansion. However, numerous studies published to date suggest that there is a relationship between the genomic background of phylogenetic group B2 and its association with virulence factors (12, 28, 35, 39, 45).Both enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC, respectively) strains are among the most important food-borne pathogens worldwide, often causing severe gastrointestinal disease and fatal infections (13). While EPEC strains cause diarrhea and generally do not produce enterotoxin, they possess an adherence factor which is controlled by the chromosomal gene eaeA, encoding intimin (8). Unlike the EPEC strains, however, the EHEC strains typically contain the hlyA, stx1, and stx2 virulence genes, encoding hemolysins and Shiga-like type 1 and 2 toxins, respectively, and eaeA. The ability to detect EHEC has been greatly facilitated by the use of multiplex PCR (13, 44, 53). Several studies have shown that strains producing Shiga-like toxin 2 are more frequently found in cases of hemolytic-uremic syndrome than are those containing Shiga-like toxin 1 (30, 43, 46, 49).In the study reported here, we examined the distribution of phylogenetic groups and the prevalence of virulence genes in 659 genotypically unique E. coli strains isolated from humans and domestic animals in South Korea. In addition, we also tested 48 and 96 nonunique E. coli isolates from wild geese and the Yeongsan River, respectively, for phylogenetic distribution and virulence gene profiles. Here, we report that contrary to what has been previously reported in other parts of the world, no E. coli strains belonging to phylogenetic group B2 were found in domesticated animals and in humans from Jeonnam Province, South Korea. We also report that among the strains we examined, virulence genes were mainly found in phylogenetic group B1 strains isolated from beef cattle. Results of these studies may prove to be useful for the development of risk management strategies to maintain public health.  相似文献   

2.
Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (<6%) of the 17 lineage I strains. Several of these linage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources.Enterohemorrhagic Escherichia coli is associated with diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans (31). E. coli serotype O157:H7 predominates in epidemics and sporadic cases of enterohemorrhagic E. coli-related infections in the United States, Canada, Japan, and the United Kingdom (12). Cattle are considered the most important reservoir of E. coli O157:H7 (10, 24, 37, 41), and foods contaminated with bovine feces are thought to be the most common source of human infection with this pathogen (27, 33). The two most important virulence factors of the organism are the production of one or more Shiga toxins (Stx) (6, 20, 32) and the ability to attach to and efface microvilli of host intestinal cells (AE). Stx genes are encoded by temperate bacteriophage inserted in the bacterial chromosome, and genes responsible for the AE phenotype are located on the locus of enterocyte effacement (LEE) as well as other pathogenicity islands (4, 17). All E. coli O157:H7 strains also possess a large plasmid which is thought to play a role in virulence (10, 40, 42).Octamer-based genome scanning (OBGS) was first used to show that E. coli O157 strains from the United States and Australia could be subdivided into two genetically distinct lineages (21, 22, 46). While both E. coli O157:H7 lineages are associated with human disease and are isolated from cattle, there is a bias in the host distribution between the two lineages, with a significantly higher proportion of lineage I strains isolated from humans than lineage II strains. Several recent studies have shown that there are inherent differences in gene content and expression between populations of lineage I and lineage II E. coli O157:H7 strains. Lejeune et al. (26) reported that the antiterminator Q gene of the stx2-converting bacteriophage 933W was found in all nine OBGS lineage I strains examined but in only two of seven lineage II strains, suggesting that there may be lineage-specific differences in toxin production. Dowd and Ishizaki (9) used DNA microarray analysis to examine expression of 610 E. coli O157:H7 genes and showed that lineage I and lineage II E. coli O157:H7 strains have evolved distinct patterns of gene expression which may alter their virulence and their ability to survive in different microenvironments and colonize the intestines of different hosts (9, 28, 38).The observations of lineage host bias have been supported and extended by studies using a six-locus-based multiplex PCR termed the lineage-specific polymorphism assay (LSPA-6) (46). However, Ziebell et al. (48) have recently shown that not all LSPA-6 types within lineage II are host biased; e.g., LSPA-6 type 211111 isolation rates from humans and cattle were significantly different from those of other lineage II LSPA-6 types. Therefore, a clearer definition is required of not only the differences between lineages but also the differences among clonal groups within lineages.The genome sequences of two E. coli O157:H7 strains, Sakai and EDL933 (14, 36), have been determined; however, both of these strains are of lineage I, and there are presently no completed and fully annotated genome sequences available for lineage II strains. In our laboratory, comparative studies utilizing suppression subtractive hybridization (SSH) and comparative genomic hybridization revealed numerous potential virulence factors that are conserved in lineage I strains and that are rare or absent in lineage II strains (42, 47). In this study, we have used SSH to identify genomic regions present in E. coli O157:H7 lineage II strains that are absent from lineage I strains. We wished to examine the distribution of these novel gene segments in E. coli O157:H7 strains and gain insight into their origins and functions. We also attempted to identify molecular markers specific to lineage II strains as well as other markers that would be useful in the genetic subtyping or molecular fingerprinting of E. coli O157:H7 strains in population and epidemiological studies (25). This information may be helpful in the identification of genotypes of the organism associated with specific phenotypes of both lesser and greater virulence (29).  相似文献   

3.
Since enterohemorrhagic Escherichia coli (EHEC) isolates of serogroup O156 have been obtained from human diarrhea patients and asymptomatic carriers, we studied cattle as a potential reservoir for these bacteria. E. coli isolates serotyped by agglutination as O156:H25/H−/Hnt strains (n = 32) were isolated from three cattle farms during a period of 21 months and characterized by rapid microarray-based genotyping. The serotyping by agglutination of the O156 isolates was not confirmed in some cases by the results of DNA-based serotyping as only 25 of the 32 isolates were conclusively identified as O156:H25. In the multilocus sequence typing (MLST) analysis, all EHEC O156:H25 isolates were characterized as sequence type 300 (ST300) and ST688, which differ by a single-nucleotide exchange in the purA gene. Oligonucleotide microarrays allow simultaneous detection of a wider range of EHEC-associated and other E. coli virulence markers than other methods. All O156:H25 isolates showed a wide spectrum of virulence factors typical for EHEC. The stx1 genes combined with the EHEC hlyA (hlyAEHEC) gene, the eae gene of the ζ subtype, as well as numerous other virulence markers were present in all EHEC O156:H25 strains. The behavior of eight different cluster groups, including four that were EHEC O156:H25, was monitored in space and time. Variations in the O156 cluster groups were detected. The results of the cluster analysis suggest that some O156:H25 strains had the genetic potential for a long persistence in the host and on the farm, while other strains did not. As judged by their pattern of virulence markers, E. coli O156:H25 isolates of bovine origin may represent a considerable risk for human infection. Our results showed that the miniaturized E. coli oligonucleotide arrays are an excellent tool for the rapid detection of a large number of virulence markers.Shiga toxin-producing Escherichia coli (STEC) strains comprise a group of zoonotic enteric pathogens (45). In humans, infections with some STEC serotypes may result in hemorrhagic or nonhemorrhagic diarrhea, which can be complicated by the hemolytic uremic syndrome (HUS) (32). These STEC strains are also designated enterohemorrhagic Escherichia coli (EHEC). Consequently, EHEC strains represent a subgroup of STEC with high pathogenic potential for humans. Although E. coli O157:H7 is the most frequent EHEC serotype implicated in HUS, other serotypes can also cause this complication. Non-O157:H7 EHEC strains including serotypes O26:H11/H−, O103:H2/H−, O111:H8/H10/H−, and O145:H28/H25/H− and sorbitol-fermenting E. coli O157:H− isolates are present in about 50% of stool cultures from German HUS patients (10, 42). However, STEC strains that cause human infection belong to a large number of E. coli serotypes, although a small number of STEC isolates of serogroup O156 were associated with human disease (7). Strains of the serotypes O156:H1/H8/H21/H25 were found in human cases of diarrhea or asymptomatic infections (9, 22, 25, 26). The detection of STEC of serogroup O156 from healthy and diseased ruminants such as cattle, sheep, and goats was reported by several authors (1, 11-13, 21, 39, 46, 50, 52). Additional EHEC-associated virulence genes such as stx, eae, hlyAEHEC, or nlaA were found preferentially in the serotypes O156:H25 and O156:H− (11-13, 21, 22, 50, 52).Numerous methods exist for the detection of pathogenic E. coli, including genotypic and phenotypic marker assays for the detection of virulence genes and their products (19, 47, 55, 57). All of these methods have the common drawback of screening a relatively small number of determinants simultaneously. A diagnostic DNA microarray based on the ArrayTube format of CLONDIAG GmbH was developed as a viable alternative due to its ability to screen multiple virulence markers simultaneously (2). Further microarray layouts working with the same principle but different gene targets were developed for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria (5) and for the rapid DNA-based serotyping of E. coli (4). In addition, a protein microarray for E. coli O serotyping based on the ArrayTube format was described by Anjum et al. (3).The aim of our study was the molecular genotyping of bovine E. coli field isolates of serogroup O156 based on miniaturized E. coli oligonucleotide arrays in the ArrayStrip format and to combine the screening of E. coli virulence markers, antimicrobial resistance genes, and DNA serotyping targets, some of which were partially described previously for separate arrays (2, 4, 5). The epidemiological situation in the beef herds from which the isolates were obtained and the spatial and temporal behavior of the clonal distribution of E. coli serogroup O156 were analyzed during the observation period. The potential risk of the isolates inducing disease in humans was assessed.  相似文献   

4.
5.
Soils are typically considered to be suboptimal environments for enteric organisms, but there is increasing evidence that Escherichia coli populations can become resident in soil under favorable conditions. Previous work reported the growth of autochthonous E. coli in a maritime temperate Luvic Stagnosol soil, and this study aimed to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached from the soil. Molecular analysis (16S rRNA sequencing, enterobacterial repetitive intergenic consensus PCR, pulsed-field gel electrophoresis, and a multiplex PCR method) established the genetic diversity of the isolates (n = 7), while physiological methods determined the metabolic capability and environmental fitness of the isolates, relative to those of laboratory strains, under the conditions tested. Genotypic analysis indicated that the leached isolates do not form a single genetic grouping but that multiple genotypic groups are capable of surviving and proliferating in this environment. In physiological studies, environmental isolates grew well across a broad range of temperatures and media, in comparison with the growth of laboratory strains. These findings suggest that certain E. coli strains may have the ability to colonize and adapt to soil conditions. The resulting lack of fecal specificity has implications for the use of E. coli as an indicator of fecal pollution in the environment.Escherichia coli is a well-established indicator of fecal contamination in the environment. The organism''s validity as an indicator of water pollution is dependent, among other factors, on its fecal specificity and its inability to multiply outside the primary host, the gastrointestinal tracts of humans and warm-blooded animals (9). While many pathogens and indicator organisms are considered to be poorly adapted for long-term survival, or proliferation, outside their primary hosts (24), there is increasing evidence that this view needs to be reconsidered with respect to E. coli (17, 38). In particular, questions remain about its fate and survival capacity in environmental matrices, such as soil. While the habitat within the primary host is characterized by constant warm temperature conditions and a ready availability of nutrients and carbon, that of soil is often characterized by oligotrophic and highly dynamic conditions, temperature and pH variation, predatory populations, and competition with environmentally adapted indigenous microflora (39). Soils are thus typically considered to be suboptimal environments for enteric organisms, and growth is thought to be negligible, with die-off of organisms at rates reported to be a function of the interaction of numerous factors, including the type and physiological state of the microorganism, the physical, chemical, and biological properties of the soil, atmospheric conditions (including sunlight, moisture, and temperature), and organism application method (10).In recent years, the growth of E. coli in soils, sediments, and water in tropical and subtropical regions has been widely documented, and the organism is considered to be an established part of the soil biota within these regions (4, 5, 7, 12, 14, 19, 25, 32). The integration of E. coli as a component of the indigenous microflora in soils of tropical and subtropical regions may be attributable to the nutrient-rich nature and warm temperatures of these habitats (21, 39), combined with the metabolic versatility of the organism and its simple nutritional requirements (21). In addition to tropical and subtropical regions, the presence of autochthonous E. coli populations in the cooler soils of temperate and northern temperate regions has also been reported (6, 20, 22, 37), with one report on an alpine soil (34) and, most recently, a report on a maritime temperate grassland soil (3). The growth of E. coli within soils can act as a reservoir for the further contamination of bodies of water (20, 31, 32), compromising the indicator status of E. coli within these regions. As such, an understanding of the ecological characteristics of E. coli in soil is critical to its validation as an indicator organism. With respect to the input of pathogenic E. coli into the environment, this knowledge becomes essential for assessing the potential health risk to human and animal hosts from agricultural activities such as landspreading of manures and slurries (24).It has been suggested that E. coli can sustain autochthonous populations within soils in temperate regions, wherever favorable conditions exist (21). The phenotypic traits of the organism (including its metabolic diversity and its ability to grow both aerobically and anaerobically in a broad temperature range) may assist the persistence, colonization, and growth of E. coli when conditions permit. The challenging nature of the soil environment and the disparity of conditions between the primary host and the secondary habitat raises the question of how these E. coli populations survive and compete for niche space among the highly competitive and diverse coexisting populations of the indigenous microflora (15, 21). There is some evidence that naturalized E. coli may form genetically distinct populations in the environment (17, 20, 34, 36). This suggests that autochthonous E. coli populations in soil may have increased environmental fitness, facilitating their residence in soil (20, 34, 38). Little is known, however, of the physiology of these organisms, and their capacity for survival in soil remains poorly understood (21).Previous work (3) recorded continuous low-level leaching of viable E. coli from lysimeters of a poorly drained Luvic Stagnosol soil type, more than 9 years after the last application of fecal material. This finding was indicative of the growth of E. coli within the soil and suggested the presence of autochthonous E. coli populations within the soil that could be leached subsequently. To our knowledge, prior to this report, naturalized autochthonous E. coli populations persisting under the relatively oligotrophic, low-temperature conditions of maritime temperate soil environments had not been described previously. Growth within this soil was attributed chiefly to favorable characteristics of the soil, which include high clay and moisture contents, nutrient retention, and the presence of anaerobic zones. The objective of this work was to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached. In particular, we were interested in determining if the isolates possessed phenotypic characteristics that may enhance their capacity to survive and occupy niche space within the soil. This study tested the hypothesis that E. coli clones persisting in lysimeters of this soil form a genetically distinct grouping and possess a physiology tailored to the soil environment.  相似文献   

6.
7.
DNA sequence-based molecular subtyping methods such as multilocus sequence typing (MLST) are commonly used to generate phylogenetic inferences for monomorphic pathogens. The development of an effective MLST scheme for subtyping Escherichia coli O157:H7 has been hindered in the past due to the lack of sequence variation found within analyzed housekeeping and virulence genes. A recent study suggested that rhs genes are under strong positive selection pressure, and therefore in this study we analyzed these genes within a diverse collection of E. coli O157:H7 strains for sequence variability. Eighteen O157:H7 strains from lineages I and II and 15 O157:H7 strains from eight clades were included. Examination of these rhs genes revealed 44 polymorphic loci (PL) and 10 sequence types (STs) among the 18 lineage strains and 280 PL and 12 STs among the 15 clade strains. Phylogenetic analysis using rhs genes generally grouped strains according to their known lineage and clade classifications. These findings also suggested that O157:H7 strains from clades 6 and 8 fall into lineage I/II and that strains of clades 1, 2, 3, and 4 fall into lineage I. Additionally, unique markers were found in rhsA and rhsJ that might be used to define clade 8 and clade 6. Therefore, rhs genes may be useful markers for phylogenetic analysis of E. coli O157:H7.Escherichia coli O157:H7 was first described in 1983 as the causative agent of a food-borne outbreak attributed to contaminated ground beef patties (35), and it has subsequently emerged as a very important food-borne pathogen. Diseases caused by E. coli O157:H7, such as hemorrhagic colitis and hemolytic uremic syndrome, can be very severe or even life-threatening. Cattle are believed to be the main reservoir for E. coli O157:H7 (5, 15, 41), although other animals may also carry this organism (6, 21). Outbreaks are commonly associated with the consumption of beef and fresh produce that come into contact with bovine feces or feces-contaminated environments, such as food contact surfaces, animal hides, or irrigation water (12, 21, 30, 38).It is well-established that strains of E. coli O157:H7 vary in terms of virulence and transmissibility to humans and that strains differing in these characteristics can be distinguished using DNA-based methods (22, 29, 42). For example, octamer-based genome scanning, which is a PCR approach using 8-bp primers, provided the first evidence that there are at least two lineages of O157:H7, termed lineage I and lineage II (22). Strains classified as lineage I are more frequently isolated from humans than are lineage II strains (42). A later refinement of this classification system was coined the lineage-specific polymorphism assay (LSPA), which classified strains based upon the amplicon size obtained using PCRs targeting six chromosomal regions of E. coli O157:H7 and assigned a six-digit code based upon the pattern obtained (42). Most strains of lineage I grouped into LSPA type 111111, while the majority of lineage II strains fell into LSPA types 211111, 212111, and 222222. More recently, it was suggested that LSPA type 211111 strains comprise a separate group called lineage I/II (45).To gain greater insight into the recent evolution of E. coli O157:H7, a method that is more discriminatory than the LSPA method is desirable. Multilocus sequence typing (MLST) is a method that discriminates between strains of a bacterial species by identifying DNA sequence differences in six to eight targeted genes. Satisfactory MLST schemes exist for other bacterial pathogens (28, 43); however, due to the lack of sequence variations in previously targeted gene markers in E. coli O157:H7 (13, 33), MLST approaches for subtyping this pathogen have been more difficult to develop. More recently, high-throughput microarray and sequencing platforms have been used to identify hundreds of single nucleotide polymorphisms (SNPs) that are useful for discriminating between strains of E. coli O157:H7 during epidemiologic investigations and for drawing phylogenetic inferences (11, 20, 29, 44). Particularly noteworthy, Manning et al. (29) developed a subtyping scheme based upon the interrogation of 32 putative SNP loci. This method separated 528 strains into 39 distinct SNP genotypes, which were grouped into nine statistically supported phylogenetic groups called clade 1 through clade 9. By analyzing the rates of hemolytic uremic syndrome observed in patients infected with strains of clades 2, 7, and 8, it was also concluded that clade 8 strains are more virulent to humans than other strains (29).One drawback of current DNA sequence-based subtyping schemes for E. coli O157:H7 is that they require screening of at least 32 SNP loci. We were interested in asking whether a simpler approach that targets a few informative gene markers could be developed for rapid strain discrimination and phylogenetic determination. A recent analysis of E. coli genomes predicted that rearrangement hot spot (rhs) genes are under the strongest positive selection of all coding sequences analyzed (34). Therefore, we hypothesized that these genes would display significant sequence variations for subtyping O157:H7 strains. The rhs genes were first discovered as elements mediating tandem duplication of the glyS locus in E. coli K-12 (26); however, their function remains unknown. There are nine rhs genes within the genome of the prototypical E. coli O157:H7 strain Sakai, and these genes are designated rhsA, -C, -D, -E, -F, -G, -I, -J, and -K (see Table S1 in the supplemental material) (16). Three of these nine rhs genes, rhsF, -J, and -K, were previously studied by Zhang et al. (44), and a number of SNPs were identified among these genes. However, no studies have been conducted to comprehensively investigate rhs genes as markers in an MLST scheme for subtyping E. coli O157:H7.The primary purpose of the present study was to investigate whether there are sufficient DNA sequence variations among rhs genes to develop an MLST approach for subtyping E. coli O157:H7. In this study, a greater level of DNA sequence variation was observed among rhs genes than in gene markers targeted in previous studies (13, 33). Furthermore, phylogenetic analysis using these rhs genes generally agreed with the established lineage and clade classifications of O157:H7 strains defined previously. We also wanted to determine whether there is a correlation between the lineage classification of O157:H7 strains (42) and the recently proposed clade classification (29). The present study reports evidence that O157:H7 strains from clade 8 are classified as lineage I/II, which is a different lineage from well-studied E. coli O157:H7 outbreak strains, such as EDL933 and Sakai. Therefore, we suggest that outbreaks of O157:H7 are caused by two lineages of this pathogen, lineage I and lineage I/II.  相似文献   

8.
To discern the possible spread of the Escherichia coli O25b:H4-ST131 clonal group in poultry and the zoonotic potential of avian strains, we made a retrospective search of our strain collection and compared the findings for those strains with the findings for current strains. Thus, we have characterized a collection of 19 avian O25b:H4-ST131 E. coli strains isolated from 1995 to 2010 which, interestingly, harbored the ibeA gene. Using this virulence gene as a criterion for selection, we compared those 19 avian strains with 33 human O25b:H4-ST131 ibeA-positive E. coli strains obtained from patients with extraintestinal infections (1993 to 2009). All 52 O25b:H4-ST131 ibeA-positive E. coli strains shared the fimH, kpsMII, malX, and usp genes but showed statistically significant differences in nine virulence factors, namely, papGIII, cdtB, sat, and kpsMII K5, which were associated with human strains, and iroN, kpsMII K1, cvaC, iss, and tsh, which were associated with strains of avian origin. The XbaI macrorestriction profiles of the 52 E. coli O25b:H4-ST131 ibeA-positive strains revealed 11 clusters (clusters I to XI) of >85% similarity, with four clusters including strains of human and avian origin. Cluster VII (90.9% similarity) grouped 10 strains (7 avian and 3 human strains) that mostly produced CTX-M-9 and that also shared the same virulence profile. Finally, we compared the macrorestriction profiles of the 12 CTX-M-9-producing O25b:H4-ST131 ibeA strains (7 avian and 5 human strains) identified among the 52 strains with those of 15 human O25b:H4-ST131 CTX-M-14-, CTX-M-15-, and CTX-M-32-producing strains that proved to be negative for ibeA and showed that they clearly differed in the level of similarity from the CTX-M-9-producing strains. In conclusion, E. coli clonal group O25b:H4-ST131 ibeA has recently emerged among avian isolates with the new acquisition of the K1 capsule antigen and includes CTX-M-9-producing strains. This clonal group represents a real zoonotic risk that has crossed the barrier between human and avian hosts.Strains of the extensively antimicrobial-resistant Escherichia coli clonal group of sequence type (ST) 131 (ST131) belonging to serotype O25b:H4 have recently been recognized to be important human pathogens worldwide (9, 33). Although it is commonly associated with the dissemination of CTX-M-15 extended-spectrum cephalosporin resistance, E. coli O25b:H4-ST131 also occurs as a fluoroquinolone (FQ)-resistant but cephalosporin-susceptible pathogen (5, 22, 26, 27). Currently, it is assumed that O25b:H4-ST131 strains circulate not only among humans but also among animal hosts (13, 21, 37), which would contribute to the ongoing global emergence of O25b:H4-ST131, in the case of regular transmission between animals and humans. Even though CTX-M-15 is the most widely distributed extended-spectrum beta-lactamase (ESBL) linked to this clonal group, other, different variants of CTX-M have recently been reported, such as CTX-M-9, CTX-M-14, and CTX-M-32 (4, 34, 36, 39). Noteworthy was the detection, for the first time on poultry farms, of this clonal group producing CTX-M-9 that had macrorestriction profiles and virulence genes very similar to those observed in clinical human isolates (10).Extraintestinal pathogenic E. coli (ExPEC) strains, which include avian pathogenic E. coli (APEC) and human uropathogenic E. coli (UPEC), septicemic E. coli, and newborn meningitis-causing E. coli (NMEC) strains, exhibit considerable genome diversity and have a wide range of virulence-associated factors (12, 18). While infections caused by APEC strains initially start as a respiratory tract disease which evolves to a systemic infection of the internal organs and, finally, to sepsis, the most frequent origin of human sepsis is urinary tract infection (UTI), especially pyelonephritis (2, 3, 11). However, APEC strains have been recognized to share common traits with human isolates (29, 30, 31), including the K1 capsule antigen (23, 24, 29) and the ibeA gene (14). In addition, retail chicken products have been found to carry nalidixic-resistant ExPEC strains (17, 19), and although it is drug susceptible, an E. coli strain belonging to the O25b:H4-ST131 clonal group has even recently been detected in retail chicken (41), supporting the urgent necessity for the implementation of food control measures.The aim of the present study was to discern the possible spread of the O25b:H4-ST131 clonal group, especially CTX-M-9-producing strains, in poultry and the zoonotic potential of avian isolates. For this purpose, we made a retrospective search of our human and avian strain collections and compared the findings for those strains with the findings for current strains. Identification of this emerging clone among avian sources and comparison of the clone with clinical human isolates will shed new light on the epidemiology of the O25b:H4-ST131 clonal group.  相似文献   

9.
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.Enteropathogenic Escherichia coli (EPEC) strains are among the major causes of infantile diarrhea in developing countries (71) and can be classified as typical and atypical, depending on the presence or absence of the E. coli adherence factor plasmid (pEAF), respectively (39).The pathogenesis of EPEC resides in the ability to cause the attaching and effacing (A/E) lesion in the gut mucosa of human or animal hosts, leading to diarrheal illness (40). The genes responsible for the A/E lesion formation are located in a chromosomal pathogenicity island of ∼35 kb, known as the locus of enterocyte effacement (LEE) (23, 47). LEE encodes an adhesin called intimin (38), its translocated receptor (Tir) (42), components of a type III secretion system (36), and effector molecules, named E. coli-secreted proteins (Esp proteins) (41). These virulence factors have a crucial role in A/E lesion formation, and their detection in EPEC strains is an indicator of their potential to produce these lesions (19, 56).Atypical EPEC strains have been associated with diarrhea outbreaks in developed countries (31, 73, 77) and with sporadic cases of diarrhea in developing and developed countries (1, 12, 26, 52, 55). At present, the prevalence of atypical EPEC is higher than that of typical EPEC in several countries (1, 12, 26, 52, 55, 65).Different from the situation in developed countries, where atypical EPEC outbreaks and sporadic infections are associated with children and adults, atypical EPEC infection in Brazil is mainly associated with children''s illnesses (32, 71).Typical EPEC strains are rarely isolated from animals, and humans are the major natural reservoir for these pathogens (14, 32, 53, 71). In contrast, atypical EPEC strains are present in both healthy and diseased animals (dog, monkey, cats, and bovines) and humans (4, 6, 18, 28, 71). Some studies have associated pets and farm and wild animals as reservoirs and infection sources of atypical EPEC strains for humans (32). However, these studies did not compare atypical EPEC strains isolated from humans and animals by gold-standard molecular methods like multilocus sequence typing (MLST) or pulsed-field gel electrophoresis (PFGE) (15, 35, 43, 53). For this reason, there are some doubts about whether atypical EPEC strains isolated from animals represent risks for human health and whether animals really play the role of reservoirs of atypical EPEC.The aim of this study was to compare atypical EPEC strains isolated from humans and different animals, including pets (cats and dogs), farm animals (bovines, ovines, and rabbits), and wild animals (monkeys), by molecular phylogenetic techniques to verify the role of animals as reservoirs of and sources of infection with atypical EPEC in humans.  相似文献   

10.
We describe a modification of the most probable number (MPN) method for rapid enumeration of antimicrobial-resistant Escherichia coli bacteria in aqueous environmental samples. E. coli (total and antimicrobial-resistant) bacteria were enumerated in effluent samples from a hospital (n = 17) and municipal sewers upstream (n = 5) and downstream (n = 5) from the hospital, effluent samples from throughout the treatment process (n = 4), and treated effluent samples (n = 13). Effluent downstream from the hospital contained a higher proportion of antimicrobial-resistant E. coli than that upstream from the hospital. Wastewater treatment reduced the numbers of E. coli bacteria (total and antimicrobial resistant); however, antimicrobial-resistant E. coli was not eliminated, and E. coli resistant to cefotaxime (including extended-spectrum beta-lactamase [ESBL] producers), ciprofloxacin, and cefoxitin was present in treated effluent samples.The emergence and dissemination of antimicrobial resistance are well established as clinical problems that affect human and animal health. Escherichia coli is an important element of the flora of the human and animal intestine and a significant pathogen associated with gastrointestinal infection, urinary tract infections, and a variety of other extraintestinal infections (4). E. coli shed into the environment can survive for significant periods (7, 14, 23). Detection of E. coli in water and food is widely used as a microbiological indication of fecal contamination.Data on the significance of environmental contamination with antimicrobial-resistant E. coli for human health are limited. Previous reports have shown that antimicrobial-resistant strains of bacteria are present in various effluents, such as hospital effluent discharge (8, 10, 16, 21), inflow effluent to a wastewater treatment plant (WWTP) (15), and outflow-treated effluent from a wastewater treatment plant (2, 12, 13, 18, 27). A wastewater treatment plant treating effluent from hospitals may be associated with discharge of relatively high levels of antimicrobial-resistant E. coli compared with those of a plant treating municipal effluent that does not include hospital effluent discharge (22). There are few reports of quantitative data on antimicrobial-resistant E. coli bacteria in effluent, reflecting the lack of a convenient method for their enumeration (12, 15, 22). Previous methods available for the detection of antimicrobial-resistant E. coli in a water sample have generally involved the isolation of E. coli and the selection of some isolates for susceptibility testing. In such cases, the proportions of antimicrobial-resistant organisms are based only on those isolates selected and are therefore not representative of the entire population. By adding the antimicrobial agent of interest to the water sample before testing, we have adapted a commercial most probable number (MPN) method (the Colilert system) for enumerating the total number of E. coli isolates resistant to that agent in a sample.  相似文献   

11.
The diversity of the Escherichia coli species is in part due to the large number of mobile genetic elements that are exchanged between strains. We report here the identification of a new integrative and conjugative element (ICE) of the pKLC102/PAGI-2 family located downstream of the tRNA gene pheU in the E. coli strain BEN374. Indeed, this new region, which we called ICEEc2, can be transferred by conjugation from strain BEN374 to the E. coli strain C600. We were also able to transfer this region into a Salmonella enterica serovar Typhimurium strain and into a Yersinia pseudotuberculosis strain. This transfer was then followed by the integration of ICEEc2 into the host chromosome downstream of a phe tRNA gene. Our data indicated that this transfer involved a set of three genes encoding DNA mobility enzymes and a type IV pilus encoded by genes present on ICEEc2. Given the wide distribution of members of this family, these mobile genetic elements are likely to play an important role in the diversification of bacteria.The fantastic diversity of the Escherichia coli species has been known for a long time. With modern sequencing strategies, the molecular bases of this diversity are now being unraveled (49). Analyzing the genome of 20 E. coli strains, Touchon et al. recently showed that only a minority of genes, approximately 1,900 genes, were shared by all E. coli strains and constituted the core genome of the E. coli species (50). Additionally, the total number of genes found in all E. coli strains, the pan-genome, is an order of magnitude larger than this core genome (50). The non-core genome of a strain, also called flexible gene pool, is therefore made of a wide diversity of genes. This genetic diversity of the E. coli species translates into a diversity of phenotypic properties. While most E. coli strains are commensal of the gastrointestinal tract of humans and warm-blooded animals, a significant number are responsible for different diseases in humans and animals (22), including extraintestinal infections in chickens; strains isolated from such cases are designated by the term APEC for avian pathogenic E. coli (10).This diversity arises from frequent horizontal gene transfers of mobile genetic elements such as transposons, plasmids, phages, genomic islands, or integrative and conjugative elements (ICEs) (11, 21, 34). Among these mobile genetic elements, ICEs have a particular place as they share properties with both plasmids, genomic islands, and transposons; they can be defined as elements that encode all the necessary machineries that allow their excision from the chromosome, their transfer to a recipient strain, and their integration into the recipient strain''s genome (5, 6, 46, 54). Well-known representatives of this class of genetic elements include Tn916 discovered in Enterococcus faecalis, the conjugative transposon CTnDOT in Bacteroides thetaiotaomicron, ICEKp1 in Klebsiella pneumoniae, SXT/R391-related elements, PFGI-1 in Pseudomonas fluorescens, and the clc element in Pseudomonas sp. strain B13 as well as ICEBs1 in Bacillus subtilis and ICEEc1 in the E. coli strain ECOR31 (1, 39, 44, 46, 54). Typically, ICEs contain at least three modules that are required for key steps in the ICE''s life cycle: an excision/integration module, a transfer module, and a regulation module (54). Besides these, ICEs often contain cargo regions that confer on their host a diverse array of properties, such as virulence properties (ICEEc1), antibiotic resistance (SXT), or degradation of chemical compounds (clc). Because of their self-transfer abilities and their diverse accessory gene repertoires, ICEs are very likely to play a major role in bacteria evolution (46).A new family of ICEs has recently gained interest and was named the pKLC102/PAGI-2 family. The first element of this family, the clc element, was discovered in Pseudomonas sp. strain B13 and confers on the bacteria the possibility to degrade aromatic compounds (42). The transfer of this element was discovered long before its complete sequence was characterized (16). Other members of this family include several elements present in Pseudomonas strains such as PAGI-1 and PAGI-2 as well as the pKLC102 element first considered to be a plasmid but later on shown to be an ICE because of its ability to integrate into the chromosome of its host (23, 52). pKLC102/PAGI-2 elements share a set of core genes (33) and, like most ICEs and genomic islands, are all integrated downstream of tRNA genes (26, 52). The transfer between strains has been demonstrated, albeit with different frequencies, for only a few members, such as the clc element, Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1), and ICEHin1056 from Haemophilus influenzae (20, 37, 41); this transfer involves the type IV pilus (20), the integrase (40), and in some cases the formation of a circular intermediate of the excised ICE (24).In order to identify new accessory genes of APEC strains, we previously described tRNA loci in the E. coli genome that could represent potential insertion sites for new genomic islands (18). We had already used this strategy to characterize the AGI-3 region that is involved in the virulence of an avian pathogenic E. coli strain and that confers the ability to grow on fructooligosaccharides (7, 43). During this tRNA screening, we showed that genomic islands might potentially be present downstream of the tRNA genes argW, leuX, pheU, pheV, selC, serU, and thrW in several APEC strains.In this report, we describe the identification of a new genomic island located downstream of pheU in the APEC strain BEN374. This region, which we named ICEEc2, was fully sequenced, and its properties were analyzed in detail; ICEEc2 is a new ICE found in E. coli and belongs to the pKLC102/PAGI-2 family described above.  相似文献   

12.
The study of phylogenetic groups and pathogenicity island (PAI) markers in commensal Escherichia coli strains from asymptomatic Chinese people showed that group A strains are the most common and that nearly half of all fecal strains which were randomly selected harbor PAIs.Escherichia coli is a well-diversified commensal species in the intestine of healthy humans but also includes intestinal or extraintestinal pathogens. It has been reported that pathogenic E. coli may be derived from fecal strains by acquisition of virulence determinants (11). The relationship between the E. coli genetic background and the acquisition of virulence factors is now better understood (1, 5). Extraintestinal E. coli strains may harbor several virulence factors, such as adhesins, fimbriae, and hemolysin, which can contribute to bacterial pathogenesis. These traits are usually encoded on pathogenicity islands (PAIs), which have been studied in pathogenic E. coli previously (15). The E. coli population includes 4 major phylogroups (A, B1, B2, and D) (2). Pathogenic strains belong mainly to groups B2 and D, while most fecal isolates belong to groups A and B1. Strains of groups B2 and D often carry virulence factors that are lacking in group A and B1 strains (3, 9, 13).In this study, we examined the distribution of phylogroups and the prevalence of PAIs in commensal E. coli strains isolated from asymptomatic persons in one region of China.  相似文献   

13.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

14.
Enterotoxigenic Escherichia coli (ETEC) is the leading bacterial cause of diarrhea in the developing world, as well as the most common cause of traveler''s diarrhea. The main hallmarks of this type of bacteria are the expression of one or more enterotoxins and fimbriae used for attachment to host intestinal cells. Longus is a pilus produced by ETEC. These bacteria grown in pleuropneumonia-like organism (PPLO) broth at 37°C and in 5% CO2 produced longus, showing that the assembly and expression of the pili depend on growth conditions and composition of the medium. To explore the role of longus in the adherence to epithelial cells, quantitative and qualitative analyses were done, and similar levels of adherence were observed, with values of 111.44 × 104 CFU/ml in HT-29, 101.33 × 104 CFU/ml in Caco-2, and 107.11 × 104 CFU/ml in T84 cells. In addition, the E9034AΔlngA strain showed a significant reduction in longus adherence of 32% in HT-29, 22.28% in Caco-2, and 21.68% in T84 cells compared to the wild-type strain. In experiments performed with nonintestinal cells (HeLa and HEp-2 cells), significant differences were not observed in adherence between E9034A and derivative strains. Interestingly, the E9034A and E9034AΔlngA(pLngA) strains were 30 to 35% more adherent in intestinal cells than in nonintestinal cells. Twitching motility experiments were performed, showing that ETEC strains E9034A and E9034AΔlngA(pLngA) had the capacity to form spreading zones while ETEC E9034AΔlngA does not. In addition, our data suggest that longus from ETEC participates in the colonization of human colonic cells.Enterotoxigenic Escherichia coli (ETEC) is an important cause of infant diarrhea in developing countries, a leading cause of traveler''s diarrhea, and a reemergent diarrheal pathogen in the United States (1, 25, 29, 33, 38, 40, 41, 44, 51, 52, 55). ETEC strains were first recognized as a cause of diarrheal disease in animals, especially in piglets and calves, where the disease continues to cause lethal infection in newborn animals (3, 37). Studies of ETEC in piglets first elucidated the mechanisms of disease, including the presence of two plasmid-encoded enterotoxins. In humans, the clinical appearance of ETEC infection is identical to that of cholera, with severe dehydrating illness not commonly seen in adults (38, 46). DuPont et al. (12) subsequently showed that ETEC strains were able to cause diarrhea in adult volunteers. ETEC strains cause watery diarrhea similar to that caused by Vibrio cholerae through the action of two enterotoxins, the cholera-like heat-labile and heat-stable enterotoxins (LT and ST, respectively) (38). These strains may express an LT only, an ST only, or both LT and ST. To cause diarrhea, ETEC strains must first adhere to small bowel enterocytes, an event mediated by a variety of surface fimbrial appendages called colonization factor antigens (CFAs), coli surface antigens (CSs), and putative colonization factors (PCF) (22, 33, 38). Transmission electron microscopy (TEM) of ETEC strains typically reveals many peritrichously arranged fimbriae around the bacterium; often, multiple fimbrial morphologies can be visualized on the same bacterium (6, 19, 31, 38). ETEC strains also express the K99 fimbriae, which are pathogenic for calves, lambs, and pigs, whereas K88-expressing organisms are able to cause disease only in pigs (8). Human ETEC strains possess their own array of colonization fimbriae, the CFAs usually encoded in plasmids (10). Currently, more than 20 CFAs known in human ETEC infections have been described (17). The CFAs can be subdivided based on their morphological characteristics. Three major morphological varieties exist: rigid rods (CFA I), bundle-forming flexible rods (CFA III), and thin, flexible, wiry structures (CFA II and CFA IV) (7, 8, 26, 30, 49, 53, 54).A high proportion of human ETEC strains contain a plasmid-encoded type IV pilus (T4P) antigen (CS20) also called longus for its length (19, 21). Longus is a T4P composed of a repeating structural subunit called LngA of 22 kDa, and its N-terminal amino acid sequences shares similarities with the class B type IV pili. These pili include the CFA III pilin subunit CofA of ETEC, the toxin-coregulated pilin (TCP) of V. cholerae, and the bundle-forming pilin (BFP) found in enteropathogenic E. coli (EPEC) and in a small percentage in other Gram-negative pathogens (21, 23). The lngA gene, which encodes the longus pilus in ETEC strains, is widely distributed in different geographic regions such Bangladesh, Chile, Brazil, Egypt, and Mexico (23). Interestingly, the lngA gene has been observed in association with ETEC strain producers of LT and ST (23). Sequence analysis of the fimbrial genes provided insight into the evolutionary history of longus. It appears that the highly conserved nonstructural lngA genes evolved in a similar manner to that of housekeeping genes.Recently, another important adherence factor called E. coli common pilus (ECP) has been identified; it is composed of a 21-kDa pilin subunit whose amino acid sequence corresponds to the product of the yagZ (renamed ecpA) gene present in all E. coli genomes sequenced to date (47). ECP production was demonstrated in strains representing intestinal (enterohemorrhagic E. coli [EHEC], EPEC, and ETEC) and extraintestinal pathogenic E. coli as well as normal-flora E. coli.In this study we report that longus plays an important role in the adherence to colonic epithelial cells. In addition to mediating cell adherence, longus is also associated with other pathogenicity attributes exhibited by other Gram-negative pathogenic bacteria producing T4P, which can contribute in part to the virulence of ETEC.  相似文献   

15.
16.
17.
18.
19.
Enteroaggregative Escherichia coli (EAEC) is an important cause of acute and persistent diarrhea. The defining stacked brick adherence pattern of Peruvian EAEC isolate 042 has previously been attributed to aggregative adherence fimbriae II (AAF/II), which confer aggregative adherence on laboratory E. coli strains. EAEC strains also show exceptional autoaggregation and biofilm formation, other phenotypes that have hitherto been ascribed to AAF/II. We report that EAEC 042 carries the heat-resistant agglutinin (hra1) gene, also known as hek, which encodes an outer membrane protein. Like AAF/II, the cloned EAEC 042 hra1 gene product is sufficient to confer autoaggregation, biofilm formation, and aggregative adherence on nonadherent and nonpathogenic laboratory E. coli strains. However, an 042 hra1 deletion mutant is not deficient in these phenotypes compared to the wild type. EAEC strain 042 produces a classic honeycomb or stacked brick pattern of adherence to epithelial cells. Unlike wild-type 042, the hra1 mutant typically does not form a tidy stacked brick pattern on HEp-2 cells in culture, which is definitive for EAEC. Moreover, the hra1 mutant is significantly impaired in the Caenorhabditis elegans slow kill colonization model. Our data suggest that the exceptional colonization of strain 042 is due to multiple factors and that Hra1 is an accessory EAEC colonization factor.Enteroaggregative Escherichia coli (EAEC) was originally identified as the etiologic agent of persistent diarrhea in developing countries but is gaining increasing prominence for its role in a wider spectrum of diarrheal syndromes. EAEC strains have been implicated in acute as well as persistent diarrhea among adults and children (reviewed in references 25 and 40). A recent meta-analysis found that EAEC is significantly associated with disease in every group at high risk for diarrhea, including young children, human immunodeficiency virus-positive individuals, and visitors to developing countries (24). In addition to its association with disease in epidemiological studies in developing countries, EAEC has also been identified as a principal cause of diarrheal disease in Germany, the United Kingdom, and the United States (11, 26, 51).Aggregative adherence is the defining characteristic of EAEC (38). EAEC strains adhere to the intestinal epithelium, and to epithelial cells in culture, in a characteristic two-dimensional “stacked brick” fashion. The pattern features bacteria adhering to the eukaryotic surface, other bacteria, and the solid substratum. Four types of fimbriae have so far been documented as conferring aggregative adherence (4, 14, 17, 37). Two noncontiguous plasmid loci containing the complete complement of genes encoding aggregative adherence fimbriae I (AAF/I) or AAF/II are sufficient to confer aggregative adherence on nonadherent E. coli (14, 49). The plasmid bearing type IV pili found in Serbian EAEC outbreak strain C1096 are also sufficient to confer a weak aggregative adherence phenotype on E. coli K-12 (17). AAF additionally play an essential role in production of a superfluous EAEC-associated biofilm, which could account for the association of these strains with persistent diarrhea in epidemiological studies (46).Some categories of diarrheagenic pathogens have a conserved set of adhesins which allow them to overcome flushing across the intestinal epithelium. Typical enteropathogenic E. coli isolates, for example, all possess bundle-forming pili and the outer membrane adhesin intimin, whereas atypical enteropathogenic E. coli isolates possess intimin but not bundle-forming pili (reviewed in reference 10). EAEC strains, by contrast, are considerably heterogeneous. While many EAEC strains carry genes encoding one of the known aggregative adherence fimbriae, some EAEC do not harbor any known AAF even though they do demonstrate aggregative adherence (4, 7, 13, 14). This, and the presence of multiple adhesins in most mucosal colonizers (53), points to the likelihood of other EAEC adhesins. Imuta et al. recently implicated a TolC secreted factor in adherence (27), and Montiero-Neto et al. (33) described a 58-kDa nonstructural adhesin in O111:H12 EAEC. However, the former factor is only a contributor to aggregative adherence and the latter adhesin is not found in other EAEC. Overall, nonstructural EAEC adhesins have received little attention.The outer membrane protein Tia was originally characterized as an invasin and later shown to confer adhesive properties on enterotoxigenic E. coli (ETEC) (20, 21). Fleckenstein et al. (21) observed that a tia gene probe hybridized to DNA from non-ETEC strains, one of which was EAEC strain 042. As the Southern blot data published by Fleckenstein et al. showed bands of different intensities, as well as size, between ETEC strain H10407, which carries tia, and EAEC strain 042, we hypothesized that the probe was recognizing a similar, rather than identical, gene (21).We have determined that EAEC strain 042 harbors a gene encoding the heat-resistant agglutinin 1 (hra1), a hemagglutinin originally reported from an O9:H10:K99 porcine ETEC strain. Hra1 has also been reported from uropathogenic E. coli strains and neonatal meningitis E. coli strain RS218, in which context it is otherwise known as Hek (19, 48). (The hek nomenclature was introduced after hra1, to delineate the form of the gene found in invasive human pathogens from that of a porcine isolate [19].) A role for the outer membrane protein Hra1/Hek in adherence by neonatal meningitis E. coli has recently been defined (19).Although hra1/hek has been reported from multiple pathogens, its role in colonization and virulence has only been conclusively studied in the neonatal meningitis E. coli strain RS218 (19). In this paper, we demonstrate that the EAEC hra1 gene is sufficient to confer colonization-associated phenotypes, including aggregative adherence and biofilm formation, on laboratory E. coli strains. Intriguingly, we find that although it confers these phenotypes on K-12 and is expressed in 042, hra1 is not required for in vitro colonization-associated phenotypes demonstrated by 042. The hra1 gene is, however, essential for the formation of a true stacked brick pattern in EAEC and for optimal in vivo colonization in a Caenorhabditis elegans model.  相似文献   

20.
FimH, the adhesive subunit of type 1 fimbriae expressed by many enterobacteria, mediates mannose-sensitive binding to target host cells. At the same time, fine receptor-structural specificities of FimH from different species can be substantially different, affecting bacterial tissue tropism and, as a result, the role of the particular fimbriae in pathogenesis. In this study, we compared functional properties of the FimH proteins from Escherichia coli and Klebsiella pneumoniae, which are both 279 amino acids in length but differ by some ∼15% of residues. We show that K. pneumoniae FimH is unable to mediate adhesion in a monomannose-specific manner via terminally exposed Manα(1-2) residues in N-linked oligosaccharides, which are the structural basis of the tropism of E. coli FimH for uroepithelial cells. However, K. pneumoniae FimH can bind to the terminally exposed Manα(1-3)Manβ(1-4)GlcNAcβ1 trisaccharide, though only in a shear-dependent manner, wherein the binding is marginal at low shear force but enhanced sevenfold under increased shear. A single mutation in the K. pneumoniae FimH, S62A, converts the mode of binding from shear dependent to shear independent. This mutation has occurred naturally in the course of endemic circulation of a nosocomial uropathogenic clone and is identical to a pathogenicity-adaptive mutation found in highly virulent uropathogenic strains of E. coli, in which it also eliminates the dependence of E. coli binding on shear. The shear-dependent binding properties of the K. pneumoniae and E. coli FimH proteins are mediated via an allosteric catch bond mechanism. Thus, despite differences in FimH structure and fine receptor specificity, the shear-dependent nature of FimH-mediated adhesion is highly conserved between bacterial species, supporting its remarkable physiological significance.The most common type of adhesive organelle in the Enterobacteriaceae is the type 1 fimbria, which has been most extensively studied in Escherichia coli. The corresponding structures of Klebsiella pneumoniae are similar to those of E. coli with regard to genetic composition and regulation (15). Type 1 fimbriae are composed primarily of the structural subunit FimA, with minor amounts of three ancillary subunits, FimF, FimG, and the mannose-specific adhesin FimH. The FimH adhesin is an allosteric protein that mediates the catch bond mechanism of adhesion where the binding is increased under increased shear stress (48).It has been demonstrated in E. coli that FimH has two domains, the mannose-binding lectin domain (from amino acid [aa] 1 through 156) and the fimbria-incorporating pilin domain (from aa 160 through 279), connected via a 3-aa-long linker chain (6). A mannose-binding site is located at the top of the lectin domain, at the opposite end from the interdomain linker (17).Several studies have demonstrated that type 1 fimbriae play an important role in E. coli urinary tract infection (UTI) (7, 21, 23, 35). In addition, in urinary E. coli isolates, the FimH adhesin accumulates amino acid replacements which increase tropism for the uroepithelium and various components of basement membranes (21, 30, 35, 37, 49). Most of the replacements increase the monomannose binding capability of FimH under low shear, by altering allosteric catch bond properties of the protein (48). The mutated FimH variants were shown to provide an advantage in colonization of the urinary tract in the mouse model (35) and correlate with the overall extraintestinal virulence of E. coli (16). Thus, FimH mutations are pathoadaptive in nature.Klebsiella pneumoniae is recognized as an important opportunistic pathogen frequently causing UTIs, septicemia, or pneumonia in immunocompromised individuals (29). It is responsible for up to 10% of all nosocomial bacterial infections (18, 41). K. pneumoniae is ubiquitous in nature, and it has been shown that environmental isolates are phenotypically indistinguishable from clinical isolates (22, 26, 27, 29, 33). Furthermore, it has been demonstrated that environmental isolates of K. pneumoniae are as virulent as clinical isolates (28, 45).K. pneumoniae possesses a number of known virulence factors, including a pronounced capsule, type 3 fimbriae, and type 1 fimbriae (29, 44). Type 1 fimbriae produced by K. pneumoniae are described as functionally and structurally similar to type 1 fimbriae from E. coli (25) and have been shown to play a significant role in K. pneumoniae UTI (32, 43).We have previously shown that mature FimH from 54 isolates of K. pneumoniae (isolated from urine, blood, liver, and the environment) is represented by seven protein variants due to point amino acid replacements. (42) When K. pneumoniae FimH was aligned with the FimH of E. coli, they showed ∼85% similarity at the amino acid level. Furthermore, a majority (14 out of 21 isolates) of the K. pneumoniae strains isolated from patients with UTI grouped into a single clonal group based on multilocus sequence typing, but fimH in one isolate in the group differed from the others by a single nucleotide mutation resulting in an amino acid change, serine to alanine, in position 62 (42). The same mutation has been found in FimH of a highly uropathogenic clone of E. coli and significantly increases the adhesin''s ability to adhere to monomannose under low or no shear (19, 39, 50).In this study, we describe the extent and pattern of structural variability of the FimH protein from K. pneumoniae and perform comparative analyses of the functional properties of FimH from both K. pneumonae and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号