首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Although Imatinib mesylate has revolutionized the treatment of chronic myeloid leukemia, some patients develop resistance with progression of leukemia. Alternative or additional targeting of signalling pathways deregulated in Bcr-Abl-driven chronic myeloid leukemia may provide a feasible option for improving clinical response and overcoming resistance.

Results

In this study, we investigate ability of CR8 isomers (R-CR8 and S-CR8) and MR4, three derivatives of the cyclin-dependent kinases (CDKs) inhibitor Roscovitine, to exert anti-leukemic activities against chronic myeloid leukemia in vitro and then, we decipher their mechanisms of action. We show that these CDKs inhibitors are potent inducers of growth arrest and apoptosis of both Imatinib-sensitive and –resistant chronic myeloid leukemia cell lines. CR8 and MR4 induce dose-dependent apoptosis through mitochondrial pathway and further caspases 8/10 and 9 activation via down-regulation of short-lived survival and anti-apoptotic factors Mcl-1, XIAP and survivin which are strongly implicated in survival of Bcr-Abl transformed cells.

Conclusions

These results suggest that CDK inhibitors may constitute a complementary approach to treat chronic myeloid leukemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0163-x) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.

Background

Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. Here we describe the identification and synthesis of specific small molecule inhibitors of bacterially expressed Leishmania CRK3:CYC6 using a high throughput screening assay and iterative chemistry. We also describe the biological activity of the molecules against Leishmania parasites.

Methodology/Principal Findings

In order to obtain an active Leishmania CRK3:CYC6 protein kinase complex, we developed a co-expression and co-purification system for Leishmania CRK3 and CYC6 proteins. This active enzyme was used in a high throughput screening (HTS) platform, utilising an IMAP fluorescence polarisation assay. We carried out two chemical library screens and identified specific inhibitors of CRK3:CYC6 that were inactive against the human cyclin-dependent kinase CDK2:CycA. Subsequently, the best inhibitors were tested against 11 other mammalian protein kinases. Twelve of the most potent hits had an azapurine core with structure activity relationship (SAR) analysis identifying the functional groups on the 2 and 9 positions as essential for CRK3:CYC6 inhibition and specificity against CDK2:CycA. Iterative chemistry allowed synthesis of a number of azapurine derivatives with one, compound 17, demonstrating anti-parasitic activity against both promastigote and amastigote forms of L. major. Following the second HTS, 11 compounds with a thiazole core (active towards CRK3:CYC6 and inactive against CDK2:CycA) were tested. Ten of these hits demonstrated anti-parasitic activity against promastigote L. major.

Conclusions/Significance

The pharmacophores identified from the high throughput screens, and the derivatives synthesised, selectively target the parasite enzyme and represent compounds for future hit-to-lead synthesis programs to develop therapeutics against Leishmania species. Challenges remain in identifying specific CDK inhibitors with both target selectivity and potency against the parasite.  相似文献   

4.

Background

Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues.

Methodology

We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis.

Conclusions

We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.  相似文献   

5.

Background

Riboflavin (RF) or vitamin B2 is known to have neuroprotective effects. In the present study, we report the attenuation of the neuroprotective effects of RF under UV-B irradiation. Preconditioning of UV-B irradiated riboflavin (UV-B-RF) showed attenuated neuroprotective effects compared to that of RF in SH-SY5Y neuroblostoma cell line and primary cortical neurons in vitro and a rat model of cerebral ischemia in vivo.

Results

Results indicated that RF pretreatment significantly inhibited cell death and reduced LDH secretion compared to that of the UV-B-RF pretreatment in primary cortical neuron cultures subjected to oxygen glucose deprivation in vitro and cortical brain tissue subjected to ischemic injury in vivo. Further mechanistic studies using cortical neuron cultures revealed that RF treatment induced increased miR-203 expression which in turn inhibited c-Jun expression and increased neuronal cell survival. Functional assays clearly demonstrated that the UV-B-RF preconditioning failed to sustain the increased expression of miR-203 and the decreased levels of c-Jun, mediating the neuroprotective effects of RF. UV-B irradiation attenuated the neuroprotective effects of RF through modulation of the miR-203/c-Jun signaling pathway.

Conclusion

Thus, the ability of UV-B to serve as a modulator of this neuroprotective signaling pathway warrants further studies into its role as a regulator of other cytoprotective/neuroprotective signaling pathways.  相似文献   

6.

Background

The prevalence of thyroid nodules increases with age, average 4–7% for the U.S.A. adult population, but it is much higher (19–67%) when sub-clinical nodules are considered. About 90% of these lesions are benign and a reliable approach to their preoperative characterization is necessary. Unfortunately conventional thyroid scintigraphy does not allow the distinction among benign and malignant thyroid proliferations but it provides only functional information (cold or hot nodules).The expression of the anti-apoptotic molecule galectin-3 is restricted to cancer cells and this feature has potential diagnostic and therapeutic implications. We show here the possibility to obtain thyroid cancer imaging in vivo by targeting galectin-3.

Methods

The galectin-3 based thyroid immuno-scintigraphy uses as radiotracer a specific 99mTc-radiolabeled mAb. A position-sensitive high-resolution mini-gamma camera was used as imaging capture device. Human galectin-3 positive thyroid cancer xenografts (ARO) and galectin-3 knockout tumors were used as targets in different experiments in vivo. 38 mice with tumor mass of about 1 gm were injected in the tail vein with 100 µCi of 99mTc-labeled mAb to galectin-3 (30 µg protein/in 100 µl saline solution). Tumor images were acquired at 1 hr, 3 hrs, 6 hrs, 9 hrs and 24 hrs post injection by using the mini-gamma camera.

Findings

Results from different consecutive experiments show an optimal visualization of thyroid cancer xenografts between 6 and 9 hours from injection of the radiotracer. Galectin-3 negative tumors were not detected at all. At 6 hrs post-injection galectin-3 expressing tumors were correctly visualized, while the whole-body activity had essentially cleared.

Conclusions

These results demonstrate the possibility to distinguish preoperatively benign from malignant thyroid nodules by using a specific galectin-3 radio-immunotargeting. In vivo imaging of thyroid cancer may allow a better selection of patients referred to surgery. The possibility to apply this method for imaging and treatment of other galectin-3 expressing tumors is also discussed.  相似文献   

7.
8.

Background

The major cell cycle control acting at the G2 to mitosis transition is triggered in all eukaryotes by cyclin-dependent kinases (CDKs). In the fission yeast Schizosaccharomyces pombe the activation of the G2/M CDK is regulated primarily by dephosphorylation of the conserved residue Tyr15 in response to the stress-nutritional response and cell geometry sensing pathways. To obtain a more complete view of the G2/M control we have screened systematically for gene deletions that advance cells prematurely into mitosis.

Results

A screen of 82% of fission yeast non-essential genes, comprising approximately 3,000 gene deletion mutants, identified 18 genes that act negatively at mitotic entry, 7 of which have not been previously described as cell cycle regulators. Eleven of the 18 genes function through the stress response and cell geometry sensing pathways, both of which act through CDK Tyr15 phosphorylation, and 4 of the remaining genes regulate the G2/M transition by inputs from hitherto unknown pathways. Three genes act independently of CDK Tyr15 phosphorylation and define additional uncharacterized molecular control mechanisms.

Conclusions

Despite extensive investigation of the G2/M control, our work has revealed new components of characterized pathways that regulate CDK Tyr15 phosphorylation and new components of novel mechanisms controlling mitotic entry.  相似文献   

9.
10.

Background and Aims

Endoprotease activation is a key step in acute pancreatitis and early inhibition of these enzymes may protect from organ damage. In vivo models commonly used to evaluate protease inhibitors require animal sacrifice and therefore limit the assessment of dynamic processes. Here, we established a non-invasive fluorescence imaging-based biomarker assay to assess real-time protease inhibition and disease progression in a preclinical model of experimental pancreatitis.

Methods

Edema development and trypsin activation were imaged in a rat caerulein-injection pancreatitis model. A fluorescent “smart” probe, selectively activated by trypsin, was synthesized by labeling with Cy5.5 of a pegylated poly-L-lysine copolymer. Following injection of the probe, trypsin activation was monitored in the presence or absence of inhibitors by in vivo and ex vivo imaging.

Results

We established the trypsin-selectivity of the fluorescent probe in vitro using a panel of endopeptidases and specific inhibitor. In vivo, the probe accumulated in the liver and a region attributed to the pancreas by necropsy. A dose dependent decrease of total pancreatic fluorescence signal occurred upon administration of known trypsin inhibitors. The fluorescence-based method was a better predictor of trypsin inhibition than pancreatic to body weight ratio.

Conclusions

We established a fluorescence imaging assay to access trypsin inhibition in real-time in vivo. This method is more sensitive and dynamic than classic tissue sample readouts and could be applied to preclinically optimize trypsin inhibitors towards intrapancreatic target inhibition.  相似文献   

11.
Zhang Y  Fan S  Yao Y  Ding J  Wang Y  Zhao Z  Liao L  Li P  Zang F  Teng GJ 《PloS one》2012,7(1):e30262

Objectives

Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging.

Materials and Methods

The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia.

Results

In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume.

Conclusion

Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke.  相似文献   

12.

Background

Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes.

Methodology/Principal Findings

In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity.

Conclusions/Significance

Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.  相似文献   

13.

Background and Aims

Aside from those on Arabidopsis, very few studies have focused on spatial expression of cyclin-dependent kinases (CDKs) in root apical meristems (RAMs), and, indeed, none has been undertaken for open meristems. The extent of interfacing between cell cycle genes and plant growth regulators is also an increasingly important issue in plant cell cycle studies. Here spatial expression/localization of an A-type and B-type CDK, auxin and cytokinins are reported in relation to the hitherto unexplored anatomy of RAMs of Cucurbita maxima.

Methods

Median longitudinal sections were cut from 1-cm-long primary root tips of C. maxima. Full-length A-type CDKs and a B-type CDK were cloned from C. maxima using degenerate primers, probes of which were localized on sections of RAMs using in situ hybridization. Isopentenyladenine (iPA), trans-zeatin (t-Z) and indole-3yl-acetic acid (IAA) were identified on sections by immunolocalization.

Key Results

The C. cucurbita RAM conformed to an open transverse (OT) meristem typified by an absence of a clear boundary between the eumeristem and root cap columella, but with a distinctive longitudinally thickened epidermis. Cucma;CDKA;1 expression was detected strongly in the longitudinally thickened epidermis, a tissue with mitotic competence that contributes cells radially to the root cap of OT meristems. Cucma;CDKB2 was expressed mainly in proliferative regions of the RAM and in lateral root primordia. iPA and t-Z were mainly distributed in differentiated cells whilst IAA was distributed more uniformly in all tissues of the RAM.

Conclusions

Cucma;CDKA;1 was expressed most strongly in cells that have proliferative competence whereas Cucma;CDKB2 was confined mainly to mitotic cells. iPA and t-Z marked differentiated cells in the RAM, consistent with the known effect of cytokinins in promoting differentiation in root systems. iPA/t-Z were distributed in a converse pattern to Cucma;CDKB2 expression whereas IAA was detected in most cells in the RAM regardless of their proliferative potential.  相似文献   

14.

Background

Statin treatment has been associated with a beneficial outcome on respiratory tract infections. In addition, previous in vitro and in vivo experiments have indicated favorable effects of statins in bacterial infections.

Aim

The aim of the present study was to elucidate possible antibacterial effects of statins against primary pathogens of the respiratory tract.

Methods

MIC-values for simvastatin, fluvastatin and pravastatin against S. pneumoniae, M. catarrhalis and H. influenzae were determined by traditional antibacterial assays. A BioScreen instrument was used to monitor effects of statins on bacterial growth and to assess possible synergistic effects with penicillin. Bacterial growth in whole blood and serum from healthy volunteers before and after a single dose of simvastatin, fluvastatin and penicillin (positive control) was determined using a blood culture system (BactAlert).

Findings

The MIC-value for simvastatin against S pneumoniae and M catarrhalis was 15 µg/mL (36 mmol/L). Fluvastatin and Pravastatin showed no antibacterial effect in concentrations up to 100 µg/mL (230 µmol/L). Statins did not affect growth or viability of H influenzae. Single doses of statins given to healthy volunteers did not affect growth of pneumococci, whereas penicillin efficiently killed all bacteria.

Conclusions

Simvastatin at high concentrations 15 µg/mL (36 µmol/L) rapidly kills S pneumoniae and M catarrhalis. However, these concentrations by far exceed the concentrations detected in human blood during simvastatin therapy (1–15 nmol/L) and single doses of statins given to healthy volunteers did not improve antibacterial effects of whole blood. Thus, a direct bactericidal effect of statins in vivo is probably not the mechanism behind the observed beneficial effect of statins against various infections.  相似文献   

15.

Background

Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need.

Methodology and Principal Findings

The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia.

Conclusions

Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.  相似文献   

16.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

17.

Background

The absence of CDK4 amplification in liposarcomas is associated with favorable prognosis. We aimed to identify the factors associated with tumor recurrence in patients with well-differentiated (WD) and dedifferentiated (DD) liposarcomas.

Methods

From 2000 to 2010, surgical resections for 101 WD and DD liposarcomas were performed. Cases in which complete surgical resections with curative intent were carried out were selected. MDM2 and CDK4 gene amplification were analyzed by quantitative real-time polymerase chain reaction (Q-PCR).

Results

There were 31 WD and 17 DD liposarcomas. Locoregional recurrence was observed in 11 WD and 3 DD liposarcomas. WD liposarcomas showed better patient survival compared to DD liposarcomas (P<0.05). Q-PCR analysis of the liposarcomas revealed the presence of CDK4 amplification in 44 cases (91.7%) and MDM2 amplification in 46 cases (95.8%). WD liposarcomas with recurrence after surgical resection had significantly higher levels of CDK4 amplification compared to those without recurrence (P = 0.041). High level of CDK4 amplification (cases with CDK4 amplification higher than the median 7.54) was associated with poor recurrence-free survival compared to low CDK4 amplification in both univariate (P = 0.012) and multivariate analyses (P = 0.020).

Conclusions

Level of CDK4 amplification determined by Q-PCR was associated with the recurrence of WD liposarcomas after surgical resection.  相似文献   

18.

Background

Colorectal cancer (CRC) is the third major cause of cancer related deaths in the world. 5-fluorouracil (5-FU) is widely used for the treatment of colorectal cancer but as a single-agent renders low response rates. Choline kinase alpha (ChoKα), an enzyme that plays a role in cell proliferation and transformation, has been reported overexpressed in many different tumors, including colorectal tumors. ChoKα inhibitors have recently entered clinical trials as a novel antitumor strategy.

Methodology/Principal Findings

ChoKα specific inhibitors, MN58b and TCD-717, have demonstrated a potent antitumoral activity both in vitro and in vivo against several tumor-derived cell line xenografts including CRC-derived cell lines. The effect of ChoKα inhibitors in combination with 5-FU as a new alternative for the treatment of colon tumors has been investigated both in vitro in CRC-tumour derived cell lines, and in vivo in mouse xenografts models. The effects on thymidilate synthase (TS) and thymidine kinase (TK1) levels, two enzymes known to play an essential role in the mechanism of action of 5-FU, were analyzed by western blotting and quantitative PCR analysis. The combination of 5-FU with ChoKα inhibitors resulted in a synergistic effect in vitro in three different human colon cancer cell lines, and in vivo against human colon xenografts in nude mice. ChoKα inhibitors modulate the expression levels of TS and TK1 through inhibition of E2F production, providing a rational for its mechanism of action.

Conclusion/Significance

Our data suggest that both drugs in combination display a synergistic antitumoral effect due to ChoKα inhibitors-driven modulation of the metabolization of 5-FU. The clinical relevance of these findings is strongly supported since TCD-717 has recently entered Phase I clinical trials against solid tumors.  相似文献   

19.

Background

The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors.

Methods

We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence.

Results

FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue.

Conclusion

Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors.  相似文献   

20.

Background

There is an urgent need to develop new, safe and effective treatments for human African trypanosomiasis (HAT) because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide (SCYX-5070), as potent inhibitors of Trypanosoma brucei and the related trypanosomatid protozoans Leishmania spp.

Methodology/Principal Findings

In this work we show that loss of T. brucei viability following SCYX-5070 exposure was dependent on compound concentration and incubation time. Pulse incubation of T. brucei with SCYX-5070 demonstrates that a short period of exposure (10–12 hrs) is required to produce irreversible effects on survival or commit the parasites to death. SCYX-5070 cured an acute trypanosomiasis infection in mice without exhibiting signs of compound related acute or chronic toxicity. To identify the molecular target(s) responsible for the mechanism of action of 2,4-diaminopyrimidines against trypanosomatid protozoa, a representative analogue was immobilized on a solid matrix (sepharose) and used to isolate target proteins from parasite extracts. Mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) were identified as the major proteins specifically bound to the immobilized compound, suggesting their participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites.

Conclusions/Significance

Results show that 2,4-diaminopyrimidines have a good in vitro and in vivo pharmacological profile against trypanosomatid protozoans and that MAPKs and CRKs are potential molecular targets of these compounds. The 2,4-diminipyrimidines may serve as suitable leads for the development of novel treatments for HAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号