首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capsule is generally considered one of the more powerful virulence factors of microorganisms, driving research in the field of microbial pathogenesis and in the development of vaccines. Cryptococcus neoformans is unique among the most common human fungal pathogens in that it possesses a complex polysaccharide capsule. This review focuses on the Cryptococcus neoformans capsule from the viewpoint of fungal pathogenesis, and the effective immune response target of the capsule’s main component, glucuronoxylomannan.  相似文献   

2.
The fungal pathogen Cryptococcus neoformans regulates its polysaccharide capsule depending on environmental stimuli. To investigate whether capsule polymers change under different growth conditions, we analyzed shed capsules at physiological concentrations without physical perturbation. Our results indicate that regulation of capsule size is mediated at the level of individual polysaccharide molecules.  相似文献   

3.
The role of capsular polysaccharides (CPS) of Cryptococcus neoformans in phagocytosis by murine alveolar macrophages was investigated in four strains of C. neoformans serotype A, YC-11, YC-5, YC-27 and YC-13. Phagocytosis rates increased markedly after adding 10% mouse serum, compared to fetal calf serum. The reverse relation between capsular thickness of C. neoformans and phagocytosis by alveolar macrophages was observed except in YC-27, which had thin capsules and high virulence. The phagocytosis rate in mice serum was 17.3% in YC-11 (capsule thickness 2.8-3.5 μm), 39.8% in YC-5 (capsule size 0.8-1.5 μm), 20.3% in YC-27 (capsule size 0.6-1.1 μm), and 62.8% in YC-13 (capsule not detected microscopically). The CPS of YC-11, YC-5, and YC-27 analyzed by gel-filtration using CL-2B showed high molecular fractions near the void volume. However, the CPS of YC-13 showed only low molecular fractions. The widely eluted CPS of YC-11 was separated into 3 fractions and each fraction was added in the phagocytosis assay of YC-13. Phagocytosis was markedly suppressed particularly by the addition of a higher molecular fraction. These results suggest that phagocytosis of C. neoformans by alveolar macrophages is influenced by the molecular sizes of the CPS.  相似文献   

4.
Cryptococcus neoformans is a basidiomycete that causes deadly infections in the immunocompromised. We previously generated a secretion mutant in this fungus by introducing a mutation in the SAV1 gene, which encodes a homolog of the Sec4/Rab8 subfamily GTPases. Under restrictive conditions there are two notable morphological changes in the sav1 mutant: accumulation of post-Golgi vesicles and the appearance of an unusual organelle, which we term the sav1 body (SB). The SB is an electron-transparent structure 0.2–1 μm in diameter, with vesicles or other membranous structures associated with the perimeter. Surprisingly, the SB was heavily labeled with anti-glucuronoxylomannan (GXM) antibodies, suggesting that it contains a secreted capsule component, GXM. A structure similar to the SB, also labeled by anti-GXM antibodies, was induced in wild type cells treated with the vacuolar-ATPase inhibitor, bafilomycin A1. Bafilomycin A1 and other agents that increase intraluminal pH also inhibited capsule polysaccharide shedding and capsule growth. These studies highlight an unusual organelle observed in C. neoformans with a potential role in polysaccharide synthesis, and a link between luminal pH and GXM biosynthesis.  相似文献   

5.
Flippases are key regulators of membrane asymmetry and secretory mechanisms. Vesicular polysaccharide secretion is essential for the pathogenic mechanisms of Cryptococcus neoformans. On the basis of the observations that flippases are required for polysaccharide secretion in plants and the putative Apt1 flippase is required for cryptococcal virulence, we analyzed the role of this enzyme in polysaccharide release by C. neoformans, using a previously characterized apt1Δ mutant. Mutant and wild-type (WT) cells shared important phenotypic characteristics, including capsule morphology and dimensions, glucuronoxylomannan (GXM) composition, molecular size, and serological properties. The apt1Δ mutant, however, produced extracellular vesicles (EVs) with a lower GXM content and different size distribution in comparison with those of WT cells. Our data also suggested a defective intracellular GXM synthesis in mutant cells, in addition to changes in the architecture of the Golgi apparatus. These findings were correlated with diminished GXM production during in vitro growth, macrophage infection, and lung colonization. This phenotype was associated with decreased survival of the mutant in the lungs of infected mice, reduced induction of interleukin-6 (IL-6) cytokine levels, and inefficacy in colonization of the brain. Taken together, our results indicate that the lack of APT1 caused defects in both GXM synthesis and vesicular export to the extracellular milieu by C. neoformans via processes that are apparently related to the pathogenic mechanisms used by this fungus during animal infection.  相似文献   

6.
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.  相似文献   

7.
Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen.  相似文献   

8.
Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis.  相似文献   

9.
Cloned and unselected bone marrow-derived macrophage cell lines were obtained from A/J, AKR/J, BIO.A(5R), CBA/J, DBA/2, HPC, NZW, and [NZB X NZW]F1 mice, and their interactions were studied in vitro with a lightly encapsulated natural serotype A isolate of Cryptococcus neoformans. Growth inhibition of C. neoformans was seen with all of the cell lines, as determined by enumeration of colony-forming units. Inhibition was enhanced by a high concentration (8%) of fresh mouse serum and was the same for serum obtained from AKR/J (C5 deficient) and BIO.A (C5 normal) mice. Macrophage incubation with fresh AKR/J serum which had been absorbed with heat-killed Cryptococcus cells also inhibited C. neoformans growth. Heat-inactivation, EDTA addition or anti-C3 antibody treatment of fresh serum abolished the opsonic activity for C. neoformans, while EGTA addition to fresh serum was without effect on opsonization. In addition, neither IgM nor IgG1 murine monoclonal antibodies specific for C. neoformans enhanced phagocytosis or killing of the yeast by macrophages. These findings are consistent with the interpretation that C3b is an important modulator of interactions between macrophages and C. neoformans.  相似文献   

10.
11.
12.
Microbial capsules are important for virulence, but their architecture and physical properties are poorly understood. The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide capsule that is necessary for virulence and is the target of protective antibody responses. To study the C. neoformans capsule we developed what we believe is a new approach whereby we probed the capsular elastic properties by applying forces using polystyrene beads manipulated with optical tweezers. This method allowed us to determine the Young's modulus for the capsule in various conditions that affect capsule growth. The results indicate that the Young's modulus of the capsule decreases with its size and increases with the Ca2+ concentration in solution. Also, capsular polysaccharide manifests an unexpected affinity for polystyrene beads, a property that may function in attachment to host cells and environmental structures. Bead probing with optical tweezers provides a new, nondestructive method that may have wide applicability for studying the effects of growth conditions, immune components, and drugs on capsular properties.  相似文献   

13.
《Fungal biology》2020,124(7):629-638
In nature, microorganisms often exhibit competitive behavior for nutrients and limited space, allowing them to alter the virulence determinants of pathogens. The human pathogenic yeast Cryptococcus neoformans can be found organized in biofilms, a complex community composed of an extracellular matrix which confers protection against predation. The aim of this study was to evaluate and characterize antagonistic interactions between two cohabiting microorganisms: C. neoformans and the bacteria Serratia marcescens. The interaction of S. marcescens with C. neoformans expressed a negative effect on biofilm formation, polysaccharide capsule, production of urease, and melanization of the yeast. These findings evidence that competition in mixed communities can result in dominance by one species, with direct impact on the physiological modulation of virulence determinants. Such an approach is key for understating the response of communities to the presence of competitors and, ultimately, rationally designing communities to prevent and treat certain diseases.  相似文献   

14.
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae.  相似文献   

15.
Cryptococcus neoformans is a fungal pathogen that causes serious disease in immunocompromised individuals. The organism produces a distinctive polysaccharide capsule that is necessary for its virulence, a predominantly polysaccharide cell wall, and a variety of protein- and lipid-linked glycans. The glycan synthetic pathways of this pathogen are of great interest. Here we report the detection of a novel glycosylphosphotransferase activity in C. neoformans, identification of the corresponding gene, and characterization of the encoded protein. The observed activity is specific for UDP-xylose as a donor and for mannose acceptors and forms a xylose-α-1-phosphate-6-mannose linkage. This is the first report of a xylosylphosphotransferase activity in any system.  相似文献   

16.
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles.  相似文献   

17.
Cryptococcus neoformans is an encapsulated pathogenic fungus. The cryptococcal capsule is composed of polysaccharides and is necessary for virulence. It has been previously reported that glucuronoxylomannan (GXM), the major capsular component, is synthesized in cytoplasmic compartments and transported to the extracellular space in vesicles, but knowledge on the organelles involved in polysaccharide synthesis and traffic is extremely limited. In this paper we report the GXM distribution in C. neoformans cells sectioned by cryoultramicrotomy and visualized by transmission electron microscopy (TEM) and polysaccharide immunogold staining. Cryosections of fungal cells showed high preservation of intracellular organelles and cell wall structure. Incubation of cryosections with an antibody to GXM revealed that cytoplasmic structures associated to vesicular compartments and reticular membranes are in close proximity to the polysaccharide. GXM was generally found in association with the membrane of intracellular compartments and within different layers of the cell wall. Analysis of extracellular fractions from cryptococcal supernatants by transmission electron microscopy in combination with serologic, chromatographic and spectroscopic methods revealed fractions containing GXM and lipids. These results indicate an intimate association of GXM and lipids in both intracellular and extracellular spaces consistent with polysaccharide synthesis and transport in membrane-associated structures.  相似文献   

18.
The export of virulence factors, such as the capsule polysaccharide, to the cell surface is a critical aspect of the pathogenicity of Cryptococcus neoformans. A view of capsule export via exocytosis and extracellular vesicles is emerging, but the molecular mechanisms underlying virulence factor transport pathways remain to be established. In this study, we characterized the APT1 gene, which encodes a predicted integral membrane P-type ATPase belonging to the type IV, Drs2 family of aminophospholipid translocases (flippases) (APTs). APTs maintain the phospholipid asymmetry that is critical in membrane fusion events for trafficking and in establishing cell polarity. Deletion of the APT1 gene resulted in phenotypes consistent with similar roles in C. neoformans. These included altered actin distribution, increased sensitivity to stress conditions (oxidative and nitrosative stress) and to trafficking inhibitors, such as brefeldin A and monensin, a reduction in exported acid phosphatase activity, and hypersensitivity to the antifungal drugs amphotericin B, fluconazole, and cinnamycin. However, there was no difference in growth, capsule size, or melanin production between the wild type and the apt1 mutant strains at either 30°C or 37°C. Despite the absence of an influence on these major virulence factors, Apt1 was required for survival during interactions with macrophages, and apt1 mutants exhibited attenuated virulence in a mouse inhalation model of cryptococcosis. Therefore, Apt1 contributes to virulence and the stress response in C. neoformans through apparent functions in membrane fusion and trafficking that do not influence the deposition of major virulence factors, such as capsule and melanin, outside the cell.The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningoencephalitis in immunocompromised individuals (44). One million cases of cryptococcosis are estimated to occur each year, and approximately two-thirds of these are fatal (43). Key virulence traits for the fungus include growth at the mammalian host temperature, production of a polysaccharide capsule, deposition of laccase-synthesized melanin in the cell wall, secretion of enzymes, and resistance to host defenses, such as oxidative and nitrosative killing (44).The polysaccharide capsule is a key virulence factor and is both cell associated and released during infection (4). The two species of polysaccharide in the capsule, an abundant glucuronoxylomannan (GXM) and a minor galactoxylomannan (GalXM), cause a number of deleterious effects in mammalian hosts (4, 44). Extracellular vesicles (exosomes) containing capsule polysaccharide are present in culture supernatants, in lysates of macrophages containing C. neoformans, and in association with fungal cells during murine infection (41, 49, 50, 54). These so-called “virulence factor delivery bags” are thought to pass through the cell wall to deliver material outside the cell (50). Proteomic analysis of the vesicles identified 76 proteins, and many of these are associated with virulence, including urease, laccase, heat shock proteins, superoxide dismutase, thiol-specific antioxidants, and catalases (49).The mechanisms of trafficking of capsule polysaccharide and laccase are being actively pursued. For example, analysis of a mutant with a defect in the exocyst GTPase Sec4/Rab8 (designated Sav1) revealed the accumulation of intracellular vesicles containing capsule polysaccharide, thus providing support for intracellular synthesis and secretion via exocytosis (60). In addition, reduced expression of the exocyst protein Sec6 due to RNA interference (RNAi) resulted in partial attenuation of virulence as well as defects in melanin production and the export of urease and soluble capsule polysaccharide (42). The RNAi strains were also completely defective in the production of extracellular exosomes but retained wild-type (WT) levels of cell-associated capsule. Trafficking of the laccase required for melanin production and virulence has also been examined. Hu et al. (25) showed that C. neoformans lacking Vps34 (vacuolar protein sorting 34) had a marked reduction in melanin formation, suggesting that laccase-containing vesicles are derived from the endocytic pathway. Overall, the current evidence suggests that exocytic, endocytic, and specialized extracellular vesicles mediate the export of capsule and other virulence factors in C. neoformans (42, 49, 60).We demonstrated previously that vesicle trafficking functions in C. neoformans are regulated by the cAMP signal transduction pathway, which also controls the elaboration of both the capsule and melanin (28). We found that treatment of C. neoformans with inhibitors of Golgi apparatus-mediated transport (e.g., brefeldin A or monensin) or with lithium chloride results in inhibition of capsule expression (28). In addition, we found that cAMP-dependent protein kinase regulated the expression of a predicted phospatidylethanolamine binding protein, Ova1, which negatively influences capsule and melanin formation. These findings focused our attention on the roles of intracellular trafficking functions and phospholipids in virulence factor expression.In the context of phospholipid trafficking, some aminophospholipid translocases within the P-type ATPases are known to play roles in fungal virulence. For example, the aminophospholipid translocase MgApt2 is required for exocytosis during plant infection by the rice blast pathogen Magnaporthe grisea (18). P-type ATPases are a large family of multitransmembrane domain, ATP-dependent transporters, and three subfamilies are found in eukaryotes (29): (i) heavy metal ion ATPases (e.g., copper transporters), (ii) non-heavy-metal ion ATPases (e.g., Ca2+, H+, Na+, and K+ ATPases), and (iii) aminophospholipid translocases (APTs/flippases of the type IV or Drs2 family). APTs maintain the asymmetrical distribution of aminophospholipids in membranes by translocating phosphatidylserine (PS) and/or phosphatidylethanolamine (PE) from one leaflet of the bilayer to the other. Phospholipid asymmetry is important in membrane fusion events (vesicle budding and docking) at the plasma membrane and in the trans-Golgi network (3). Thus, APTs are required for efficient Golgi function and play roles in both endocytosis and exocytosis. Some disorders in humans have been linked or attributed to genes from the APT subfamily, including familial intrahepatic cholestasis and Angelman syndrome (32, 55).Previously, we constructed a deletion of the APT1 gene, encoding a putative aminophospholipid translocase, as part of a study to examine disomy at chromosome 13 in C. neoformans (27). Our preliminary phenotypic analysis suggested a connection to nitrosative stress and prompted further investigation of virulence-related functions. In the present study, we show that Apt1 is functionally related to Drs2 in Saccharomyces cerevisiae and has roles in membrane trafficking and sensitivity to stress (oxidative and nitrosative) and drugs targeting ergosterol biosynthesis and secretion. Importantly, loss of Apt1 does not influence capsule and melanin formation, but the protein is required for intracellular growth in macrophages and for full virulence in mice.  相似文献   

19.
Cryptococcus neoformans, an encapsulated, pathogenic yeast, is endowed with a variety of virulence factors, including a polysaccharide capsule. During mammalian infection, the outcome of the interaction between C. neoformans and macrophages is central to determining the fate of the host. Previous studies have shown similarities between the interaction of C. neoformans with macrophages and with amoebae, resulting in the proposal that fungal virulence for mammals originated from selection by amoeboid predators. In this study, we investigated the interaction of C. neoformans with the soil amoeba Acanthamoeba castellanii. Comparison of phagocytic efficiency of the wild type, nonencapsulated mutants, and complemented strains showed that the capsule was antiphagocytic for amoebae. Capsular enlargement was associated with a significant reduction in phagocytosis, suggesting that this phenomenon protects against ingestion by phagocytic predators. C. neoformans var. neoformans cells were observed to exit amoebae several hours after ingestion, in a process similar to the recently described nonlytic exocytosis from macrophages. Cryptococcal exocytosis from amoebae was dependent on the strain and on actin and required fungal viability. Additionally, the presence of a capsule was inversely correlated with the likelihood of extrusion in certain strains. In summary, nonlytic exocytosis from amoebae provide another parallel to observations in fungus-macrophage interactions. These results provide additional support for the notion that some mechanisms of virulence observed during mammalian infection originated, and were selected for, by environmental interactions.The encapsulated yeast Cryptococcus neoformans is an environmental organism that is capable of causing human disease. This fungus is a facultative intracellular pathogen with a unique pathogenic strategy, despite no obvious need for replication in an animal host as part of its life cycle (10). C. neoformans is known to interact with protozoa, some of which have been shown to be effective predators for this fungus (6, 26), and amoebae appear to be important for the control of C. neoformans in the environment (28). Previously, we reported that the interaction of C. neoformans with Acanthamoeba castellanii directly paralleled the interaction with human macrophages (33). Similarities between C. neoformans interactions with amoebae and macrophages included intracellular replication in a phagosome and the release of polysaccharide-containing vesicles into the cytoplasm (33). Furthermore, passage of avirulent C. neoformans and Histoplasma capsulatum through slime mold and amoebae was shown to increase virulence in mice (31, 32). On the basis of these observations, it was proposed that the capacity for mammalian virulence emerged from interactions with phagocytic predators, such as amoebae and slime mold, in the environment (7, 17, 30). Consequently, single-cell protists have emerged as important systems for the study of C. neoformans virulence, and subsequent studies have investigated the interaction of this fungus with slime mold and paramecia (9, 31). Additional evidence for this concept comes from studies of insect fungal pathogens, which suggest that the capacity for insect pathogenicity may follow preadaptation from interactions with amoebae in the environment (4). Understanding the mechanisms by which virulence emerges in environmental microbes is important considering that global warming has been hypothesized to bring about new fungal diseases in the coming century (13).Recent work in our laboratory and in that of Robin May simultaneously uncovered a novel strategy of avoiding macrophage killing whereby yeast cells were expulsed without lysis of the host cell (2, 19). The process is remarkable in that extrusion of the C. neoformans-filled phagosome is accompanied by the survival of both the host cells and the yeast cells. Phagosome extrusion or fungal exocytosis appears to be a C. neoformans-dictated event that is dependent on both the presence of the polysaccharide capsule and on the depolymerization of actin. A corollary of the hypothesis that C. neoformans virulence emerged from interactions with environmental predators is that phenomena observed with mammalian cells are likely to have a counterpart in free-living phagocytic cells. Consequently, the observation of an apparently unique event such as phagosomal extrusion from mammalian macrophages suggested a need to search for similar events in C. neoformans interactions with environmental phagocytic predators.In this study, we investigated parallels between the intracellular pathogenic strategy of C. neoformans in both macrophages and A. castellanii, focusing on characterizing the impact of the capsule on protozoan phagocytosis and on ascertaining whether fungal cells could also exit amoebae, including the role of the capsule in that possible mechanism. Using time-lapse microscopy, we observed the exocytosis of C. neoformans from A. castellanii. While there are significant differences in the nonlytic exocytosis process when comparing amoebae and macrophages, the observation of this phenomenon in amoebae provides additional support for the idea that the virulence of C. neoformans was selected for, and is maintained, by interactions in the environment with other soil organisms.(This research was conducted by Cara Chrisman in partial fulfillment of the requirements for a Ph.D. from the Sue Golding Graduate Division of Medical Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY [awarded in 2010].)  相似文献   

20.
The pathogenic fungus Cryptococcus neoformans delivers virulence factors such as capsule polysaccharide to the cell surface to cause disease in vertebrate hosts. In this study, we screened for mutants sensitive to the secretion inhibitor brefeldin A to identify secretory pathway components that contribute to virulence. We identified an ortholog of the cell division control protein 50 (Cdc50) family of the noncatalytic subunit of type IV P‐type ATPases (flippases) that establish phospholipid asymmetry in membranes and function in vesicle‐mediated trafficking. We found that a cdc50 mutant in Cneoformans was defective for survival in macrophages, attenuated for virulence in mice and impaired in iron acquisition. The mutant also showed increased sensitivity to drugs associated with phospholipid metabolism (cinnamycin and miltefosine), the antifungal drug fluconazole and curcumin, an iron chelator that accumulates in the endoplasmic reticulum. Cdc50 is expected to function with catalytic subunits of flippases, and we previously documented the involvement of the flippase aminophospholipid translocases (Apt1) in virulence factor delivery. A comparison of phenotypes with mutants defective in genes encoding candidate flippases (designated APT1, APT2, APT3, and APT4) revealed similarities primarily between cdc50 and apt1 suggesting a potential functional interaction. Overall, these results highlight the importance of membrane composition and homeostasis for the ability of Cneoformans to cause disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号