首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trigger factor (TF) is a chaperone, found in bacterial cells and chloroplasts, that interacts with nascent polypeptide chains to suppress aggregation. While its crystal structure has been resolved, the solution structure and dynamics are largely unknown. We performed multiple molecular dynamics simulations on Trigger factor in solution, and show that its tertiary domains display collective motions hinged about inter-domain linkers with minimal or no loss in secondary structure. Moreover, we find that isolated TF typically adopts a collapsed state, with the formation of domain pairs. This collapse of TF in solution is induced by hydrophobic interactions and stabilised by hydrophilic contacts. To determine the nature of the domain interactions, we analysed the hydrophobicity of the domain surfaces by using the hydrophobic probe method of Acharya et al. [1], [2], as the standard hydrophobicity scales predictions are limited due to the complex environment. We find that the formation of domain pairs changes the hydrophobic map of TF, making the N-terminal and arm2 domain pair more hydrophilic and the head and arm1 domain pair more hydrophobic. These insights into the dynamics and interactions of the TF domains are important to eventually understand chaperone-substrate interactions and chaperone function.  相似文献   

2.
Recombinant expression of eukaryotic proteins in bacteria often results in misfolding and aggregation. The ribosome-binding Trigger factor (TF) is the first molecular chaperone that interacts with nascent polypeptide chains in bacteria. Here we show that mutant TF lacking the PPIase domain (TFNC) is more efficient than wild-type TF in enhancing the folding yield of multi-domain proteins such as firefly luciferase. We find that TFNC has a shorter residence time on nascent chains, thus facilitating co-translational folding. By delaying folding relative to translation, the PPIase domain may increase the propensity of misfolding for certain eukaryotic proteins that rely on a mechanism of co-translational, domain-wise folding.  相似文献   

3.
Ribosome-tethered chaperones that interact with nascent polypeptide chains have been identified in both prokaryotic and eukaryotic systems. However, these ribosome-associated chaperones share no sequence similarity: bacterial trigger factors (TF) form an independent protein family while the yeast machinery is Hsp70-based. The absence of any component of the yeast machinery results in slow growth at low temperatures and sensitivity to aminoglycoside protein synthesis inhibitors. After establishing that yeast ribosomal protein Rpl25 is able to recruit TF to ribosomes when expressed in place of its Escherichia coli homologue L23, the ribosomal TF tether, we tested whether such divergent ribosome-associated chaperones are functionally interchangeable. E. coli TF was expressed in yeast cells that lacked the endogenous ribosome-bound machinery. TF associated with yeast ribosomes, cross-linked to yeast nascent polypeptides and partially complemented the aminoglycoside sensitivity, demonstrating that ribosome-associated chaperones from divergent organisms share common functions, despite their lack of sequence similarity.  相似文献   

4.
Messenger RNAs lacking a stop codon trap ribosomes at their 3′ ends, depleting the pool of ribosomes available for protein synthesis. In bacteria, a remarkable quality control system rescues and recycles stalled ribosomes in a process known as trans-translation. Acting as a tRNA, transfer-messenger RNA (tmRNA) is aminoacylated, delivered by EF-Tu to the ribosomal A site, and accepts the nascent polypeptide. Translation then resumes on a reading frame within tmRNA, encoding a short peptide tag that targets the nascent peptide for degradation by proteases. One unsolved issue in trans-translation is how tmRNA and its protein partner SmpB preferentially recognize stalled ribosomes and not actively translating ones. Here, we examine the effect of the length of the 3′ extension of mRNA on each step of trans-translation by pre-steady-state kinetic methods and fluorescence polarization binding assays. Unexpectedly, EF-Tu activation and GTP hydrolysis occur rapidly regardless of the length of the mRNA, although the peptidyl transfer to tmRNA decreases as the mRNA 3′ extension increases and the tmRNA·SmpB binds less tightly to the ribosome with an mRNA having a long 3′ extension. From these results, we conclude that the tmRNA·SmpB complex dissociates during accommodation due to competition between the downstream mRNA and the C-terminal tail for the mRNA channel. Rejection of the tmRNA·SmpB complex during accommodation is reminiscent of the rejection of near-cognate tRNA from the ribosome in canonical translation.  相似文献   

5.
Ribosome-bound trigger factor (TF) is the first chaperone encountered by a nascent polypeptide chain in bacteria. TF has been proposed to form a cradle-shaped shield for nascent chains up to approximately 130 residues to fold in a protected environment upon exit from the ribosome. We report that nascent chains of luciferase up to 280 residues in length are relatively protected by TF against digestion by proteinase K. In contrast, nascent chains of the constitutively unstructured protein alpha-synuclein were not protected, although they were in close proximity to TF by crosslinking. Thus, TF is not a general shield for nascent chains. Protease protection appears to depend on a hydrophobic interaction of TF with nascent polypeptides.  相似文献   

6.
7.
8.
Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here, we report that Ψs in luciferase (Luc) mRNA exacerbate translation pausing in nuclease-untreated rabbit reticulocyte lysate (uRRL) and promote the formation of high-order-ribosome structures. The major deceleration of elongation occurs at the Ψ-rich nucleotides 1294–1326 of Ψ-Luc mRNA and results in premature termination of translation. The impairment of translation is mainly due to the shortage of membranous components. Supplementing uRRL with canine microsomal membranes (CMMs) relaxes the impediments to ribosome movement, resolves collided ribosomes, and greatly enhances full-size luciferase production. CMMs also strongly stimulated an extremely inefficient translation of N1mΨ-Luc mRNA in uRRL. Evidence is presented that translational pausing can promote membrane recruitment of polysomes with nascent polypeptides that lack a signal sequence. Our results highlight an underappreciated role of membrane binding to polysomes in the prevention of ribosome collision and premature release of nascent polypeptides.  相似文献   

9.
Numerous proteins initiate their folding, localization, and modifications early during translation, and emerging data show that the ribosome actively participates in diverse protein biogenesis pathways. Here we show that the ribosome imposes an additional layer of substrate selection during N-terminal methionine excision (NME), an essential protein modification in bacteria. Biochemical analyses show that cotranslational NME is exquisitely sensitive to a hydrophobic signal sequence or transmembrane domain near the N terminus of the nascent polypeptide. The ability of the nascent chain to access the active site of NME enzymes dictates NME efficiency, which is inhibited by confinement of the nascent chain on the ribosome surface and exacerbated by signal recognition particle. In vivo measurements corroborate the inhibition of NME by an N-terminal hydrophobic sequence, suggesting the retention of formylmethionine on a substantial fraction of the secretory and membrane proteome. Our work demonstrates how molecular features of a protein regulate its cotranslational modification and highlights the active participation of the ribosome in protein biogenesis pathways via interactions of the ribosome surface with the nascent protein.  相似文献   

10.
The amino terminal sequence of β-lactoglobulin, isolated by immunoprecipitation from a mixture of lactoproteins synthesized by translation of ovine mammary mRNAs in a wheat germ cell-free system, has been investigated by automated Edman degradation. The in vitro product contains an amino terminal extension of 18 amino acid residues, which is similar to those of other secretory proteins with respect both to the hydrophobicity and the clustering of hydrophobic residues, thus providing support for the “signal” hypothesis. The occurrence of an alanyl residue at the C-termini of the extra pieces of the 6 ovine pre-lactoproteins hitherto examined suggests that this residue is one of the signals recognized by the mammary membrane-bound protease responsible for the release of the extra-pieces from the nascent polypeptide chains.  相似文献   

11.
DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.  相似文献   

12.
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome-nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors.  相似文献   

13.
The bacterial chaperone trigger factor (TF) is the first chaperone to be encountered by a nascent protein chain as it emerges from the ribosome exit tunnel. Experimental results suggest that TF possesses considerable conformational flexibility, and in an attempt to provide an atomic-level view of this flexibility, we have performed independent 1.5-μs molecular dynamics simulations of TF in explicit solvent using two different simulation force fields (OPLS-AA/L and AMBER ff99SB-ILDN). Both simulations indicate that TF possesses tremendous flexibility, with huge excursions from the crystallographic conformation caused by reorientations of the protein’s constituent domains; both simulations also predict the formation of extensive contacts between TF’s PPIase domain and the Arm 1 domain that is involved in nascent-chain binding. In the OPLS simulation, however, TF rapidly settles into a very compact conformation that persists for at least 1 μs, whereas in the AMBER simulation, it remains highly dynamic; additional simulations in which the two force fields were swapped suggest that these differences are at least partly attributable to sampling issues. The simulation results provide potential rationalizations of a number of experimental observations regarding TF’s conformational behavior and have implications for using simulations to model TF’s function on translating ribosomes.  相似文献   

14.
During co-translational protein import into the endoplasmic reticulum ribosomes are docked onto the translocon. This prevents inappropriate exposure of nascent chains to the cytosol and, conversely, cytosolic factors from gaining access to the nascent chain. We exploited this property of co-translational translocation to examine the mechanism of polypeptide cleavage by the 2A peptide of the foot-and-mouth disease virus. We find that the scission reaction is unaffected by placing 2A into a co-translationally targeted protein. Moreover, the portion of the polypeptide C-terminal to the cleavage site remains in the cytosol unless it contains its own signal sequence. The pattern of cleavage is consistent with the proposal that the 2A-mediated cleavage reaction occurs within the ribosome itself. In addition, our data indicate that the ribosome-translocon complex detects the break in the nascent chain and prevents any downstream protein lacking a signal sequence from gaining access to the endoplasmic reticulum.  相似文献   

15.
Rough microsomes were incubated in an in vitro amino acid-incorporating system for labeling the nascent polypeptide chains on the membrane-bound ribosomes. Sucrose density gradient analysis showed that ribosomes did not detach from the membranes during incorporation in vitro. Trypsin and chymotrypsin treatment of microsomes at 0° led to the detachment of ribosomes from the membranes; furthermore, trypsin produced the dissociation of released, messenger RNA-free ribosomes into subunits. Electron microscopic observations indicated that the membranes remained as closed vesicles. In contrast to the situation with free polysomes, nascent chains contained in rough microsomes were extensively protected from proteolytic attach. By separating the microsomal membranes from the released subunits after proteolysis, it was found that nascent chains are split into two size classes of fragments when the ribosomes are detached. These were shown by column chromatography on Sephadex G-50 to be: (a) small (39 amino acid residues) ribosome-associated fragments and (b) a mixture of larger membrane-associated fragments excluded from the column. The small fragments correspond to the carboxy-terminal segments which are protected by the large subunits of free polysomes. The larger fragments associated with the microsomal membranes depend for their protection on membrane integrity. These fragments are completely digested if the microsomes are subjected to proteolysis in the presence of detergents. These results indicate that when the nascent polypeptides growing in the large subunits of membrane-bound ribosomes emerge from the ribosomes they enter directly into a close association with the microsomal membrane.  相似文献   

16.
The mechanisms that couple translation and protein processing are poorly understood in higher eukaryotes. Although mammalian target of rapamycin (mTOR) complex 1 (mTORC1) controls translation initiation, the function of mTORC2 in protein synthesis remains to be defined. In this study, we find that mTORC2 can colocalize with actively translating ribosomes and can stably interact with rpL23a, a large ribosomal subunit protein present at the tunnel exit. Exclusively during translation of Akt, mTORC2 mediates phosphorylation of the nascent polypeptide at the turn motif (TM) site, Thr450, to avoid cotranslational Akt ubiquitination. Constitutive TM phosphorylation occurs because the TM site is accessible, whereas the hydrophobic motif (Ser473) site is concealed in the ribosomal tunnel. Thus, mTORC2 can function cotranslationally by phosphorylating residues in nascent chains that are critical to attain proper conformation. Our findings reveal that mTOR links protein production with quality control.  相似文献   

17.
During trans-translation, stalled bacterial ribosomes are rescued by small protein B (SmpB) and by transfer-messenger RNA (tmRNA). Stalled ribosomes switch translation from the defective messages to a short internal reading frame on tmRNA that tags the nascent peptide chain for degradation and recycles the ribosomes. We present evidences that SmpB binds the large and small ribosomal subunits in vivo and in vitro. The binding between SmpB and the ribosomal subunits is very tight, with a dissociation constant of 1.7 × 10−10 M, similar to its KD for the 70S ribosome or for tmRNA. tmRNA displaces SmpB from its 50S binding but not from the 30S. In vivo, SmpB is detected on the 50S when trans-translation is impaired by lacking tmRNA or a functional SmpB. SmpB contacts the large subunit transiently and early during the trans-translational process. The affinity of SmpB for the two ribosomal subunits is modulated by tmRNA in the course of trans-translation. It is the first example of two copies of the same protein interacting with two different functional sites of the ribosomes.  相似文献   

18.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

19.
Nascent polypeptide chains synthesized by membrane bound ribosomes are cotranslationally translocated through and integrated into the endoplasmic reticulum translocon. Hydrophobic segments and positive charges on the chain are critical to halt the ongoing translocation. A marginally hydrophobic segment, which cannot be inserted into the membrane by itself, can be a transmembrane segment depending on its downstream positive charges. In certain conditions, positive charges even 60 residues downstream cause the marginally hydrophobic segment to span the membrane by inducing the segment to slide back from the lumen. Here we systematically examined the effect of a core sugar chain on the fate of a marginally hydrophobic segment using a cell-free translation and translocation system. A sugar chain added within 12 residues upstream of the marginally hydrophobic segment prevents the sliding back and promotes forward movement of the polypeptide chain. The sugar chain apparently functions as a ratchet to keep the polypeptide chain in the lumen. We propose that the sugar chain is a third topology determinant of membrane proteins, in addition to a hydrophobic segment and positive charges of the nascent chain.  相似文献   

20.
trans-Translation, orchestrated by SmpB and tmRNA, is the principal eubacterial pathway for resolving stalled translation complexes. RNase R, the leading nonstop mRNA surveillance factor, is recruited to stalled ribosomes in a trans-translation dependent process. To elucidate the contributions of SmpB and tmRNA to RNase R recruitment, we evaluated Escherichia coliFrancisella tularensis chimeric variants of tmRNA and SmpB. This evaluation showed that while the hybrid tmRNA supported nascent polypeptide tagging and ribosome rescue, it suffered defects in facilitating RNase R recruitment to stalled ribosomes. To gain further insights, we used established tmRNA and SmpB variants that impact distinct stages of the trans-translation process. Analysis of select tmRNA variants revealed that the sequence composition and positioning of the ultimate and penultimate codons of the tmRNA ORF play a crucial role in recruiting RNase R to rescued ribosomes. Evaluation of defined SmpB C-terminal tail variants highlighted the importance of establishing the tmRNA reading frame, and provided valuable clues into the timing of RNase R recruitment to rescued ribosomes. Taken together, these studies demonstrate that productive RNase R-ribosomes engagement requires active trans-translation, and suggest that RNase R captures the emerging nonstop mRNA at an early stage after establishment of the tmRNA ORF as the surrogate mRNA template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号