首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown.

Methods

Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages.

Results

Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3.

Conclusion

Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation.  相似文献   

3.
4.
Shi ZD  Wang H  Tarbell JM 《PloS one》2011,6(1):e15956

Background

Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D) environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP) expression in rat vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.

Methodology/Principal Findings

Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS) chains from proteoglycan (PG) core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1) suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13) expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK) also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs) were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.

Conclusions/Significance

We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction mechanism via HSPG-mediated FAK activation in 3D. This study will be of interest in understanding the flow-related mechanobiology in vascular lesion formation, tissue morphogenesis, cancer cell metastasis, and stem cell differentiation in 3D, and also has implications in tissue engineering.  相似文献   

5.

Background

Vascular pathology and dysfunction are direct life-threatening outcomes resulting from atherosclerosis or vascular injury, which are primarily attributed to contractile smooth muscle cells (SMCs) dedifferentiation and proliferation by re-entering cell cycle. Increasing evidence suggests potent protective effects of G-protein coupled estrogen receptor 1 (GPER) activation against cardiovascular diseases. However, the mechanism underlying GPER function remains poorly understood, especially if it plays a potential role in modulating coronary artery smooth muscle cells (CASMCs).

Methodology/Principal Findings

The objective of our study was to understand the functional role of GPER in CASMC proliferation and differentiation in coronary arteries using from humans and swine models. We found that the GPER agonist, G-1, inhibited both human and porcine CASMC proliferation in a concentration- (10−8 to 10−5 M) and time-dependent manner. Flow cytometry revealed that treatment with G-1 significantly decreased the proportion of S-phase and G2/M cells in the growing cell population, suggesting that G-1 inhibits cell proliferation by slowing progression of the cell cycle. Further, G-1-induced cell cycle retardation was associated with decreased expression of cyclin B, up-regulation of cyclin D1, and concomitant induction of p21, and partially mediated by suppressed ERK1/2 and Akt pathways. In addition, G-1 induces SMC differentiation evidenced by increased α-smooth muscle actin (α-actin) and smooth muscle protein 22α (SM22α) protein expressions and inhibits CASMC migration induced by growth medium.

Conclusion

GPER activation inhibits CASMC proliferation by suppressing cell cycle progression via inhibition of ERK1/2 and Akt phosphorylation. GPER may constitute a novel mechanism to suppress intimal migration and/or synthetic phenotype of VSMC.  相似文献   

6.
Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.  相似文献   

7.
8.
We tested the hypothesis that phenotypically modulated smooth muscle cells (SMCs) and related inflammation are associated with the progression of experimental occlusive pulmonary vascular disease (PVD). Occlusive PVD was induced by combined exposure to a vascular endothelial growth factor receptor tyrosine kinase inhibitor Sugen 5416 and hypobaric hypoxia for 3 weeks in rats, which were then returned to ambient air. Hemodynamic, morphometric, and immunohistochemical studies, as well as gene expression analyses, were performed at 3, 5, 8, and 13 weeks after the initial treatment (n = 78). Experimental animals developed pulmonary hypertension and right ventricular hypertrophy, and exhibited a progressive increase in indices of PVD, including cellular intimal thickening and intimal fibrosis. Cellular intimal lesions comprised α smooth muscle actin (α SMA)+, SM1+, SM2+/-, vimentin+ immature SMCs that were covered by endothelial monolayers, while fibrous intimal lesions typically included α SMA+, SM1+, SM2+, vimentin+/- mature SMCs. Plexiform lesions comprised α SMA+, vimentin+, SM1-, SM2- myofibroblasts covered by endothelial monolayers. Immature SMC-rich intimal and plexiform lesions were proliferative and were infiltrated by macrophages, while fibrous intimal lesions were characterized by lower proliferative abilities and were infiltrated by few macrophages. Compared with controls, the number of perivascular macrophages was already higher at 3 weeks and progressively increased during the experimental period; gene expression of pulmonary hypertension-related inflammatory molecules, including IL6, MCP1, MMP9, cathepsin-S, and RANTES, was persistently or progressively up-regulated in lungs of experimental animals. We concluded that phenotypically modulated SMCs and related inflammation are potentially associated with the progression of experimental obstructive PVD.  相似文献   

9.

Background

Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagens, and its expression is increased in various fibrotic diseases. The aim of this study was to determine whether quantitative immunohistochemical evaluation of the expression levels of HSP47, type I procollagen and α-smooth muscle actin (SMA) allows the differentiation of idiopathic usual interstitial pneumonia (UIP) from UIP associated with collagen vascular disease (CVD) and idiopathic nonspecific interstitial pneumonia (NSIP).

Methods

We reviewed surgical lung biopsy specimens of 19 patients with idiopathic UIP, 7 with CVD-associated UIP and 16 with idiopathic NSIP and assigned a score for the expression of HSP47, type I procollagen and α-SMA in type II pneumocytes and/or lung fibroblasts (score 0 = no; 1 = weak; 2 = moderate; 3 = strong staining).

Results

The expression level of HSP47 in type II pneumocytes of idiopathic UIP was significantly higher than in CVD-associated UIP and idiopathic NSIP. The expression of HSP47 in fibroblasts was significantly higher in idiopathic UIP and idiopathic NSIP than in CVD-associated UIP. The expression of type I procollagen in type II pneumocytes was significantly higher in idiopathic UIP than in idiopathic NSIP. The expression of type I procollagen in fibroblasts was not different in the three groups, while the expression of α-SMA in fibroblasts was significantly higher in idiopathic UIP than in idiopathic NSIP.

Conclusion

Our results suggest the existence of different fibrotic pathways among these groups involved in the expression of HSP47 and type I procollagen.  相似文献   

10.
11.

Background

During inflammation, adhesion molecules regulate recruitment of leukocytes to inflamed tissues. It is reported that vascular cell adhesion molecule-1 (VCAM-1) activates extracellular regulated kinases 1 and 2 (ERK1/2), but the mechanism for this activation is not known. Pharmacological inhibitors of ERK1/2 partially inhibit leukocyte transendothelial migration in a multi-receptor system but it is not known whether VCAM-1 activation of ERK1/2 is required for leukocyte transendothelial migration (TEM) on VCAM-1.

Methodology/Principal Findings

In this study, we identified a mechanism for VCAM-1 activation of ERK1/2 in human and mouse endothelial cells. VCAM-1 signaling, which occurs through endothelial cell NADPH oxidase, protein kinase Cα (PKCα), and protein tyrosine phosphatase 1B (PTP1B), activates endothelial cell ERK1/2. Inhibition of these signals blocked VCAM-1 activation of ERK1/2, indicating that ERK1/2 is activated downstream of PTP1B during VCAM-1 signaling. Furthermore, VCAM-1-specific leukocyte migration under physiological laminar flow of 2 dynes/cm2 was blocked by pretreatment of endothelial cells with dominant-negative ERK2 K52R or the MEK/ERK inhibitors, PD98059 and U0126, indicating for the first time that ERK regulates VCAM-1-dependent leukocyte transendothelial migration.

Conclusions/Significance

VCAM-1 activation of endothelial cell NADPH oxidase/PKCα/PTP1B induces transient ERK1/2 activation that is necessary for VCAM-1-dependent leukocyte TEM.  相似文献   

12.

Background

Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have also demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. In this study, we examined whether EMT occurs in bleomycin (BLM) induced pulmonary fibrosis, and the involvement of bronchial epithelial cells (BECs) in the EMT. Using an α-smooth muscle actin-Cre transgenic mouse (α-SMA-Cre/R26R) strain, we labelled myofibroblasts in vivo. We also performed a phenotypic analysis of human BEC lines during TGF-β1 stimulation in vitro.

Methods

We generated the α-SMA-Cre mouse strain by pronuclear microinjection with a Cre recombinase cDNA driven by the mouse α-smooth muscle actin (α-SMA) promoter. α-SMA-Cre mice were crossed with the Cre-dependent LacZ expressing strain R26R to produce the double transgenic strain α-SMA-Cre/R26R. β-galactosidase (βgal) staining, α-SMA and smooth muscle myosin heavy chains immunostaining were carried out simultaneously to confirm the specificity of expression of the transgenic reporter within smooth muscle cells (SMCs) under physiological conditions. BLM-induced peribronchial fibrosis in α-SMA-Cre/R26R mice was examined by pulmonary βgal staining and α-SMA immunofluorescence staining. To confirm in vivo observations of BECs undergoing EMT, we stimulated human BEC line 16HBE with TGF-β1 and examined the localization of the myofibroblast markers α-SMA and F-actin, and the epithelial marker E-cadherin by immunofluorescence.

Results

βgal staining in organs of healthy α-SMA-Cre/R26R mice corresponded with the distribution of SMCs, as confirmed by α-SMA and SM-MHC immunostaining. BLM-treated mice showed significantly enhanced βgal staining in subepithelial areas in bronchi, terminal bronchioles and walls of pulmonary vessels. Some AECs in certain peribronchial areas or even a small subset of BECs were also positively stained, as confirmed by α-SMA immunostaining. In vitro, addition of TGF-β1 to 16HBE cells could also stimulate the expression of α-SMA and F-actin, while E-cadherin was decreased, consistent with an EMT.

Conclusion

We observed airway EMT in BLM-induced peribronchial fibrosis mice. BECs, like AECs, have the capacity to undergo EMT and to contribute to mesenchymal expansion in pulmonary fibrosis.  相似文献   

13.

Aims

Activation of cardiac fibroblasts into myofibroblasts constitutes a key step in cardiac remodeling after myocardial infarction (MI), due to interstitial fibrosis. Mesenchymal stem cells (MSCs) have been shown to improve post-MI remodeling an effect that is enhanced by hypoxia preconditioning (HPC). Leptin has been shown to promote cardiac fibrosis. The expression of leptin is significantly increased in MSCs after HPC but it is unknown whether leptin contributes to MSC therapy or the fibrosis process. The objective of this study was to determine whether leptin secreted from MSCs modulates cardiac fibrosis.

Methods

Cardiac fibroblast (CF) activation was induced by hypoxia (0.5% O2). The effects of MSCs on fibroblast activation were analyzed by co-culturing MSCs with CFs, and detecting the expression of α-SMA, SM22α, and collagen IαI in CFs by western blot, immunofluorescence and Sirius red staining. In vivo MSCs antifibrotic effects on left ventricular remodeling were investigated using an acute MI model involving permanent ligation of the left anterior descending coronary artery.

Results

Co-cultured MSCs decreased fibroblast activation and HPC enhanced the effects. Leptin deficit MSCs from Ob/Ob mice did not decrease fibroblast activation. Consistent with this, H-MSCs significantly inhibited cardiac fibrosis after MI and mediated decreased expression of TGF-β/Smad2 and MRTF-A in CFs. These effects were again absent in leptin-deficient MSCs.

Conclusion

Our data demonstrate that activation of cardiac fibroblast was inhibited by MSCs in a manner that was leptin-dependent. The mechanism may involve blocking TGF-β/Smad2 and MRTF-A signal pathways.  相似文献   

14.
15.

Background

Abnormalities of vascular smooth muscle cells (VSMCs) contribute to development of vascular disease. Atrial natriuretic peptide (ANP) exerts important effects on VSMCs. A common ANP molecular variant (T2238C/αANP) has recently emerged as a novel vascular risk factor.

Objectives

We aimed at identifying effects of CC2238/αANP on viability, migration and motility in coronary artery SMCs, and the underlying signaling pathways.

Methods and Results

Cells were exposed to either TT2238/αANP or CC2238/αANP. At the end of treatment, cell viability, migration and motility were evaluated, along with changes in oxidative stress pathway (ROS levels, NADPH and eNOS expression), on Akt phosphorylation and miR21 expression levels. CC2238/αANP reduced cell vitality, increased apoptosis and necrosis, increased oxidative stress levels, suppressed miR21 expression along with consistent changes of its molecular targets (PDCD4, PTEN, Bcl2) and of phosphorylated Akt levels. As a result of increased oxidative stress, CC2238/αANP markedly stimulated cell migration and increased cell contraction. NPR-C gene silencing with specific siRNAs restored cell viability, miR21 expression, and reduced oxidative stress induced by CC2238/αANP. The cAMP/PKA/CREB pathway, driven by NPR-C activation, significantly contributed to both miR21 and phosphoAkt reduction upon CC2238/αANP. miR21 overexpression by mimic-hsa-miR21 rescued the cellular damage dependent on CC2238/αANP.

Conclusions

CC2238/αANP negatively modulates viability through NPR-C/cAMP/PKA/CREB/miR21 signaling pathway, and it augments oxidative stress leading to increased migratory and vasoconstrictor effects in coronary artery SMCs. These novel findings further support a damaging role of this common αANP variant on vessel wall and its potential contribution to acute coronary events.  相似文献   

16.
Phenotypic switching of vascular smooth muscle cells (VSMCs) is known to play a key role in the development of atherosclerosis. However, the mechanisms that mediate VSMC phenotypic switching are unclear. We report here that TIPE2, the tumor necrosis factor (TNF) α-induced protein 8-like 2 (TNFAIP8L2), plays an atheroprotective role by regulating phenotypic switching of VSMCs in response to oxidized low-density lipoprotein (ox-LDL) stimuli. TIPE2-deficient VSMCs treated with ox-LDL expressed lower levels of contractile proteins such as SMαA, SM-MHC and calponin, whereas the proliferation, migration and the synthetic capacity for growth factors and cytokines were increased remarkably. Furthermore, TIPE2 inhibited VSMCs proliferation by preventing G1/S phase transition. Interestingly, these effects of TIPE2 on VSMCs were dependent on P38 and ERK1/2 kinase signals. As a result, neointima formation was accelerated in the carotid arteries of TIPE2-deficient mice. These results indicate that TIPE2 is a potential inhibitor of atherosclerosis.  相似文献   

17.

Background

Increased intra-hepatic resistance to portal blood flow is the primary factor leading to portal hypertension in cirrhosis. Up-regulated expression of cyclooxygenase-2 (COX-2) in the cirrhotic liver might be a potential target to ameliorate portal hypertension.

Objective

To verify the effect of celecoxib, a selective inhibitor of COX-2, on portal hypertension and the mechanisms behind it.

Methods

Cirrhotic liver model of rat was established by peritoneal injection of thiacetamide (TAA). 36 rats were randomly assigned to control, TAA and TAA+celecoxib groups. Portal pressures were measured by introduction of catheters into portal vein. Hepatic fibrosis was assessed by the visible hepatic fibrotic areas and mRNAs for collagen III and α-SMA. The neovasculature was determined by hepatic vascular areas, vascular casts and CD31 expression. Expressions of COX-2, vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2) and related signal molecules were quantitated.

Results

Compared with TAA group, the portal pressure in TAA+celecoxib group was significantly decreased by 17.8%, p<0.01. Celecoxib treatment greatly reduced the tortuous hepatic portal venules. The data of fibrotic areas, CD31expression, mRNA levels of α-SMA and collagen III in TAA+celecoxib group were much lower than those in TAA group, p<0.01. Furthermore, the up-regulation of hepatic mRNA and protein levels of VEGF, VEGFR-2 and COX-2 induced by TAA was significantly inhibited after celecoxib treatment. The expressions of prostaglandin E2 (PGE2), phosphorylated extracellular signal-regulated kinase (p-ERK), hypoxia-inducible factor-1α (HIF-1α), and c-fos were also down-regulated after celecoxib treatment.

Conclusions

Long term administration of celecoxib can efficiently ameliorate portal hypertension in TAA rat model by its dual inhibitory effects on the intrahepatic fibrosis and angiogenesis. The anti-angiogenesis effect afforded by celecoxib may attribute to its modulation on VEGF/VEGFR-2 through the down-regulation of integrated signal pathways involving PGE2- HIF-1α- VEGF and p-ERK- c-fos- VEGFR-2.  相似文献   

18.

Background

Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs.

Methods

BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin (α-SMA) and flow cytometry was used to assay for α-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments, we investigated the role of TGFβ2 in BEC-HLF co-cultures using monoclonal antibody inhibition.

Results

Expression of α-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs, but not different than α-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less α-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGFβ2 led to similar expression of α-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone.

Conclusion

These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGFβ2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.  相似文献   

19.

Background

Cancer Associated Fibroblasts (CAFs) are thought to regulate tumor growth and metastasis. Fibroblast Activating Protein 1 (FAP-1) is a marker for fibroblast activation and by many recognized as the main marker of CAFs. Alpha Smooth Muscle Actin (α-SMA) is a general myofibroblast marker, and can be used to identify CAFs. This study investigates the prognostic impact of FAP-1 and α-SMA in non-small cell lung cancer (NSCLC) patients and correlates their expression to 105 proteins investigated in the same cohort.

Methods

Tumor specimens from 536 NSCLC patients were obtained and tissue micro-arrays were constructed. Immunohistochemistry was used to evaluate the expression of FAP-1 and α-SMA and explore their impact on survival and association with other tumor molecular markers in NSCLC patients.

Results

High expression of FAP-1, but not α-SMA, in squamous cell carcinoma (SCC, P = 0.043, HR = 0.63 95% CI 0.40–0.99) was significantly associated with increased disease-specific survival. FAP-1 and α-SMA were not significantly correlated to each other. Analyses of FAP-1 and α-SMA associated with other tumor-related proteins revealed histotype-specific correlation patterns.

Conclusion

The presence of FAP-1 expressing CAFs is an indicator of positive outcome for NSCLC-SCC patients. In addition, correlation analyses suggest FAP-1 and α-SMA to label different subsets of fibroblasts and their associations with other tumor-related proteins diverge according to histological subtype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号