首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA), suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.  相似文献   

2.
Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction.  相似文献   

3.

Background

A large number of evidences suggest that group-I metabotropic glutamate receptors (mGluR1a, 1b, 1c, 5a, 5b) can modulate NMDA receptor activity. Interestingly, a physical link exists between these receptors through a Homer-Shank multi-protein scaffold that can be disrupted by the immediate early gene, Homer1a. Whether such a versatile link supports functional crosstalk between the receptors is unknown.

Methodology/Principal Findings

Here we used biochemical, electrophysiological and molecular biological approaches in cultured mouse cerebellar neurons to investigate this issue. We found that Homer1a or dominant negative Shank3 mutants that disrupt the physical link between the receptors allow inhibition of NMDA current by group-I mGluR agonist. This effect is antagonized by pertussis toxin, but not thapsigargin, suggesting the involvement of a G protein, but not intracellular calcium stores. Also, this effect is voltage-sensitive, being present at negative, but not positive membrane potentials. In the presence of DHPG, an apparent NMDA “tail current” was evoked by large pulse depolarization, only in neurons transfected with Homer1a. Co-immunoprecipitation experiments showed interaction between G-protein βγ subunits and NMDA receptor in the presence of Homer1a and group-I mGluR agonist.

Conclusions/Significance

Altogether these results suggest a direct inhibition of NMDA receptor-channel by Gbetagamma subunits, following disruption of the Homer-Shank3 complex by the immediate early gene Homer1a. This study provides a new molecular mechanism by which group-I mGluRs could dynamically regulate NMDA receptor function.  相似文献   

4.
Abstract: Comparisons of acute ethanol's effects on individual members of the three major families of ionotropic glutamate receptors (kainate, AMPA, and NMDA) have been performed only with recombinant receptors. However, no study has compared the acute effects of ethanol on individual members of each one of these receptor families in the same neuron. We accomplished this task by using cultured cerebellar granule neurons and LY303070 (GYKI-53784), a noncompetitive and selective AMPA receptor antagonist. Ethanol concentrations of 25, 50, 75, and 100 m M decreased the amplitude of pharmacologically isolated kainate-activated currents by 3 ± 1, 9 ± 2, 14 ± 2, and 22 ± 3% (n = 8), respectively. The magnitude of the ethanol-induced inhibition of nonselective kainate-activated currents, i.e., in the absence of LY303070, and currents activated by submaximal AMPA concentrations was not significantly different from that obtained with isolated kainate currents. However, the magnitude of the ethanol-induced inhibition of NMDA receptor-activated currents was about twofold greater than that of kainate and/or AMPA receptors.  相似文献   

5.
6.

Astrocytes support glutamatergic neurotransmission in the central nervous system through multiple mechanisms which include: (i) glutamate clearance and control over glutamate spillover due to operation of glutamate transporters; (ii) supply of obligatory glutamate precursor glutamine via operation of glutamate–glutamine shuttle; (iii) supply of l-serine, the indispensable precursor of positive NMDA receptors neuromodulator d-serine and (iv) through overall homoeostatic control of the synaptic cleft. Astroglial cells express an extended complement of ionotropic and metabotropic glutamate receptors, which mediate glutamatergic input to astrocytes. In particular a sub-population of astrocytes in the cortex and in the spinal cord express specific type of NMDA receptors assembled from two GluN1, one GluN2C or D and one GluN3 subunits. This composition underlies low Mg2+ sensitivity thus making astroglial NMDA receptors operational at resting membrane potential. These NMDA receptors generate ionic signals in astrocytes and are linked to several astroglial homoeostatic molecular cascades.

  相似文献   

7.

Background

Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs) through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood.

Methodology/Principal Findings

We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex.

Conclusions

Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.  相似文献   

8.
9.

Background

Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R) availability in the brain. Such a decrease consequently alters the ratio of D1R∶D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified.

Methods and Findings

Ethics statement: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT) and G protein coupled receptor associated sorting protein-1 (GASP-1) knock out (KO) mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine.

Conclusions

Together, our data suggests that changes in the ratio of the D1R∶D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.  相似文献   

10.
Abstract: Human NTera2 teratocarcinoma cells were differentiated into postmitotic NT2-N neurons and exposed to hypoxia for 6 h. The cultures were evaluated microscopically, and percent lactate dehydrogenase (LDH) release after 24 and 48 h was used as an assay for cell death. After 48 h LDH release was 24.3 ± 5.6% versus 13.8 ± 3.7% in controls ( p < 0.001). Cell death was greatly diminished by MK-801 pretreatment (15.4 ± 5.1%, p < 0.001). If glutamate was omitted from the medium, glutamate levels after 6 h of hypoxia were reduced from 101 ± 63 to 2.3 ± 0.3 µ M , and cell death at 48 h was also markedly reduced (15.4 ± 4.5%, p < 0.001). The α-amino-3-hydroxy-5-methylisoxazole-4-propionate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (18.7 ± 5.1%, p < 0.001) and mild hypothermia (33.5–34°C) during hypoxia (19.5 ± 2.75, p < 0.05) were moderately protective. Basic fibroblast growth factor (24.1 ± 3.2%), the nitric oxide synthase inhibitor N G-nitro- l -arginine methyl ester (22.8 ± 8.1%), the antioxidant N-tert -butyl- o -phenylnitrone (18.9 ± 5.9%), and the 21-aminosteroid U74389G (24.0 ± 3.4%) did not protect the cells. N -Acetyl- l -cysteine even tended to increase cell death (30.1 ± 2.5%, p = 0.06). Treatment with MK-801 at the end of hypoxia did not reduce cell death (23.3 ± 2.3%). In separate experiments, a 15-min exposure to 1 m M glutamate without hypoxia did not result in significant cell death (14.7 ± 2.4 vs. 12.2 ± 2.1%, p = 0.07). We conclude that, although somewhat resistant to glutamate toxicity when normoxic, NT2-N neurons die via an ionotropic glutamate receptor-mediated mechanism when exposed to hypoxia in the presence of glutamate. As far as we know, this is the first reported analysis of the mechanism of hypoxic cell death in cultured human neuronlike cells.  相似文献   

11.
12.
Persistent drug-seeking behavior is hypothesized to co-opt the brain's natural reward-motivational system. Although ventral tegmental area (VTA) dopamine (DA) neurons represent a crucial component of this system, the synaptic adaptations underlying natural rewards and drug-related motivation have not been fully elucidated. Here, we show that self-administration of cocaine, but not passive cocaine infusions, produced a persistent potentiation of VTA excitatory synapses, which was still present after 3 months abstinence. Further, enhanced synaptic function in VTA was evident even after 3 weeks of extinction training. Food or sucrose self-administration induced only a transient potentiation of VTA glutamatergic signaling. Our data show that synaptic function in VTA DA neurons is readily but reversibly enhanced by natural reward-seeking behavior, while voluntary cocaine self-administration induced a persistent synaptic enhancement that is resistant to behavioral extinction. Such persistent synaptic potentiation in VTA DA neurons may represent a fundamental cellular phenomenon driving pathological drug-seeking behavior.  相似文献   

13.
Cultured GABAergic cerebral cortex neurons were exposed to the excitatory amino acid (EAA) L-glutamate, kainate (KA), N-methyl-D-aspartate (NMDA), or RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolopropionate (AMPA). To ensure a constant glutamate concentration in the culture media during the exposure periods, the glutamate uptake inhibitor L-aspartic acid beta-hydroxamate was added at 500 microM to the cultures that were exposed to glutamate. Each of these EAAs was able to induce neurotoxicity. It was not possible to reduce or prevent glutamate-induced cytotoxicity by blocking only one of the glutamate receptor subtypes with either the NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoate (APV) or with one of the specific non-NMDA antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX). However, if the cultures were exposed simultaneously to glutamate and the antagonists in combination, i.e., APV plus CNQX or APV plus DNQX, the toxicity was completely prevented. Furthermore, CNQX and DNQX were shown to be selective blockers of cytotoxic phenomena induced by non-NMDA glutamate agonists with no effect on NMDA-induced cell death. Likewise, APV prevented NMDA-induced cell death without affecting the KA- or AMPA-induced neurotoxicity. It is concluded that EAA-dependent neurotoxicity is induced by NMDA as well as non-NMDA receptors.  相似文献   

14.
The underlying circuit imbalance in major depression remains unknown and current therapies remain inadequate for a large group of patients. Discovery of the rapid antidepressant effects of ketamine - an NMDA receptor (NMDAR) antagonist – has linked the glutamatergic system to depression. Interestingly, dysfunction in the inhibitory GABAergic system has also been proposed to underlie depression and deficits linked to GABAergic neurons have been found with human imaging and in post-mortem material from depressed patients. Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit function through perisomatic inhibition and their activity is NMDAR-dependent, providing a possible link between NMDAR and the inhibitory system in the antidepressant effect of ketamine. We have therefore investigated the role of the NMDAR-dependent activity of PV interneurons for the development of depression-like behavior as well as for the response to rapid antidepressant effects of NMDAR antagonists. We used mutant mice lacking NMDA neurotransmission specifically in PV neurons (PV-Cre+/NR1f/f) and analyzed depression-like behavior and anhedonia. To study the acute and sustained effects of a single NMDAR antagonist administration, we established a behavioral paradigm of repeated exposure to forced swimming test (FST). We did not observe altered behavioral responses in the repeated FST or in a sucrose preference test in mutant mice. In addition, the behavioral response to administration of NMDAR antagonists was not significantly altered in mutant PV-Cre+/NR1f/f mice. Our results show that NMDA-dependent neurotransmission in PV neurons is not necessary to regulate depression-like behaviors, and in addition that NMDARs on PV neurons are not a direct target for the NMDAR-induced antidepressant effects of ketamine and MK801.  相似文献   

15.
Abstract: This study was aimed at identifying the neuronal pathways that mediate the eating-induced increase in the release of dopamine in the nucleus accumbens of the rat brain. For that purpose, a microdialysis probe was implanted in the ventral tegmental area and a second probe was placed in the ipsilateral nucleus accumbens. Receptor-specific compounds acting on GABAA (40 µ M muscimol; 50 µ M bicuculline), GABAB (50 µ M baclofen), acetylcholine (50 µ M carbachol), NMDA [30 µ M (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP)], and non-NMDA [300 µ M 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] receptors were infused into the ventral tegmental area by retrograde dialysis, whereas extracellular dopamine was recorded in the ipsilateral nucleus accumbens. Intrategmental infusion of muscimol or baclofen decreased extracellular dopamine in the ipsilateral nucleus accumbens; CPP and CNQX were without effect, and bicuculline and carbachol increased dopamine release. During infusion of the various compounds, food-deprived rats were allowed to eat for 10 min. The infusions of muscimol, bicuculline, baclofen, carbachol, and CNQX did not prevent the eating-induced increase in extracellular dopamine in the nucleus accumbens. However, during intrategmental infusion of CPP, the eating-induced increase in extracellular dopamine in the nucleus accumbens was suppressed. These results indicate that a glutamatergic projection to the ventral tegmental area mediates, via an NMDA receptor, the eating-induced increase in dopamine release from mesolimbic dopamine neurons.  相似文献   

16.
Cocaine Induces Apoptosis in Cortical Neurons of Fetal Mice   总被引:6,自引:1,他引:5  
Abstract: Exposure of fetal mouse brain cocultures to cocaine results selectively in the loss of neurites followed by neuronal death. By using enriched neuronal cultures, we here demonstrate that disappearance of neurons, when cultured with cocaine, is caused by apoptosis, based on (1) characteristic morphology of apoptotic nuclei at the level of neurons but not of glial cells by optic microscopy, and on total cell pellets by electron microscopy; (2) fragmentation of total DNA with a typical "ladder" pattern on agarose gels; (3) extensive in situ DNA fragmentation labeling (TUNEL method); and (4) prevention of cell loss by cycloheximide. The major metabolites of cocaine have no detectable effects on neurons, indicating that apoptosis is due to cocaine itself. Inappropriate neuronal apoptosis in cocaine-exposed fetal brain could perturb the neurodevelopmental program and contribute to the quantitative neuronal defects that are too frequently reported in the offspring of cocaine-abusing pregnant women.  相似文献   

17.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

18.
19.
20.
《Neuron》2014,81(2):366-378
Download : Download video (32MB)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号