首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mesenchymal stem cells (MSC) are adult-derived multipotent stem cells that have been derived from almost every tissue. They are classically defined as spindle-shaped, plastic-adherent cells capable of adipogenic, chondrogenic, and osteogenic differentiation. This capacity for trilineage differentiation has been the foundation for research into the use of MSC to regenerate damaged tissues. Recent studies have shown that MSC interact with cells of the immune system and modulate their function. Although many of the details underlying the mechanisms by which MSC modulate the immune system have been defined for human and rodent (mouse and rat) MSC, much less is known about MSC from other veterinary species. This knowledge gap is particularly important because the clinical use of MSC in veterinary medicine is increasing and far exceeds the use of MSC in human medicine. It is crucial to determine how MSC modulate the immune system for each animal species as well as for MSC derived from any given tissue source. A comparative approach provides a unique translational opportunity to bring novel cell-based therapies to the veterinary market as well as enhance the utility of animal models for human disorders. The current review covers what is currently known about MSC and their immunomodulatory functions in veterinary species, excluding laboratory rodents.Abbreviations: AT, adipose tissue; BM, Bone marrow; CB, umbilical cord blood; CT, umbilical cord tissue; DC, dendritic cell; IDO, indoleamine 2;3-dioxygenase; MSC, mesenchymal stem cells; PGE2, prostaglandin E2; VEGF, vascular endothelial growth factorMesenchymal stem cells (MSC, alternatively known as mesenchymal stromal cells) were first reported in the literature in 1968.39 MSC are thought to be of pericyte origin (cells that line the vasculature)21,22 and typically are isolated from highly vascular tissues. In humans and mice, MSC have been isolated from fat, placental tissues (placenta, Wharton jelly, umbilical cord, umbilical cord blood), hair follicles, tendon, synovial membrane, periodontal ligament, and every major organ (brain, spleen, liver, kidney, lung, bone marrow, muscle, thymus, pancreas, skin).23,121 For most current clinical applications, MSC are isolated from adipose tissue (AT), bone marrow (BM), umbilical cord blood (CB), and umbilical cord tissue (CT; 11,87,99 Clinical trials in human medicine focus on the use of MSC both for their antiinflammatory properties (graft-versus-host disease, irritable bowel syndrome) and their ability to aid in tissue and bone regeneration in combination with growth factors and bone scaffolds (clinicaltrials.gov).131 For tissue regeneration, the abilities of MSC to differentiate and to secrete mediators and interact with cells of the immune system likely contribute to tissue healing (Figure 1). The current review will not address the specific use of MSC for orthopedic applications and tissue regeneration, although the topic is covered widely in current literature for both human and veterinary medicine.57,62,90

Table 1.

Tissues from which MSC have been isolated
Tissue source (reference no.)
SpeciesFatBone marrowCord bloodCord tissueOther
Cat1348356
Chicken63
Cow13812108
Dog973, 5978, 119139Periodontal ligament65
Goat66964
Horse26, 13037, 40, 12367130Periodontal ligament and gingiva88
Nonhuman primate28, 545
Pig1351147014, 20, 91
Rabbit1288032Fetal liver93
Sheep849542, 55
Open in a separate windowOpen in a separate windowFigure 1.The dual roles of MSC: differentiation and modulation of inflammation.Long-term studies in veterinary species have shown no adverse effects with the administration of MSC in a large number of animals.9,10,53 Smaller, controlled studies on veterinary species have shown few adverse effects, such as minor localized inflammation after MSC administration in vivo.7,15,17,45,86,92,98 Private companies, educational institutions, and private veterinary clinics (including Tufts University, Cummins School of Veterinary Medicine, University of California Davis School of Veterinary Medicine, VetStem, Celavet, Alamo Pintado Equine Medical Center, and Rood and Riddle Equine Hospital) offer MSC as a clinical treatment for veterinary species. Clinical uses include tendon and cartilage injuries, tendonitis, and osteoarthritis and, to a lesser extent, bone regeneration, spinal cord injuries, and liver disease in both large and small animals.38,41,113 Even with this broad clinical use, there have been no reports of severe adverse effects secondary to MSC administration in veterinary patients.  相似文献   

2.
Identification of the select agent Burkholderia pseudomallei in macaques imported into the United States is rare. A purpose-bred, 4.5-y-old pigtail macaque (Macaca nemestrina) imported from Southeast Asia was received from a commercial vendor at our facility in March 2012. After the initial acclimation period of 5 to 7 d, physical examination of the macaque revealed a subcutaneous abscess that surrounded the right stifle joint. The wound was treated and resolved over 3 mo. In August 2012, 2 mo after the stifle joint wound resolved, the macaque exhibited neurologic clinical signs. Postmortem microbiologic analysis revealed that the macaque was infected with B. pseudomallei. This case report describes the clinical evaluation of a B. pseudomallei-infected macaque, management and care of the potentially exposed colony of animals, and protocols established for the animal care staff that worked with the infected macaque and potentially exposed colony. This article also provides relevant information on addressing matters related to regulatory issues and risk management of potentially exposed animals and animal care staff.Abbreviations: CDC, Centers for Disease Control and Prevention; IHA, indirect hemagglutination assay; PEP, postexposure prophylacticBurkholderia pseudomallei, formerly known as Pseudomonas pseudomallei, is a gram-negative, aerobic, bipolar, motile, rod-shaped bacterium. B. pseudomallei infections (melioidosis) can be severe and even fatal in both humans and animals. This environmental saprophyte is endemic to Southeast Asia and northern Australia, but it has also been found in other tropical and subtropical areas of the world.7,22,32,42 The bacterium is usually found in soil and water in endemic areas and is transmitted to humans and animals primarily through percutaneous inoculation, ingestion, or inhalation of a contaminated source.8, 22,28,32,42 Human-to-human, animal-to-animal, and animal-to-human spread are rare.8,32 In December 2012, the National Select Agent Registry designated B. pseudomallei as a Tier 1 overlap select agent.39 Organisms classified as Tier 1 agents present the highest risk of deliberate misuse, with the most significant potential for mass casualties or devastating effects to the economy, critical infrastructure, or public confidence. Select agents with this status have the potential to pose a severe threat to human and animal health or safety or the ability to be used as a biologic weapon.39Melioidosis in humans can be challenging to diagnose and treat because the organism can remain latent for years and is resistant to many antibiotics.12,37,41 B. pseudomallei can survive in phagocytic cells, a phenomenon that may be associated with latent infections.19,38 The incubation period in naturally infected animals ranges from 1 d to many years, but symptoms typically appear 2 to 4 wk after exposure.13,17,35,38 Disease generally presents in 1 of 2 forms: localized infection or septicemia.22 Multiple methods are used to diagnose melioidosis, including immunofluorescence, serology, and PCR analysis, but isolation of the bacteria from blood, urine, sputum, throat swabs, abscesses, skin, or tissue lesions remains the ‘gold standard.’9,22,40,42 The prognosis varies based on presentation, time to diagnosis, initiation of appropriate antimicrobial treatment, and underlying comorbidities.7,28,42 Currently, there is no licensed vaccine to prevent melioidosis.There are several published reports of naturally occurring melioidosis in a variety of nonhuman primates (NHP; 2,10,13,17,25,30,31,35 The first reported case of melioidosis in monkeys was recorded in 1932, and the first published case in a macaque species was in 1966.30 In the United States, there have only been 7 documented cases of NHP with B. pseudomallei infection.2,13,17 All of these cases occurred prior to the classification of B. pseudomallei as a select agent. Clinical signs in NHP range from subclinical or subacute illness to acute septicemia, localized infection, and chronic infection. NHP with melioidosis can be asymptomatic or exhibit clinical signs such as anorexia, wasting, purulent drainage, subcutaneous abscesses, and other soft tissue lesions. Lymphadenitis, lameness, osteomyelitis, paralysis and other CNS signs have also been reported.2,7,10,22,28,32 In comparison, human''s clinical signs range from abscesses, skin ulceration, fever, headache, joint pain, and muscle tenderness to abdominal pain, anorexia, respiratory distress, seizures, and septicemia.7,9,21,22

Table 1.

Summary of reported cases of naturally occurring Burkholderia pseudomalleiinfections in nonhuman primates
CountryaImported fromDate reportedSpeciesReference
AustraliaBorneo1963Pongo sp.36
BruneiUnknown1982Orangutan (Pongo pygmaeus)33
France1976Hamlyn monkey (Cercopithecus hamlyni) Patas monkey (Erythrocebus patas)11
Great BritainPhilippines and Indonesia1992Cynomolgus monkey (Macaca fascicularis)10
38
MalaysiaUnknown1966Macaca spp.30
Unknown1968Spider monkey (Brachytelis arachnoides) Lar gibbon (Hylobates lar)20
Unknown1969Pig-tailed macaque (Macaca nemestrina)35
Unknown1984Banded leaf monkey (Presbytis melalophos)25
SingaporeUnknown1995Gorillas, gibbon, mandrill, chimpanzee43
ThailandUnknown2012Monkey19
United StatesThailand1970Stump-tailed macaque (Macaca arctoides)17
IndiaPig-tailed macaque (Macaca nemestrina)
AfricaRhesus macaque (Macaca mulatta) Chimpanzee (Pan troglodytes)
Unknown1971Chimpanzee (Pan troglodytes)3
Malaysia1981Pig-tailed macaque (Macaca nemestrina)2
Wild-caught, unknown1986Rhesus macaque (Macaca mulatta)13
Indonesia2013Pig-tailed macaque (Macaca nemestrina)Current article
Open in a separate windowaCountry reflects the location where the animal was housed at the time of diagosis.Here we describe a case of melioidosis diagnosed in a pigtail macaque (Macaca nemestrina) imported into the United States from Indonesia and the implications of the detection of a select agent identified in a laboratory research colony. We also discuss the management and care of the exposed colony, zoonotic concerns regarding the animal care staff that worked with the shipment of macaques, effects on research studies, and the procedures involved in reporting a select agent incident.  相似文献   

3.
4.
5.
Carbohydrate-active enzyme glycosyltransferase family 8 (GT8) includes the plant galacturonosyltransferase1-related gene family of proven and putative α-galacturonosyltransferase (GAUT) and GAUT-like (GATL) genes. We computationally identified and investigated this family in 15 fully sequenced plant and green algal genomes and in the National Center for Biotechnology Information nonredundant protein database to determine the phylogenetic relatedness of the GAUTs and GATLs to other GT8 family members. The GT8 proteins fall into three well-delineated major classes. In addition to GAUTs and GATLs, known or predicted to be involved in plant cell wall biosynthesis, class I also includes a lower plant-specific GAUT and GATL-related (GATR) subfamily, two metazoan subfamilies, and proteins from other eukaryotes and cyanobacteria. Class II includes galactinol synthases and plant glycogenin-like starch initiation proteins that are not known to be directly involved in cell wall synthesis, as well as proteins from fungi, metazoans, viruses, and bacteria. Class III consists almost entirely of bacterial proteins that are lipooligo/polysaccharide α-galactosyltransferases and α-glucosyltransferases. Sequence motifs conserved across all GT8 subfamilies and those specific to plant cell wall-related GT8 subfamilies were identified and mapped onto a predicted GAUT1 protein structure. The tertiary structure prediction identified sequence motifs likely to represent key amino acids involved in catalysis, substrate binding, protein-protein interactions, and structural elements required for GAUT1 function. The results show that the GAUTs, GATLs, and GATRs have a different evolutionary origin than other plant GT8 genes, were likely acquired from an ancient cyanobacterium (Synechococcus) progenitor, and separate into unique subclades that may indicate functional specialization.Plant cell walls are composed of three principal types of polysaccharides: cellulose, hemicellulose, and pectin. Studying the biosynthesis and degradation of these biopolymers is important because cell walls have multiple roles in plants, including providing structural support to cells and defense against pathogens, serving as cell-specific developmental and differentiation markers, and mediating or facilitating cell-cell communication. In addition to their important roles within plants, cell walls also have many economic uses in human and animal nutrition and as sources of natural textile fibers, paper and wood products, and components of fine chemicals and medicinal products. The study of the biosynthesis and biodegradation of plant cell walls has become even more significant because cell walls are the major components of biomass (Mohnen et al., 2008), which is the most promising renewable source for the production of biofuels and biomaterials (Ragauskas et al., 2006; Pauly and Keegstra, 2008). Analyses of fully sequenced plant genomes have revealed that they encode hundreds or even thousands of carbohydrate-active enzymes (CAZy; Henrissat et al., 2001; Yokoyama and Nishitani, 2004; Geisler-Lee et al., 2006). Most of these CAZy enzymes (Cantarel et al., 2009) are glycosyltransferases (GTs) or glycoside hydrolases, which are key players in plant cell wall biosynthesis and modification (Cosgrove, 2005).The CAZy database is classified into 290 protein families (www.cazy.org; release of September 2008), of which 92 are GT families (Cantarel et al., 2009). A number of the GT families have been previously characterized to be involved in plant cell wall biosynthesis. For example, the GT2 family is known to include cellulose synthases and some hemicellulose backbone synthases (Lerouxel et al., 2006), such as mannan synthases (Dhugga et al., 2004; Liepman et al., 2005), putative xyloglucan synthases (Cocuron et al., 2007), and mixed linkage glucan synthases (Burton et al., 2006). With respect to the synthesis of xylan, a type of hemicellulose, four Arabidopsis (Arabidopsis thaliana) proteins from the GT43 family, irregular xylem 9 (IRX9), IRX14, IRX9-L, and IRX14-L, and two proteins from the GT47 family, IRX10 and IRX10-L, are candidates (York and O''Neill, 2008) for glucuronoxylan backbone synthases (Brown et al., 2007, 2009; Lee et al., 2007a; Peña et al., 2007; Wu et al., 2009). In addition, three proteins have been implicated in the synthesis of an oligosaccharide thought to act either as a primer or terminator in xylan synthesis (Peña et al., 2007): two from the GT8 family (IRX8/GAUT12 [Persson et al., 2007] and PARVUS/GATL1 [Brown et al., 2007; Lee et al., 2007b]) and one from the GT47 family (FRA8/IRX7 [Zhong et al., 2005]).The GT families involved in the biosynthesis of pectins have been relatively less studied until recently. In 2006, a gene in CAZy family GT8 was shown to encode a functional homogalacturonan α-galacturonosyltransferase, GAUT1 (Sterling et al., 2006). GAUT1 belongs to a 25-member gene family in Arabidopsis, the GAUT1-related gene family, that includes two distinct but closely related families, the galacturonosyltransferase (GAUT) genes and the galacturonosyltransferase-like (GATL) genes (Sterling et al., 2006). Another GAUT gene, GAUT8/QUA1, has been suggested to be involved in pectin and/or xylan synthesis, based on the phenotypes of plant lines carrying mutations in this gene (Bouton et al., 2002; Orfila et al., 2005). It has further been suggested that multiple members of the GT8 family are galacturonosyltransferases involved in pectin and/or xylan biosynthesis (Mohnen, 2008; Caffall and Mohnen, 2009; Caffall et al., 2009).Aside from the 25 GAUT and GATL genes, Arabidopsis has 16 other family GT8 genes, according to the CAZy database, which do not seem to have the conserved sequence motifs found in GAUTs and GATLs: HxxGxxKPW and GLG (Sterling et al., 2006). Eight of these 16 genes are annotated as galactinol synthase (GolS) by The Arabidopsis Information Resource (TAIR; www.arabidopsis.org), and three of these AtGolS enzymes have been implicated in the synthesis of raffinose family oligosaccharides that are associated with stress tolerance (Taji et al., 2002). The other eight Arabidopsis GT8 genes are annotated as plant glycogenin-like starch initiation proteins (PGSIPs) in TAIR. PGSIPs have been proposed to be involved in the synthesis of primers necessary for starch biosynthesis (Chatterjee et al., 2005). Hence, the GT8 family is a protein family consisting of enzymes with very distinct proven and proposed functions. Indeed, a suggestion has been made to split the GT8 family into two groups (Sterling et al., 2006), namely, the cell wall biosynthesis-related genes (GAUTs and GATLs) and the non-cell wall synthesis-related genes (GolSs and PGSIPs).We are interested in further defining the functions of the GAUT and GATL proteins in plants, in particular their role(s) in plant cell wall synthesis. The apparent disparate functions of the GT8 family (i.e. the GAUTs and GATLs as proven and putative plant cell wall polysaccharide biosynthetic α-galacturonosyltransferases, the eukaryotic GolSs as α-galactosyltransferases that synthesize the first step in the synthesis of the oligosaccharides stachyose and raffinose, the putative PGSIPs, and the large bacterial GT8 family of diverse α-glucosyltransferases and α-galactosyltransferases involved in lipopolysaccharide and lipooligosaccharide synthesis) indicate that the GT8 family members are involved in several unique types of glycoconjugate and glycan biosynthetic processes (Yin et al., 2010). This observation led us to ask whether any of the GT8 family members are sufficiently closely related to GAUT and GATL genes to be informative regarding GAUT or GATL biosynthetic function(s) and/or mechanism(s).To investigate the relatedness of the members of the GT8 gene family, we carried out a detailed phylogenetic analysis of the entire GT8 family in 15 completely sequenced plant and green algal genomes (
AbbreviationCladeSpeciesGenome PublishedDownloaded from
mpcGreen algaeMicromonas pusilla CCMP1545Worden et al. (2009)JGI version 2.0
mprGreen algaeMicromonas strain RCC299Worden et al. (2009)JGI version 2.0
olGreen algaeOstreococcus lucimarinusPalenik et al. (2007)JGI version 1.0
otGreen algaeOstreococcus tauriDerelle et al. (2006)JGI version 1.0
crGreen algaeChlamydomonas reinhardtiiMerchant et al. (2007)JGI version 3.0
vcGreen algaeVolvox carteri f. nagariensisNoJGI version 1.0
ppMossPhyscomitrella patens ssp. patensRensing et al. (2008)JGI version 1.1
smSpike mossSelaginella moellendorffiiNoJGI version 1.0
ptDicotPopulus trichocarpaTuskan et al. (2006)JGI version 1.1
atDicotArabidopsis thalianaArabidopsis Genome Initiative (2000)TAIR version 9.0
vvDicotVitis viniferaJaillon et al. (2007)http://www.genoscope.cns.fr/
gmDicotGlycine maxSchmutz et al. (2010)JGI version 1.0
osMonocotOryza sativaGoff et al. (2002); Yu et al. (2002)TIGR version 6.1
sbMonocotSorghum bicolorPaterson et al. (2009)JGI version 1.0
bdMonocotBrachypodium distachyonVogel et al. (2010)JGI version 1.0
Open in a separate window  相似文献   

6.
The cell biology of disease: The cellular and molecular basis for malaria parasite invasion of the human red blood cell     
Alan F. Cowman  Drew Berry  Jake Baum 《The Journal of cell biology》2012,198(6):961-971
  相似文献   

7.
The Golgi and the centrosome: building a functional partnership     
Christine Sütterlin  Antonino Colanzi 《The Journal of cell biology》2010,188(5):621-628
The mammalian Golgi apparatus is characterized by a ribbon-like organization adjacent to the centrosome during interphase and extensive fragmentation and dispersal away from the centrosome during mitosis. It is not clear whether this dynamic association between the Golgi and centrosome is of functional significance. We discuss recent findings indicating that the Golgi–centrosome relationship may be important for directional protein transport and centrosome positioning, which are both required for cell polarization. We also summarize our current knowledge of the link between Golgi organization and cell cycle progression.

Introduction

The Golgi apparatus plays a central role in the secretory pathway. Newly synthesized proteins are transported from the ER to the Golgi, where they are posttranslationally modified. They are sorted into carriers for delivery to the plasma membrane or the endosomal–lysosomal system. The basic structural unit of the Golgi apparatus is a stack of flattened cisternae that is morphologically conserved among most species. In mammalian cells, individual Golgi stacks are connected laterally to form a continuous membranous system called the Golgi ribbon, which is located in close physical proximity to the centrosome (Fig. 1, left).Open in a separate windowFigure 1.The spatial relationship between the Golgi and the centrosome during the mammalian cell cycle. Golgi (red, stained with antibodies to GM130) and centrosome (green, stained with antibodies to centrin) staining of nonsynchronized bone cancer cells (U2-OS) shows the physical proximity between these two organelles during interphase (left) and its temporary loss during mitosis (right). Bar, 10 µm.The centrosome functions as the major microtubule-organizing center of the cell and plays an important role in cell polarization and ciliogenesis (Bettencourt-Dias and Glover, 2007). In a newly formed daughter cell, this nonmembrane-bound organelle is composed of a pair of centrioles that is surrounded by a cloud of electron-dense material called the pericentriolar matrix. γ-Tubulin ring complexes (γ-TuRCs) in the pericentriolar matrix allow the centrosome to nucleate the radial array of interphase microtubules whose minus ends are embedded in the centrosome and whose plus ends extend toward the cell periphery. After centrosome duplication in S phase, the two centrosomes move to opposite poles of the cell and become the spindle poles from which spindle microtubules grow. Centrosomes are generally located in the cell center close to the nucleus, although this central position is lost in response to a polarization stimulus, which prompts centrosomes to reorient toward the leading edge of the cell (Pouthas et al., 2008). In most cell types, centrosome reorientation is critical for the ability of cells to polarize and migrate (Yvon et al., 2002). The centrosome is also linked to ciliogenesis because one of its centrioles is converted into the basal body from which a primary cilium extends (D''Angelo and Franco, 2009).The spatial relationship between the Golgi apparatus and the centrosome is altered by changes in Golgi organization that occur during the cell cycle (Fig. 1). These two organelles are only adjacent in interphase when the Golgi apparatus is arranged as a ribbon in the pericentriolar region (Colanzi et al., 2003). In contrast, Golgi membranes are fragmented and dispersed throughout the cytoplasm during mitosis. Intriguingly, the pericentriolar localization of the Golgi is a feature typical of some eukaryotic cells, ranging from mammalian and amphibian cells (Thyberg and Moskalewski, 1999; Reilein et al., 2003) to amoeba (Rehberg et al., 2005). However, other eukaryotes, including plants and flies, have isolated Golgi stacks (Stanley et al., 1997; Nebenführ and Staehelin, 2001) or isolated cisternae in the case of Saccharomyces cerevisiae that are scattered throughout the cytoplasm without an obvious connection with the centrosome (Preuss et al., 1992).In this paper, we review recent findings indicating that the relationship between the Golgi and the centrosome in interphase is important for cell polarization. We also summarize the current understanding of how Golgi–centrosome interactions during mitosis affect cell division.

Are there functional interactions between the Golgi and the centrosome during interphase?

Golgi membranes are actively positioned in the pericentriolar position.

The localization of the mammalian Golgi ribbon next to the centrosome requires the microtubule and actin cytoskeleton (Brownhill et al., 2009). Microtubules have a dual role in organizing the pericentriolar Golgi ribbon. First, the subset of microtubules that is nucleated at the Golgi is necessary for the assembly of Golgi fragments into a connected ribbon in the cell periphery (Miller et al., 2009). Second, centrosomal microtubules provide the tracks along which Golgi membranes are transported to the cell center (Cole et al., 1996). Both steps depend on the minus end–directed motor complex dynein (Burkhardt et al., 1997; Miller et al., 2009). The actin cytoskeleton is also involved in localizing Golgi membranes. Actin fibers, which have been detected at the Golgi complex, are required for the maintenance of the pericentriolar position of this organelle by providing tracks for actin-based motors (Valderrama et al., 1998; Sahlender et al., 2005; Vicente-Manzanares et al., 2007). Actin fibers and microtubules are coordinated by proteins that associate with both cytoskeletal elements such as WHAMM, a Golgi-bound actin-nucleating factor, and MACF1, a microtubule–actin cross-linking protein (Lin et al., 2005; Campellone et al., 2008).Golgi organization and localization in the pericentriolar region also depend on Golgi-associated proteins (Ramirez and Lowe, 2009). Their depletion produces defects in Golgi organization ranging from a disconnected Golgi ribbon in the pericentriolar region (Puthenveedu et al., 2006) to dispersed ministacks in the cytoplasm (Diao et al., 2003; Yadav et al., 2009).

Table I.

Golgi-associated proteins that control the pericentriolar position of the Golgi apparatus
Golgi-associated proteinsReference
Structural Golgi proteins
Cog3Zolov and Lupashin, 2005
GCC185Derby et al., 2007
GCP60 (ACBD3)Sohda et al., 2001
GM130Marra et al., 2007
Golgin-45Short et al., 2001
Golgin-84Diao et al., 2003
Golgin-97Lu et al., 2004
Golgin-160Yadav et al., 2009
Golgin-245Yoshino et al., 2005
GRASP55Feinstein and Linstedt, 2008
GRASP65Puthenveedu et al., 2006
p115Sohda et al., 2005
Membrane traffic
RINT-1Sun et al., 2007
Syntaxin 5Suga et al., 2005
ZW10Sun et al., 2007
Cytoskeleton regulators and motors
ARHGAP10Dubois et al., 2005
CG-NAP/AKAP450Takahashi et al., 1999
CLASP2Efimov et al., 2007
Coronin 7Rybakin et al., 2006
GMAP-210Ríos et al., 2004
FTCDGao and Sztul, 2001
Hook3Walenta et al., 2001
MACF1bLin et al., 2005
Myosin IIVicente-Manzanares et al., 2007
Myosin VISahlender et al., 2005
OptineurinSahlender et al., 2005
p50/dynamitinRoghi and Allan, 1999
WHAMMCampellone et al., 2008
Kinases and enzymes
Cdk5 (kinase)Sun et al., 2008
ORP9 (lipid transfer)Ngo and Ridgway, 2009
PKA (kinase)Bejarano et al., 2006
PKD1 (kinase)Díaz Añel and Malhotra, 2005
Sac1 (PI phosphatase)Liu et al., 2008
Open in a separate windowAlthough the position of the Golgi next to the centrosome is actively maintained, it does not appear to be critical for basic Golgi functions. For example, membrane trafficking and the modification of secretory proteins are unaffected when the Golgi ribbon is severed into individual ministacks (Cole et al., 1996; Diao et al., 2003; Yadav et al., 2009). Furthermore, organisms such as S. cerevisiae secrete proteins with high efficiency, although their Golgi membranes are never pericentriolar (Preuss et al., 1992). Thus, the physiological role of the pericentrosomal positioning of the mammalian Golgi apparatus remains a major unanswered question.

An emerging role for Golgi–centrosome association in polarized secretion.

New studies indicate that the relationship between the Golgi and the centrosome may be important for specialized functions of mammalian cells. A prominent example is cell polarization, which is a prerequisite for cell migration (Li et al., 2005). Cell polarization depends on directional protein transport along Golgi-nucleated microtubules as well as centrosome reorientation toward the leading edge of the cell, which both appear to be affected by interactions between the Golgi and the centrosome.In a recent study, Yadav et al. (2009) investigated the role of the pericentriolar Golgi ribbon in directional transport and cell polarization. Depletion of each of the two structural proteins of the golgin family, GMAP210 and Golgin-160, disrupted the ribbon-like structure of the Golgi and led to isolated ministacks in the cytoplasm. These dispersed stacks were competent of general protein transport to the cell surface. However, there were defects in directional protein transport, as shown by the failure to secrete vesicular stomatitis virus G protein in a directional manner toward the leading edge of a cell and the inability of these cells to migrate in a wound-healing assay. These results indicate that the pericentriolar Golgi ribbon is critical for directional protein transport, although it is not clear whether it is the ribbon-like organization or the position next to the centrosome that is important.Golgi–centrosome interactions may also contribute to cell polarization through regulatory effects on centrosome positioning. Both the centrosome and the Golgi apparatus undergo reorientation toward the leading edge of a stimulated cell. Bisel et al. (2008) found that centrosome reorientation depends on phosphorylation of the Golgi protein GRASP65, which is proposed to promote Golgi stack disassembly (Wang et al., 2003; Yoshimura et al., 2005). In this study, expression of nonphosphorylatable forms of GRASP65 prevented Golgi and centrosome reorientation toward the leading edge and cell migration. Intriguingly, this block was overcome when Golgi membranes were artificially fragmented, indicating that Golgi membranes have to be remodeled to allow the coordinated reorientation of the centrosome and the Golgi. Thus, the ability of the Golgi to reorganize affects the positioning of the centrosome (Bisel et al., 2008).The peripheral Golgi protein, GM130, is an additional critical factor in the regulation of cell polarization (Preisinger et al., 2004; Kodani et al., 2009; Rivero et al., 2009). There are at least four reasons to explain why depletion of GM130 prevents cells from polarizing and migrating in wound-healing assays (Kodani et al., 2009). First, Kodani and Sütterlin (2008) showed that GM130 depletion altered the organization of the centrosome so that it was no longer able to nucleate microtubules or to reorient in response to a polarization stimulus. Second, GM130-dependent centrosome regulation involved the small GTPase Cdc42 (Kodani et al., 2009), a known regulator of cell polarization (Etienne-Manneville, 2006; Kodani et al., 2009). Third, Rivero et al. (2009) identified a novel role for GM130 in microtubule nucleation at the Golgi, which required GM130-dependent recruitment of the microtubule nucleation factor AKAP450 to the Golgi (Rivero et al., 2009). Golgi-nucleated microtubules, which were first identified in in vitro studies (Chabin-Brion et al., 2001), are preferentially oriented toward the leading edge of a motile cell and are necessary for directional protein transport (Fig. 2; Rivero et al., 2009). Fourth, GM130 binds and activates the protein kinase YSK1, which has a known role in cell migration (Preisinger et al., 2004). Thus, GM130 may affect cell polarization and migration through effects on centrosome organization, Cdc42 activation, microtubule nucleation at the Golgi, and YSK1 activation.Open in a separate windowFigure 2.Golgi- and centrosome-nucleated microtubules in cell migration. The centrosome nucleates a radial array of microtubules (red) whose minus ends (−) are anchored at the centrosome and whose plus ends (+) extend into the cell periphery. This population of microtubules depends on γ-TuRC complexes and the large scaffold protein AKAP450 for their nucleation and functions in maintaining the pericentriolar localization of the Golgi ribbon by a dynein-mediated mechanism (closed arrows). In contrast, the Golgi apparatus nucleates microtubules (brown) that extend asymmetrically toward the leading edge of a migrating cell. Microtubule nucleation at the Golgi requires the peripheral Golgi protein GM130, which recruits AKAP450 and γ-TuRC complexes to the Golgi apparatus. Golgi-nucleated microtubules are coated with CLASP proteins and are necessary for the formation of the Golgi ribbon from dispersed stacks. In addition, they are required for cell migration by facilitating polarized protein transport to the leading edge of a cell (open arrows).The formation of a primary cilium is another process that involves interactions between the Golgi and the centrosome. During ciliogenesis, the centrosome moves to the plasma membrane, where one of its centrioles becomes the basal body from which the primary cilium extends. IFT20, a critical component of the intraflagellar transport machinery that is required for formation and extension of the cilium (Follit et al., 2006), localizes to the Golgi by binding to the structural Golgi protein GMAP210. Loss of either IFT20 or GMAP210 impairs ciliogenesis (Follit et al., 2006, 2008), which supports a role for Golgi-localized IFT20 in protein sorting at the Golgi to produce transport carriers involved in the formation of a primary cilium. A similar role in directing specific cargo molecules to the ciliary membrane has been proposed for the small GTPase Rab8, which also localizes to the Golgi and the basal body (Nachury et al., 2007). Collectively, these new findings are intriguing, as they provide support for a functional link between the Golgi and the centrosome.

Are there functional interactions between the Golgi and the centrosome during mitosis?

Regulation of mitotic Golgi reorganization from the centrosome.

The physical proximity of the Golgi apparatus and the centrosome is transiently lost during mitosis when Golgi membranes undergo extensive fragmentation. This dramatic change in Golgi structure is concomitant with a block in secretory trafficking and the reorganization of the microtubule cytoskeleton (Colanzi et al., 2003). Although the Golgi and the centrosome are physically separate at this stage of the cell cycle, there is evidence for functional interactions between these two organelles, which may control progression through mitosis.Many studies have identified possible links between mitotic Golgi fragmentation and the centrosome. For instance, breaking the Golgi ribbon into its constituent stacks during G2 requires the activity of the protein kinase Plk3 (Xie et al., 2004; López-Sánchez et al., 2009), which localizes to the centrosome and spindle poles (Xie et al., 2004; Jiang et al., 2006). The subsequent conversion of Golgi stacks into small, highly dispersed fragments (Jesch et al., 2001; Altan-Bonnet et al., 2006) and vesicular/tubular clusters next to astral spindle microtubules (Shima et al., 1998; Wei and Seemann, 2009) is regulated by two mitotic kinases, Cdk1 and Plk1, which are both associated with the centrosome (Fig. 3; Bailly et al., 1989; Dai and Cogswell, 2003). These findings suggest that components of the centrosome, spindle poles, or the spindle may initiate a signaling pathway that leads to the fragmentation of the Golgi and that may help coordinate Golgi dynamics with cell cycle progression. However, these regulatory factors also exist in the cytosol, and possible roles of cytosolic pools of Cdk1 and Plk3 in mitotic Golgi fragmentation have not been excluded.Open in a separate windowFigure 3.Golgi fragmentation during mitosis. The mammalian Golgi apparatus (green) forms an interconnected ribbon adjacent to the centrosome (red) and the nucleus (blue). It nucleates a population of microtubules that is necessary for polarized protein transport. Plus (+) and minus ends (−) are indicated. The activities of the protein kinases Plk3 and MEK1 and the fission protein BARS are required to convert the ribbon structure into isolated stacks in late G2 and prophase. In metaphase, the isolated stacks are further fragmented by a Plk1- and Cdk1-dependent mechanism, producing vesicular/tubular membranes that are dispersed throughout the cytoplasm. During this process, ribbon determinants, which are proteins required for postmitotic Golgi ribbon formation, remain associated with the mitotic spindle for their partitioning into daughter cells. Centrosome-associated regulators of mitotic Golgi fragmentation are labeled in red. Regulators of Golgi fragmentation that are not associated with the centrosome are labeled in black.Further support for functional interactions between the Golgi and the centrosome during mitosis stems from a novel study on spindle-dependent reassembly of the Golgi ribbon after mitosis (Wei and Seemann, 2009). In a series of elegant experiments, Wei and Seemann (2009) demonstrated that the spindle is required for the postmitotic reformation of the Golgi ribbon. They induced asymmetric cell division so that the entire spindle segregated into only one daughter cell. Although Golgi membranes assembled into stacks in both daughter cells, they only formed a ribbon in the cell that inherited the spindle. Ribbon formation in the spindle-free cell required coinjection of Golgi extracts and tubulin or the addition of spindle-containing fractions. Collectively, these results suggest that Golgi ribbon formation occurs in two steps, with the initial assembly into stacks being mediated by factors that are partitioned by a spindle-independent mechanism. The subsequent formation of the Golgi ribbon from individual stacks, however, has an additional requirement for ribbon determinants, which are likely to be Golgi-associated proteins inherited with the spindle. Possible candidates include regulators of Golgi dynamics and the secretory pathway that have been identified in preparations of the spindle matrix (Ma et al., 2009).

Significance of the loss of Golgi–centrosome proximity during mitosis.

Several studies have identified an unexpected link between mitotic Golgi fragmentation and cell cycle progression (Sütterlin et al., 2002; Hidalgo Carcedo et al., 2004; Preisinger et al., 2005). For example, interfering with mitotic Golgi disassembly by blocking the function of the peripheral Golgi protein GRASP65 or the fission protein BARS resulted in cell cycle arrest in G2 (Sütterlin et al., 2002; Hidalgo Carcedo et al., 2004). Intriguingly, breaking the ribbon into isolated stacks, which occurs in G2, is sufficient to overcome this cell cycle arrest and allows cells to enter mitosis (Colanzi et al., 2007; Feinstein and Linstedt, 2007). It is not known how and why the presence of an intact pericentriolar Golgi ribbon prevents mitotic entry. The existence of a Golgi checkpoint, which monitors the correct inheritance of the Golgi complex, has been proposed because these inhibitory effects are not caused by activation of the DNA damage checkpoint (Sütterlin et al., 2002; Hidalgo Carcedo et al., 2004). It is conceivable that severing the Golgi ribbon in G2 separates ribbon determinants from the rest of the Golgi so that they can cosegregate with the spindle (Fig. 3). Such a mechanism for spindle-dependent Golgi inheritance would ensure that both daughter cells inherit the ability to form a Golgi ribbon and, thus, to transport proteins in a polarized manner. By analogy to the spindle checkpoint, which controls the exit from mitosis by monitoring the correct binding of spindle microtubules to kinetochores, this Golgi checkpoint may assess binding of spindle microtubules to these putative ribbon determinants to regulate entry into mitosis.

Golgi-dependent regulation of the spindle and mitotic progression.

A series of recent studies has identified a requirement for specific Golgi-associated proteins in the formation of a bipolar spindle (Chang et al., 2005), the putative Golgi stacking factor, GRASP65 (Sütterlin et al., 2005), a regulator of the spindle checkpoint, RINT-1 (Lin et al., 2007), and the phosphatidylinositide phosphatase, Sac1 (Burakov et al., 2008). Depletion of any one of these proteins leads to multipolar spindles and mitotic cell death. For example, RNAi-mediated knockdown of Sac1 resulted in disorganization of the Golgi apparatus and mitotic defects characterized by multiple mechanically active spindles (Liu et al., 2008). Similarly, loss of GRASP65 led to the formation of multipolar spindles and mitotic arrest followed by cell death (Sütterlin et al., 2005). The molecular mechanisms by which Golgi-associated proteins regulate spindle formation are not known. Also, it is not known whether Golgi components control spindle formation when Golgi membranes are in the form of a pericentriolar ribbon, isolated stacks, or small fragments.

Table II.

Golgi-associated proteins with a role in regulating centrosome and spindle function
ProteinFunctionDepletion phenotypeReference
Sac1Lipid phosphataseMultiple mechanically active spindlesLiu et al., 2008
GM130GolginAberrant centrosome, multipolar spindlesKodani and Sütterlin, 2008
GRASP65Golgi matrixMultipolar spindles, mitotic cell deathSütterlin et al., 2005
RINT-1Membrane trafficMultipolar spindles, mitotic cell deathSun et al., 2007
Tankyrase-1ADP ribosyl transferaseMultipolar spindles, mitotic cell deathChang et al., 2005
Rab6′GTPaseMetaphase block, SAC activationMiserey-Lenkei et al., 2006
ClathrinVesicle coatDefects in chromosome congression, SAC activationRoyle et al., 2005
Open in a separate windowSAC, spindle assembly checkpoint.In addition to Golgi-dependent effects on spindle formation, other mitotic events are also regulated by disassembly of Golgi stacks during prophase and prometaphase. Indeed, this disassembly step correlates with the release of several peripheral proteins from Golgi membranes to carry out specific functions during mitosis. For instance, clathrin dissociates from the Golgi complex and from endocytic vesicles during mitosis and localizes to the spindle pole where it stabilizes mitotic spindle fibers involved in chromosome segregation (Royle et al., 2005). The small GTPase, Rab6A′, is also released from the Golgi during mitotic Golgi fragmentation (Miserey-Lenkei et al., 2006). If this dynamic behavior of Rab6A′ is inhibited, cells are no longer able to progress through mitosis and are blocked in metaphase through activation of the spindle checkpoint. Another example is the Golgi-associated protein ACBD3, whose release and cytoplasmic dispersal during mitotic Golgi breakdown is necessary for the activation of Numb in the regulation of asymmetric cell division (Zhou et al., 2007). Thus, in addition to facilitating the partitioning of Golgi membranes into the daughter cells, Golgi fragmentation may provide a unique mechanism for the regulation of signaling pathways that involve Golgi-associated components. In the case of ACBD3 and Rab6A′, Golgi fragmentation may relieve inhibitory effects that are either the result of proximity with the centrosome or the organization of the Golgi ribbon.

Conclusions

There is increasing evidence that the relationship between the Golgi apparatus and the centrosome in mammalian cells extends beyond physical proximity and involves functional interactions. Several features of this Golgi–centrosome relationship can be surmised from the recent studies reviewed. This relationship appears to be bidirectional because components of each organelle are able to influence the function of the other organelle. For example, Golgi proteins are necessary for centrosome organization and positioning (Chang et al., 2005; Sütterlin et al., 2005; Kodani and Sütterlin, 2008), whereas centrosome-nucleated microtubules are required for pericentriolar Golgi positioning (Corthésy-Theulaz et al., 1992; Cole et al., 1996). Importantly, these functional interactions affect fundamental cellular processes such as cell polarization and progression through mitosis (Sütterlin et al., 2002; Yadav et al., 2009). Intriguingly, there is evidence for functional interactions when the Golgi and the centrosome are in physical proximity during interphase but also during mitosis when they are physically separate.What is the functional significance of the physical proximity between the Golgi and the centrosome? One possibility is that it may enhance the efficiency of signaling between the Golgi and centrosome and thereby facilitate directional protein transport. The Golgi apparatus is well known for its role in the exocytic pathway, and Golgi membranes, the intermediate compartment, and late endosomes are concentrated in the centrosomal area in mammalian cells (Marie et al., 2009). Thus, the centrosomal area may serve as a traffic hub, allowing integrated regulation of exocytic and endocytic transport routes for polarized delivery of cargo. In support of this idea, species in which Golgi membranes are not adjacent to the centrosome use alternative strategies for transporting proteins in a directional manner. For example, polarized secretion in Drosophila melanogaster is achieved by targeting mRNA to specific transitional ER–Golgi units in which the cargo is synthesized and secreted locally (Herpers and Rabouille, 2004).Why has it taken so long to reveal functional Golgi–centrosome interactions during cell division? The phenomenon of a pericentriolar interphase Golgi ribbon, which is fragmented and dispersed during mitosis, is mainly seen in mammalian cells. Therefore, the significance of this dynamic spatial relationship cannot be studied in a more genetically tractable system such as yeast or Drosophila in which genome-wide screens can be readily performed. Furthermore, there has been a lack of tools to separate the Golgi and centrosome without affecting the functions of these organelles. Some recent studies have used new approaches such as severing the Golgi ribbon by depleting structural golgins, but there are still experimental limitations. For example, an intact Golgi ribbon cannot simply be displaced from the pericentriolar region, which makes it difficult to directly test the significance of Golgi localization versus organization. In addition, Golgi fragmentation, as induced by the depletion of structural Golgi proteins, is a multifactorial process that is marked by both the loss of the Golgi ribbon and dispersal from the pericentriolar position. The limited availability of experimental tools makes it difficult to separate these processes, which has hampered efforts to dissect their individual contributions to the Golgi–centrosome partnership. Also, until a recent study (Kodani et al., 2009), a molecular pathway linking the Golgi and the centrosome during interphase had not been described. For these reasons, it has been difficult to experimentally alter Golgi–centrosome proximity and assay the effects.Although progress has been made, there are many unresolved questions about the Golgi–centrosome relationship during the cell cycle. For example, is there a single bidirectional regulatory pathway between the Golgi and the centrosome, or are there separate signaling pathways in each direction? Are there differences in signaling between these organelles during interphase when the organelles are adjacent and in mitosis when they are physically separate? There are also more specific unanswered questions. For example, how do Golgi proteins control spindle formation? Which factors on the mitotic spindle regulate postmitotic reassembly of the Golgi? How does the organization of the Golgi apparatus control progression through the cell cycle? Is there a Golgi organization checkpoint, and what does it monitor? The answers to these questions will help us better understand the significance of Golgi–centrosome interactions and could lead to the development of novel approaches for the treatment of several important diseases, including cancer.  相似文献   

8.
Mouse Models of Osteoarthritis: A Summary of Models and Outcomes Assessment     
Sabine Drevet  Bertrand Favier  Emmanuel Brun  Gaëtan Gavazzi  Bernard Lardy 《Comparative medicine》2022,72(1):3
Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease. It has a substantial impact on patient quality of life and is a common cause of pain and mobility issues in older adults. The functional limitations, lack of curative treatments, and cost to society all demonstrate the need for translational and clinical research. The use of OA models in mice is important for achieving a better understanding of the disease. Models with clinical relevance are needed to achieve 2 main goals: to assess the impact of the OA disease (pain and function) and to study the efficacy of potential treatments. However, few OA models include practical strategies for functional assessment of the mice. OA signs in mice incorporate complex interrelations between pain and dysfunction. The current review provides a comprehensive compilation of mouse models of OA and animal evaluations that include static and dynamic clinical assessment of the mice, merging evaluation of pain and function by using automatic and noninvasive techniques. These new techniques allow simultaneous recording of spontaneous activity from thousands of home cages and also monitor environment conditions. Technologies such as videography and computational approaches can also be used to improve pain assessment in rodents but these new tools must first be validated experimentally. An example of a new tool is the digital ventilated cage, which is an automated home-cage monitor that records spontaneous activity in the cages.

Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease.36 Functional limitations, the absence of curative treatments, and the considerable cost to society result in a substantial impact on quality of life.76 Historically, OA has been described as whole joint and whole peri-articular diseases and as a systemic comorbidity.9,111 OA consists of a disruption of articular joint cartilage homeostasis leading to a catabolic pathway characterized by chondrocyte degeneration and destruction of the extracellular matrix (ECM). Low-grade chronic systemic inflammation is also actively involved in the process.42,92 In clinical practice, mechanical pain, often accompanied by a functional decline, is the main reason for consultations. Recommendations to patients provide guidance for OA management.22, 33,49,86 Evidence-based consensus has led to a variety of pharmacologic and nonpharmacologic modalities that are intended to guide health care providers in managing symptomatic patients. Animal-based research is of tremendous importance for the study of early diagnosis and treatment, which are crucial to prevent the disease progression and provide better care to patients.The purpose of animal-based OA research is 2-fold: to assess the impact of the OA disease (pain and function) and to study the efficacy of a potential treatment.18,67 OA model species include large animals such as the horse, goat, sheep, and dog, whose size and anatomy are expected to better reflect human joint conditions. However, small animals such as guinea pig, rabbit, mouse, and rat represent 77% of the species used.1,87 In recent years, mice have become the most commonly used model for studying OA. Mice have several advantageous characteristics: a short development and life span, easy and low-cost breeding and maintenance, easy handling, small joints that allow histologic analysis of the whole joint,32 and the availability of genetically modified lines.108 Standardized housing, genetically defined strains and SPF animals reduce the genetic and interindividual acquired variability. Mice are considered the best vertebrate model in terms of monitoring and controlling environmental conditions.7,14,15,87 Mouse skeletal maturation is reached at 10 wk, which theoretically constitutes the minimal age at which mice should be entered into an OA study.64,87,102 However, many studies violate this limit by testing mice at 8 wk of age.Available models for OA include the following (32,111 physical activity and exercise induced OA; noninvasive mechanical loading (repetitive mild loading and single-impact injury); and surgically induced (meniscectomy models or anterior cruciate ligament transection). The specific model used would be based on the goal of the study.7 For example, OA pathophysiology, OA progression, and OA therapies studies could use spontaneous, genetic, surgical, or noninvasive models. In addition, pain studies could use chemical models. Lastly, post-traumatic studies would use surgical or noninvasive models; the most frequently used method is currently destabilization of the medial meniscus,32 which involves transection of the medial meniscotibial ligament, thereby destabilizing the joint and causing instability-driven OA. An important caveat for mouse models is that the mouse and human knee differ in terms of joint size, joint biomechanics, and histologic characteristics (layers, cellularity),32,64 and joint differences could confound clinical translation.10 Table 1. Mouse models of osteoarthritis.
ModelsProsCons
SpontaneousWild type mice7,9,59,67,68,70,72,74,80,85,87,115,118,119,120- Model of aging phenotype
- The less invasive model
- Physiological relevance: mimics human pathogenesis
- No need for technical expertise
- No need for specific equipment
- Variability in incidence
- Large number of animals at baseline
- Long-term study: Time consuming (time of onset: 4 -15 mo)
- Expensive (husbandry)
Genetically modified mice2,7,25,40,50,52,67,72,79,80, 89,120- High incidence
- Earlier time of onset: 18 wk
- No need for specific equipment
- Combination with other models
- Time consuming for the strain development
- Expensive
Chemical- inducedMono-iodoacetate injection7,11,46,47,60,66,90,91,101,128- Model of pain-like phenotype
- To study mechanism of pain and antalgic drugs
- Short-term study: Rapid progression (2-7 wk)
- Reproducible
- Low cost
- Need for technical expertise
- Need for specific equipment
- Systemic injection is lethal
- Destructive effect: does not allow to study the early phase of pathogenesis
Papain injection66,67,120- Short-term study: rapid progression
- Low cost
- Need for technical expertise
- Need for specific equipment
- Does not mimic natural pathogenesis
Collagenase injection7,65,67,98- Short-term study: rapid progression (3 wk)
- Low cost
- Need for technical expertise
- Need for specific equipment
- Does not mimic natural pathogenesis
Non-invasiveHigh-fat diet (Alimentary induced obesity model)5,8,43,45,57,96,124Model of metabolic phenotype
No need for technical expertise
No need for specific equipment
Reproducible
Long-term study: Time consuming (8 wk–9 mo delay)
Expensive
Physical activity and exercise model45,73Model of post traumatic phenotype
No need for technical expertise
Long-term study: time consuming (18 mo delay)
Expensive
Disparity of results
Mechanical loading models Repetitive mild loading models Single-impact injury model7,16,23,24, 32,35,104,105,106Model of post traumatic phenotype
Allow to study OA development
Time of onset: 8-10 wk post injury
Noninvasive
Need for technical expertise
Need for specific equipment
Heterogeneity in protocol practices
Repetitive anesthesia required or ethical issues
SurgicalOvariectomy114Contested.
Meniscectomy model7,32,63,67,87 Model of post traumatic phenotype
High incidence
Short-term study: early time of onset (4 wk from surgery)
To study therapies
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Anterior cruciate ligament transection (ACLT)7,39,40,61,48,67,70,87,126Model of posttraumatic phenotype
High incidence
Short-term study: early time of onset (3-10 wk from surgery)
Reproducible
To study therapies
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Destabilization of medial meniscus (DMM)7,32,39,40Model of post traumatic phenotype
High incidence
Short-term study: early time of onset (4 wk from surgery)
To study therapies
The most frequently used method
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Open in a separate windowSince all animal models have strengths and weaknesses, it is often best to plan using a number of models and techniques together to combine the results.In humans, the lack of correlation between OA imaging assessment and clinical signs highlights the need to consider the functional data and the quality of life to personalize OA management. Clinical outcomes are needed to achieve 2 main goals: to assess the impact of the OA in terms of pain and function and to study the efficacy of treatments.65 Recent reviews offer few practical approaches to mouse functional assessment and novel approaches to OA models in mice.7,32,67,75,79,83,87, 100,120 This review will focus on static and dynamic clinical assessment of OA using automatic and noninvasive emerging techniques (Test nameTechniquesKind of assessmentOutputSpecific equipment requiredStatic measurementVon Frey filament testingCalibrated nylon filaments of various thickness (and applied force) are pressed against the skin of the plantar surface of the paw in ascending order of forceStimulus- evoked pain-like behavior
Mechanical stimuli - Tactile allodynia
The most commonly used testLatency to paw withdrawal
and
Force exerted are recordedYesKnee extension testApply a knee extension on both the intact and affected knee
or
Passive extension range of the operated knee joint under anesthesiaStimulus-evoked pain-like behaviorNumber of vocalizations evoked in 5 extensionsNoneHotplateMouse placed on hotplate. A cutoff latency has been determined to avoid lesionsStimulus-evoked pain-like behavior
Heat stimuli- thermal sensitivityLatency of paw withdrawalYesRighting abilityMouse placed on its backNeuromuscular screeningLatency to regain its footingNoneCotton swab testBringing a cotton swab into contact with eyelashes, pinna, and whiskersStimulus-evoked pain-like behavior
Neuromuscular screeningWithdrawal or twitching responseNoneSpontaneous activitySpontaneous cage activityOne by one the cages must be laid out in a specific platformSpontaneous pain behavior
Nonstimulus evoked pain
ActivityVibrations evoked by animal movementsYesOpen field analysisExperiment is performed in a clear chamber and mice can freely exploreSpontaneous pain behavior
Nonstimulus evoked pain
Locomotor analysisPaw print assessment
Distance traveled, average walking speed, rest time, rearingYesGait analysisMouse is placed in a specific cage equipped with a fluorescent tube and a glass plate allowing an automated quantitative gait analysisNonstimulus evoked pain
Gait analysis
Indirect nociceptionIntensity of the paw contact area, velocity, stride frequency, length, symmetry, step widthYesDynamic weight bearing systemMouse placed is a specific cage. This method is a computerized capacitance meter (similar to gait analysis)Nonstimulus evoked pain
Weight-bearing deficits
Indirect nociceptionBody weight redistribution to a portion of the paw surfaceYesVoluntary wheel runningMouse placed is a specific cage with free access to stainless steel activity wheels. The wheel is connected to a computer that automatically record dataNonstimulus evoked pain
ActivityDistance traveled in the wheelYesBurrowing analysisMouse placed is a specific cage equipped with steel tubes (32 cm in length and 10 cm in diameter) and quartz sand in Plexiglas cages (600 · 340x200 mm)Nonstimulus evoked pain
ActivityAmount of sand burrowedYesDigital video recordingsMouse placed is a specific cage according to the toolNonstimulus evoked pain
Or
Evoked painScale of pain or specific outcomeYesDigital ventilated cage systemNondisrupting capacitive-based technique: records spontaneous activity 24/7, during both light and dark phases directly from the home cage rackSpontaneous pain behavior
Nonstimulus evoked pain
Activity-behaviorDistance walked, average speed, occupation front, occupation rear, activation density.
Animal locomotion index, animal tracking distance, animal tracking speed, animal running wheel distance and speed or rotationYesChallenged activityRotarod testGradual and continued acceleration of a rotating rod onto which mice are placedMotor coordination
Indirect nociceptionRotarod latency: riding time and speed with a maximum cut off.YesHind limb and fore grip strengthMouse placed over a base plate in front of a connected grasping toolMuscle strength of limbsPeak force, time resistanceYesWire hang analysisSuspension of the mouse on the wire and start the timeMuscle strength of limbs: muscle function and coordinationLatency to fall grippingNone
(self -constructed)
Open in a separate windowPain cannot be directly measured in rodents, so methods have been developed to quantify “pain-like” behaviors. The clinical assessment of mice should be tested both before and after the intervention (induced-OA ± administration of treatment) to take into account the habituation and establish a baseline to compare against.  相似文献   

9.
The cell biology of disease: Lysosomal storage disorders: The cellular impact of lysosomal dysfunction     
Frances M. Platt  Barry Boland  Aarnoud C. van der Spoel 《The Journal of cell biology》2012,199(5):723-734
  相似文献   

10.
Uniform nomenclature for the mitochondrial contact site and cristae organizing system     
Nikolaus Pfanner  Martin van der Laan  Paolo Amati  Roderick A. Capaldi  Amy A. Caudy  Agnieszka Chacinska  Manjula Darshi  Markus Deckers  Suzanne Hoppins  Tateo Icho  Stefan Jakobs  Jianguo Ji  Vera Kozjak-Pavlovic  Chris Meisinger  Paul R. Odgren  Sang Ki Park  Peter Rehling  Andreas S. Reichert  M. Saeed Sheikh  Susan S. Taylor  Nobuo Tsuchida  Alexander M. van der Bliek  Ida J. van der Klei  Jonathan S. Weissman  Benedikt Westermann  Jiping Zha  Walter Neupert  Jodi Nunnari 《The Journal of cell biology》2014,204(7):1083-1086
The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1Fo-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2007; Pellegrini and Scorrano, 2007; Zick et al., 2009; Davies et al., 2011). Tubular openings, termed crista junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1Fo-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites between outer membrane and inner boundary membrane promote import of preproteins, metabolite channeling, lipid transport, and membrane dynamics (Frey and Mannella, 2000; Sesaki and Jensen, 2004; Hoppins et al., 2007, 2011; Neupert and Herrmann, 2007; Chacinska et al., 2009; Connerth et al., 2012; van der Laan et al., 2012).Open in a separate windowFigure 1.MICOS complex. (A) The MICOS complex (hypothetical model), previously also termed MINOS, MitOS, or Mitofilin/Fcj1 complex, is required for maintenance of the characteristic architecture of the mitochondrial inner membrane (IM) and forms contact sites with the outer membrane (OM). In budding yeast, six subunits of MICOS have been identified. All subunits are exposed to the intermembrane space (IMS), five are integral inner membrane proteins (Mic10, Mic12, Mic26, Mic27, and Mic60), and one is a peripheral inner membrane protein (Mic19). Mic26 is related to Mic27; however, mic26Δ yeast cells show considerably less severe defects of mitochondrial inner membrane architecture than mic27Δ cells (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011). The MICOS complex of metazoa additionally contains Mic25, which is related to Mic19, yet subunits corresponding to Mic12 and Mic26 have not been identified so far. MICOS subunits that have been conserved in most organisms analyzed are indicated by bold boundary lines. (B, top) Wild-type architecture of the mitochondrial inner membrane with crista junctions and cristae. (bottom) This architecture is considerably altered in micos mutant mitochondria: most cristae membranes are detached from the inner boundary membrane and form internal membrane stacks. In some micos mutants (deficiency of mammalian Mic19 or Mic25), a loss of cristae membranes was observed (Darshi et al., 2011; An et al., 2012). Figure by M. Bohnert (Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany).To understand the complex architecture of mitochondria, it will be crucial to identify the molecular machineries that control the interaction between mitochondrial outer and inner membranes and the characteristic organization of the inner membrane. A convergence of independent studies led to the identification of a large heterooligomeric protein complex of the mitochondrial inner membrane conserved from yeast to humans that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (Fig. 1 A). Several names were used by different research groups to describe the complex, including mitochondrial contact site (MICOS) complex, mitochondrial inner membrane organizing system (MINOS), mitochondrial organizing structure (MitOS), Mitofilin complex, or Fcj1 (formation of crista junction protein 1) complex (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012). Mitofilin, also termed Fcj1, was the first component identified (Icho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005) and was observed enriched at crista junctions (Rabl et al., 2009). Mutants of Mitofilin/Fcj1 as well as of other MICOS/MINOS/MitOS subunits show a strikingly altered inner membrane architecture. They lose crista junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (Standard nameFormer namesYeast ORFReferencesComplexMICOSMINOS, MitOS, MIB, Mitofilin complex, and Fcj1 complexXie et al., 2007; Rabl et al., 2009; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013SubunitsMic10Mcs10, Mio10, Mos1, and MINOS1YCL057C-AHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013Mic12Aim5, Fmp51, and Mcs12YBR262CHess et al., 2009; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Varabyova et al., 2013Mic19Aim13, Mcs19, CHCH-3, CHCHD3, and MINOS3YFR011CXie et al., 2007; Hess et al., 2009; Darshi et al., 2011; Head et al., 2011; Alkhaja et al., 2012; Ott et al., 2012; Jans et al., 2013; Varabyova et al., 2013Mic25 (metazoan Mic19 homologue)CHCHD6 and CHCM1Xie et al., 2007; An et al., 2012Mic26Mcs29, Mio27, and Mos2YGR235CHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011Mic27Aim37, Mcs27, APOOL, and MOMA-1YNL100WHess et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Weber et al., 2013Mic60Fcj1, Aim28, Fmp13, Mitofilin, HMP, IMMT, and MINOS2YKR016WIcho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005; Wang et al., 2008; Rabl et al., 2009; Rossi et al., 2009; Mun et al., 2010; Park et al., 2010; Körner et al., 2012; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013Open in a separate windowAPOOL, apolipoprotein O–like; HMP, heart muscle protein; IMMT, inner mitochondrial membrane protein; MIB, mitochondrial intermembrane space bridging.To rectify this situation, all authors of this article have agreed on a new uniform nomenclature with the following guidelines. (a) The complex will be called “mitochondrial contact site and cristae organizing system” (MICOS). The protein subunits of MICOS are named Mic10 to Mic60 as listed in Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mix14, Mix17, and Mix23 (mitochondrial intermembrane space CXnC motif proteins) in the Saccharomyces Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.  相似文献   

11.
Root System Markup Language: Toward a Unified Root Architecture Description Language   总被引:1,自引:0,他引:1  
Guillaume Lobet  Michael P. Pound  Julien Diener  Christophe Pradal  Xavier Draye  Christophe Godin  Mathieu Javaux  Daniel Leitner  Félicien Meunier  Philippe Nacry  Tony P. Pridmore  Andrea Schnepf 《Plant physiology》2015,167(3):617-627
  相似文献   

12.
Where is mTOR and what is it doing there?     
Charles Betz  Michael N. Hall 《The Journal of cell biology》2013,203(4):563-574
  相似文献   

13.
Arabidopsis LON2 Is Necessary for Peroxisomal Function and Sustained Matrix Protein Import     
Matthew J. Lingard  Bonnie Bartel 《Plant physiology》2009,151(3):1354-1365
Relatively little is known about the small subset of peroxisomal proteins with predicted protease activity. Here, we report that the peroxisomal LON2 (At5g47040) protease facilitates matrix protein import into Arabidopsis (Arabidopsis thaliana) peroxisomes. We identified T-DNA insertion alleles disrupted in five of the nine confirmed or predicted peroxisomal proteases and found only two—lon2 and deg15, a mutant defective in the previously described PTS2-processing protease (DEG15/At1g28320)—with phenotypes suggestive of peroxisome metabolism defects. Both lon2 and deg15 mutants were mildly resistant to the inhibitory effects of indole-3-butyric acid (IBA) on root elongation, but only lon2 mutants were resistant to the stimulatory effects of IBA on lateral root production or displayed Suc dependence during seedling growth. lon2 mutants displayed defects in removing the type 2 peroxisome targeting signal (PTS2) from peroxisomal malate dehydrogenase and reduced accumulation of 3-ketoacyl-CoA thiolase, another PTS2-containing protein; both defects were not apparent upon germination but appeared in 5- to 8-d-old seedlings. In lon2 cotyledon cells, matrix proteins were localized to peroxisomes in 4-d-old seedlings but mislocalized to the cytosol in 8-d-old seedlings. Moreover, a PTS2-GFP reporter sorted to peroxisomes in lon2 root tip cells but was largely cytosolic in more mature root cells. Our results indicate that LON2 is needed for sustained matrix protein import into peroxisomes. The delayed onset of matrix protein sorting defects may account for the relatively weak Suc dependence following germination, moderate IBA-resistant primary root elongation, and severe defects in IBA-induced lateral root formation observed in lon2 mutants.Peroxisomes are single-membrane-bound organelles found in most eukaryotes. Peroxin (PEX) proteins are necessary for various aspects of peroxisome biogenesis, including matrix protein import (for review, see Distel et al., 1996; Schrader and Fahimi, 2008). Most matrix proteins are imported into peroxisomes from the cytosol using one of two targeting signals, a C-terminal type 1 peroxisome-targeting signal (PTS1) or a cleavable N-terminal type 2 peroxisome-targeting signal (PTS2) (Reumann, 2004). PTS1- and PTS2-containing proteins are bound in the cytosol by soluble matrix protein receptors, escorted to the peroxisome membrane docking complex, and translocated into the peroxisome matrix (for review, see Platta and Erdmann, 2007). Once in the peroxisome, many matrix proteins participate in metabolic pathways, such as β-oxidation, hydrogen peroxide decomposition, and photorespiration (for review, see Gabaldon et al., 2006; Poirier et al., 2006).In addition to metabolic enzymes, several proteases are found in the peroxisome matrix. Only one protease, DEG15/Tysnd1, has a well-defined role in peroxisome biology. The rat Tysnd1 protease removes the targeting signal after PTS2-containing proteins enter the peroxisome and also processes certain PTS1-containing β-oxidation enzymes (Kurochkin et al., 2007). Similarly, the Arabidopsis (Arabidopsis thaliana) Tysnd1 homolog DEG15 (At1g28320) is a peroxisomal Ser protease that removes PTS2 targeting signals (Helm et al., 2007; Schuhmann et al., 2008).In contrast with DEG15, little is known about the other eight Arabidopsis proteins that are annotated as proteases in the AraPerox database of putative peroxisomal proteins (Reumann et al., 2004; Carter et al., 2004; Shimaoka et al., 2004), which, in combination with the minor PTS found in both of these predicted proteases (Reumann, 2004), suggests that these enzymes may not be peroxisomal. Along with DEG15, only two of the predicted peroxisomal proteases, an M16 metalloprotease (At2g41790), which we have named PXM16 for peroxisomal M16 protease, and a Lon-related protease (At5g47040/LON2; Ostersetzer et al., 2007), are found in the proteome of peroxisomes purified from Arabidopsis suspension cells (Eubel et al., 2008). DEG15 and LON2 also have been validated as peroxisomally targeted using GFP fusions (Ostersetzer et al., 2007; Schuhmann et al., 2008).

Table I.

Putative Arabidopsis proteases predicted or demonstrated to be peroxisomal
AGI IdentifierAliasProtein ClassT-DNA Insertion AllelesPTSLocalization EvidenceLocalization References
At1g28320DEG15PTS2-processing proteaseSALK_007184 (deg15-1)SKL>aGFPReumann et al., 2004; Helm et al., 2007; Eubel et al., 2008; Schuhmann et al., 2008)
Proteomics
Bioinformatics
At2g41790PXM16Peptidase M16 family proteinSALK_019128 (pxm16-1)PKL>bProteomicsReumann et al., 2004, 2009; Eubel et al., 2008)
SALK_023917 (pxm16-2)Bioinformatics
At5g47040LON2Lon protease homologSALK_128438 (lon2-1)SKL>aGFPReumann et al., 2004, 2009; Ostersetzer et al., 2007; Eubel et al., 2008)
SALK_043857 (lon2-2)Proteomics
Bioinformatics
At2g18080Ser-type peptidaseSALK_020628SSI>cBioinformatics(Reumann et al., 2004)
SALK_102239
At2g35615Aspartyl proteaseSALK_090795ANL>bBioinformatics(Reumann et al., 2004)
SALK_036333
At3g57810Ovarian tumor-like Cys proteaseSKL>aBioinformatics(Reumann et al., 2004)
At4g14570Acylaminoacyl-peptidase proteinCKL>bBioinformatics (peroxisome)(Reumann et al., 2004; Shimaoka et al., 2004)
Proteomics (vacuole)
At4g20310Peptidase M50 family proteinRMx5HLdBioinformatics(Reumann et al., 2004)
At4g36195Ser carboxypeptidase S28 familySSM>bBioinformatics (peroxisome)(Carter et al., 2004; Reumann et al., 2004)





Proteomics (vacuole)

Open in a separate windowaMajor PTS1 (Reumann, 2004).bMinor PTS1 (Reumann, 2004).cValidated PTS1 (Reumann et al., 2007).dMinor PTS2 (Reumann, 2004).PXM16 is the only one of the nine Arabidopsis M16 (pitrilysin family) metalloproteases (García-Lorenzo et al., 2006; Rawlings et al., 2008) containing a predicted PTS. M16 subfamilies B and C contain the plastid and mitochondrial processing peptidases (for review, see Schaller, 2004), whereas PXM16 belongs to M16 subfamily A, which includes insulin-degrading peptidases (Schaller, 2004). A tomato (Solanum lycopersicum) M16 subfamily A protease similar to insulin-degrading enzymes with a putative PTS1 was identified in a screen for proteases that cleave the wound response peptide hormone systemin (Strassner et al., 2002), but the role of Arabidopsis PXM16 is unknown.Arabidopsis LON2 is a typical Lon protease with three conserved domains: an N-terminal domain, a central ATPase domain in the AAA family, and a C-terminal protease domain with a Ser-Lys catalytic dyad (Fig. 1A; Lee and Suzuki, 2008). Lon proteases are found in prokaryotes and in some eukaryotic organelles (Fig. 1C) and participate in protein quality control by cleaving unfolded proteins and can regulate metabolism by controlling levels of enzymes from many pathways, including cell cycle, metabolism, and stress responses (for review, see Tsilibaris et al., 2006). Four Lon homologs are encoded in the Arabidopsis genome; isoforms have been identified in mitochondria, plastids, and peroxisomes (Ostersetzer et al., 2007; Eubel et al., 2008; Rawlings et al., 2008). Mitochondrial Lon protesases are found in a variety of eukaryotes (Fig. 1A) and function both as ATP-dependent proteases and as chaperones promoting protein complex assemblies (Lee and Suzuki, 2008). LON2 is the only Arabidopsis Lon isoform with a canonical C-terminal PTS1 (SKL-COOH; Ostersetzer et al., 2007) or found in the peroxisome proteome (Eubel et al., 2008; Reumann et al., 2009). Functional studies have been conducted with peroxisomal Lon isoforms found in the proteome of peroxisomes purified from rat hepatic cells (pLon; Kikuchi et al., 2004) and the methylotrophic yeast Hansenula polymorpha (Pln; Aksam et al., 2007). Rat pLon interacts with β-oxidation enzymes, and a cell line expressing a dominant negative pLon variant has decreased β-oxidation activity, displays defects in the activation processing of PTS1-containing acyl-CoA oxidase, and missorts catalase to the cytosol (Omi et al., 2008). H. polymorpha Pln is necessary for degradation of a misfolded, peroxisome-targeted version of dihydrofolate reductase and for degradation of in vitro-synthesized alcohol oxidase in peroxisomal matrix extracts, but does not contribute to degradation of peroxisomally targeted GFP (Aksam et al., 2007).Open in a separate windowFigure 1.Diagram of LON2 protein domains, gene models for LON2, PXM16, DEG15, PED1, PEX5, and PEX6, and phylogenetic relationships of LON family members. A, Organization of the 888-amino acid LON2 protein. Locations of the N-terminal domain conserved among Lon proteins, predicted ATP-binding Walker A and B domains (black circles), active site Ser (S) and Lys (K) residues (asterisks), and the C-terminal Ser-Lys-Leu (SKL) peroxisomal targeting signal (PTS1) are shown (Lee and Suzuki, 2008). B, Gene models for LON2, PXM16, DEG15, PED1, PEX5, and PEX6 and locations of T-DNA insertions (triangles) or missense alleles (arrows) used in this study. Exons are depicted by black boxes, introns by black lines, and untranslated regions by gray lines. C, Phylogenetic relationships among LON homologs. Sequences were aligned using MegAlign (DNAStar) and the ClustalW method. The PAUP 4.0b10 program (Swofford, 2001) was used to generate an unrooted phylogram from a trimmed alignment corresponding to Arabidopsis LON2 residues 400 to 888 (from the beginning of the ATPase domain to the end of the protein). The bootstrap method was performed for 500 replicates with distance as the optimality criterion. Bootstrap values are indicated at the nodes. Predicted peroxisomal proteins have C-terminal PTS1 signals in parentheses and are in light-gray ovals. Proteins in the darker gray oval have N-terminal extensions and include mitochondrial and chloroplastic proteins. Sequence identifiers are listed in Supplemental Table S2.In this work, we examined the roles of several putative peroxisomal proteases in Arabidopsis. We found that lon2 mutants displayed peroxisome-deficient phenotypes, including resistance to the protoauxin indole-3-butyric acid (IBA) and age-dependent defects in peroxisomal import of PTS1- and PTS2-targeted matrix proteins. Our results indicate that LON2 contributes to matrix protein import into Arabidopsis peroxisomes.  相似文献   

14.
Tethering Factors Required for Cytokinesis in Arabidopsis     
Martha Thellmann  Katarzyna Rybak  Knut Thiele  Gerhard Wanner  Farhah F. Assaad 《Plant physiology》2010,154(2):720-732
  相似文献   

15.
Epistatic Interactions between Opaque2 Transcriptional Activator and Its Target Gene CyPPDK1 Control Kernel Trait Variation in Maize   总被引:1,自引:0,他引:1       下载免费PDF全文
Domenica Manicacci  Letizia Camus-Kulandaivelu  Marie Fourmann  Chantal Arar  Stéphanie Barrault  Agnès Rousselet  No?l Feminias  Luciano Consoli  Lisa Francès  Valérie Méchin  Alain Murigneux  Jean-Louis Prioul  Alain Charcosset  Catherine Damerval 《Plant physiology》2009,150(1):506-520
  相似文献   

16.
Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments     
Vincent Chochois  John P. Vogel  Gregory J. Rebetzke  Michelle Watt 《Plant physiology》2015,168(3):953-967
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.Adult plant root systems are relevant to the size and efficiency of seed yield. They supply water and nutrients for the plant to acquire biomass, which is positively correlated to the harvest index (allocation to seed grain), and the stages of flowering and grain development. Modeling in wheat (Triticum aestivum) suggested that an extra 10 mm of water absorbed by such adult root systems during grain filling resulted in an increase of approximately 500 kg grain ha−1 (Manschadi et al., 2006). This was 25% above the average annual yield of wheat in rain-fed environments of Australia. This number was remarkably close to experimental data obtained in the field in Australia (Kirkegaard et al., 2007). Together, these modeling and field experiments have shown that adult root systems are critical for water absorption and grain yield in cereals, such as wheat, emphasizing the importance of characterizing adult root systems to identify phenotypes for productivity improvements.Most root phenotypes, however, have been described for seedling roots. Seedling roots are essential for plant establishment, and hence, the plant’s potential to set seed. For technical reasons, seedlings are more often screened than adult plants because of the ease of handling smaller plants and the high throughput. Seedling-stage phenotyping may also improve overall reproducibility of results because often, growth media are soil free. Seedling soil-free root phenotyping conditions are well suited to dissecting fine and sensitive mechanisms, such as lateral root initiation (Casimiro et al., 2003; Péret et al., 2009a, 2009b). A number of genes underlying root processes have been identified or characterized using seedlings, notably with the dicotyledonous models Arabidopsis (Arabidopsis thaliana; Mouchel et al., 2004; Fitz Gerald et al., 2006; Yokawa et al., 2013) and Medicago truncatula (Laffont et al., 2010) and the cereals maize (Zea mays; Hochholdinger et al., 2001) and rice (Oryza sativa; Inukai et al., 2005; Kitomi et al., 2008).Extrapolation from seedling to adult root systems presents major questions (Hochholdinger and Zimmermann, 2008; Chochois et al., 2012; Rich and Watt, 2013). Are phenotypes in seedling roots present in adult roots given developmental events associated with aging? Is expression of phenotypes correlated in seedling and adult roots if time compounds effects of growth rates and growth conditions on roots? Watt et al. (2013) showed in wheat seedlings that root traits in the laboratory and field correlated positively but that neither correlated with adult root traits in the field. Factors between seedling and adult roots seemed to be differences in developmental stage and the time that growing roots experience the environment.Seedling and adult root differences may be larger in grasses than dicotyledons. Grass root systems have two developmental components: seed-borne (seminal) roots, of which a number emerge at germination and continue to grow and branch throughout the plant life, and stem-borne (nodal or adventitious) roots, which emerge from around the three-leaf stage and continue to emerge, grow, and branch throughout the plant life. Phenotypes and traits of adult root systems of grasses, which include the major cereal crops wheat, rice, and maize, are difficult to predict in seedling screens and ideally identified from adult root systems first (Gamuyao et al., 2012).Phenotyping of adult roots is possible in the field using trenches (Maeght et al., 2013) or coring (Wasson et al., 2014). A portion of the root system is captured with these methods. Alternatively, entire adult root systems can be contained within pots dug into the ground before sowing. These need to be large; field wheat roots, for example, can reach depths greater than 1.5 m depending on genotype and environment. This method prevents root-root interactions that occur under normal field sowing of a plant canopy and is also a compromise.A solution to the problem of phenotyping adult cereal root systems is a model for monocotyledon grasses: Brachypodium distachyon. B. distachyon is a small-stature grass with a small genome that is fully sequenced (Vogel et al., 2010). It has molecular tools equivalent to those available in Arabidopsis (Draper et al., 2001; Brkljacic et al., 2011; Mur et al., 2011). The root system of B. distachyon reference line Bd21 is more similar to wheat than other model and crop grasses (Watt et al., 2009). It has a seed-borne primary seminal root (PSR) that emerges from the embryo at seed germination and multiple stem-borne coleoptile node axile roots (CNRs) and leaf node axile roots (LNRs), also known as crown roots or adventitious roots, that emerge at about three leaves through to grain development. Branch roots emerge from all root types. There are no known anatomical differences between root types of wheat and B. distachyon (Watt et al., 2009). In a recent study, we report postflowering root growth in B. distachyon line Bd21-3, showing that this model can be used to answer questions relevant to the adult root systems of grasses (Chochois et al., 2012).In this study, we used B. distachyon to identify adult plant phenotypes related to the partitioning among seed-borne and stem-borne shoots and roots for the genetic improvement of well-watered and droughted cereals (Fig. 1; Krassovsky, 1926; Navara et al., 1994), nitrogen, phosphorus (Tennant, 1976; Brady et al., 1995), oxygen (Wiengweera and Greenway, 2004), soil hardness (Acuna et al., 2007), and microorganisms (Sivasithamparam et al., 1978). Of note is the study by Krassovsky (1926), which was the first, to our knowledge, to show differences in function related to water. Krassovsky (1926) showed that seminal roots of wheat absorbed almost 2 times the water as nodal roots per unit dry weight but that nodal roots absorbed a more diluted nutrient solution than seminal roots. Krassovsky (1926) also showed by removing seminal or nodal roots as they emerged that “seminal roots serve the main stem, while nodal roots serve the tillers” (Krassovsky, 1926). Volkmar (1997) showed, more recently, in wheat that nodal and seminal roots may sense and respond to drought differently. In millet (Pennisetum glaucum) and sorghum (Sorghum bicolor), Rostamza et al. (2013) found that millet was able to grow nodal roots in a dryer soil than sorghum, possibly because of shoot and root vigor.Open in a separate windowFigure 1.B. distachyon plant scanned at the fourth leaf stage, with the root and shoot phenotypes studied indicated. Supplemental Table S1.
PhenotypeAbbreviationUnitRange of Variation
All Experiments (79 Lines and 582 Plants)Experiment 6 (36 Lines)
Whole plant
TDWTDWMilligrams88.6–773.8 (×8.7)285.6–438 (×1.5)
Shoot
SDWSDWMilligrams56.4–442.5 (×7.8)78.2–442.5 (×5.7)
 No. of tillersTillerNCount2.8–20.3 (×7.4)10–20.3 (×2)
Total root system
TRLTRLCentimeters1,050–10,770 (×10.3)2,090–5,140 (×2.5)
RDWRDWMilligrams28.9–312.17 (×10.8)62.2–179.1 (×2.9)
RootpcRootpcPercentage (of TDW)20.5–60.6 (×3)20.5–44.3 (×2.2)
R/SR/SUnitless ratio0.26–1.54 (×6)0.26–0.80 (×3.1)
PSRs
 Length (including branch roots)PSRLCentimeters549.1–4,024.6 (×7.3)716–2,984 (×4.2)
PSRpcPSRpcPercentage (of TRL)14.9–94.1 (×6.3)31.3–72.3 (×2.3)
 No. of axile rootsPSRcountCount11
 Length of axile rootPSRsumCentimeters17.45–52 (×3)17.45–30.3 (×1.7)
 Branch rootsPSRbranchCentimeters · (centimeters of axile root)−119.9–109.3 (×5.5)29.3–104.3 (×3.6)
CNRs
 Length (including branch roots)CNRLCentimeters0–3,856.70–2,266.5
CNRpcCNRpcPercentage (of TRL)0–57.10–49.8
 No. of axile rootsCNRcountCount0–20–2
 Cumulated length of axile rootsCNRsumCentimeters0–113.90–47.87
 Branch rootsCNRbranchCentimeters · (centimeters of axile root)−10–77.80–77.8
LNRs
 Length (including branch roots)LNRLCentimeters99.5–5,806.5 (×58.5)216.1–2,532.4 (×11.7)
LNRpcLNRpcPercentage (of TRL)4.2–72.7 (×17.5)6–64.8 (×10.9)
LNRcountLNRcountCount2–22.2 (×11.1)3.3–15.3 (×4.6)
LNRsumLNRsumCentimeters25.9–485.548–232 (×4.8)
 Branch rootsLNRbranchCentimeters · (centimeters of axile root)−12.1–25.4 (×12.1)3.2–15.9 (×5)
Open in a separate windowThe third reason for dissecting the different root types in this study was that they seem to have independent genetic regulation through major genes. Genes affecting specifically nodal root growth have been identified in maize (Hetz et al., 1996; Hochholdinger and Feix, 1998) and rice (Inukai et al., 2001, 2005; Liu et al., 2005, 2009; Zhao et al., 2009; Coudert et al., 2010; Gamuyao et al., 2012). Here, we also dissect branch (lateral) development on the seminal or nodal roots. Genes specific to branch roots have been identified in Arabidopsis (Casimiro et al., 2003; Péret et al., 2009a), rice (Hao and Ichii, 1999; Wang et al., 2006; Zheng et al., 2013), and maize (Hochholdinger and Feix, 1998; Hochholdinger et al., 2001; Woll et al., 2005).This study explored the hypothesis that adult root systems of B. distachyon contain genotypic variation that can be exploited through phenotyping and genotyping to increase cereal yields. A selection of 79 wild lines of B. distachyon from various parts of the Middle East (Fig. 2 shows the geographic origins of the lines) was phenotyped. They were selected for maximum genotypic diversity from 187 diploid lines analyzed with 43 simple sequence repeat markers (Vogel et al., 2009). We phenotyped shoots and mature root systems concurrently because B. distachyon is small enough to complete its life cycle in relatively small pots of soil with minimal influence of pot size compared with crops, such as wheat. We further phenotyped a subset of this population under irrigation (well watered) and drought to assess genotype response to water supply. By conducting whole-plant studies, we aimed to identify phenotypes that described partitioning among shoot and root components and within seed-borne and stem-borne roots. Phenotypes that have the potential to be beneficial to shoot and root components may speed up genetic gain in future.Open in a separate windowFigure 2.B. distachyon lines phenotyped in this study and their geographical origin. Capital letters in parentheses indicate the country of origin: Turkey (T), Spain (S), and Iraq (I; Vogel et al., 2009). a, Adi3, Adi7, Adi10, Adi12, Adi13, and Adi15; b, Bd21 and Bd21-3 are the reference lines of this study. Bd21 was the first sequenced line (Vogel et al., 2010) and root system (described in detail in Watt et al., 2009), and Bd21-3 is the most easily transformed line (Vogel and Hill, 2008) and parent of a T-DNA mutant population (Bragg et al., 2012); c, Gaz1, Gaz4, and Gaz7; d, Kah1, Kah2, and Kah3. e, Koz1, Koz3, and Koz5; f, Tek1 and Tek6; g, exact GPS coordinates are unknown for lines Men2 (S), Mur2 (S), Bd2.3 (I), Bd3-1 (I), and Abr1 (T).  相似文献   

17.
SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase,Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE5   总被引:1,自引:0,他引:1  
Xiaona Zhou  Hongmei Hao  Yuguo Zhang  Yili Bai  Wenbo Zhu  Yunxia Qin  Feifei Yuan  Feiyi Zhao  Mengyao Wang  Jingjiang Hu  Hong Xu  Aiguang Guo  Huixian Zhao  Yang Zhao  Cuiling Cao  Yongqing Yang  Karen S. Schumaker  Yan Guo  Chang Gen Xie 《Plant physiology》2015,168(2):659-676
  相似文献   

18.
Demonstrated and inferred metabolism associated with cytosolic lipid droplets     
Joel M. Goodman 《Journal of lipid research》2009,50(11):2148-2156
Cytosolic lipid droplets were considered until recently to be rather inert particles of stored neutral lipid. Largely through proteomics is it now known that droplets are dynamic organelles and that they participate in several important metabolic reactions as well as trafficking and interorganellar communication. In this review, the role of droplets in metabolism in the yeast Saccharomyces cerevisiae, the fly Drosophila melanogaster, and several mammalian sources are discussed, particularly focusing on those reactions shared by these organisms. From proteomics and older work, it is clear that droplets are important for fatty acid and sterol biosynthesis, fatty acid activation, and lipolysis. However, many droplet-associated enzymes are predicted to span a membrane two or more times, which suggests either that droplet structure is more complex than the current model posits, or that there are tightly bound membranes, particularly derived from the endoplasmic reticulum, which account for the association of several of these proteins.Cytosolic lipid droplets, originally thought to be simply coalesced neutral lipids waiting for lipolysis at metabolic demand, are now known to be considerably more complicated both structurally and functionally. There is general agreement that droplets are comprised of a core of neutral lipids, principally triglycerides and steryl esters, surrounded by a leaflet of phospholipids into which are embedded a specific subset of cellular proteins, the most abundant of which are members of the PAT family (see below) in animal cells (1). However, this model is probably too simple; there is evidence from physical probes of droplets isolated from yeast mutants unable to synthesize triglycerides or steryl esters that these two molecular families are partially segregated within the core, with thin shells of steryl esters forming concentric hollow spheres around an inner core composed principally of triglycerides (2).The next layer of complexity is the functional inhomogeneity of droplets. Subsets of droplets within the same cells exist with different populations of PAT proteins, differentiating among different sizes, ages, and levels of metabolic activity (3, 4). Perhaps most surprisingly, droplets may be comprised, at least in some cases, not of the layered core-phospholipid shell architecture at all but a knot of tightly woven endoplasmic reticulum (ER) surrounded by secreted neutral lipid, itself encased with a single leaflet. Such a model is based on electron microscopic thin sections (5), freeze fracture-immunogold evidence (6), immunohistochemical studies of ER luminal proteins within the droplet (7), and the identification of these proteins, notably ER chaperones, in several proteomic studies. Although certainly, such a complex structure must obey physical laws governing aqueous interactions with hydrophobic lipids and artifacts in processing for electron microscopy do occur, it may be best at present to keep an open mind and consider that droplets may not have the same structure among tissues and that they may take multiple physical forms in rapid order as they dynamically perform their functions.What are these functions? The most obvious one is lipid metabolism, namely the biogenesis and breakdown of the neutral lipids contained within the droplet. Although this conclusion predates proteomic studies (8), these recent studies have revealed the breadth and conservation of metabolic reactions that occur at or near the droplet surface, the subject of this review. Moreover, proteomics has demonstrated the surprising fact that droplets are likely to be very active in organellar communication because they are replete in rab proteins and other trafficking molecules. Our knowledge from proteomic studies of droplet trafficking and communication is discussed separately in this thematic review series.A major caveat must be kept in mind when evaluating droplet proteomics data: besides droplet trafficking through transient interactions with vesicles or target organelles such as early endosomes (9), droplets make extensive, tight, and long-lasting synapses with the endoplasmic reticulum, mitochondria, and peroxisomes (10, 11). The fact that ER, mitochondrial, peroxisomal, and a few plasma membrane proteins are found with such high frequency in the droplet proteome probably reflects these tight interorganellar interactions, perhaps similar to the mitochondrially associated membranes (MAMs) that link mitochondria with ER (12). The molecular basis for droplet-mediated synapses are not yet known. Besides the frequent occurrence of specific nondroplet organelle proteins in the droplet proteome, adventitious contamination of droplets is unlikely in view of the unique density of droplets that allow their flotation to the top of aqueous buffers and density gradients after centrifugation while all other cell components sink (which also permits several washes with high recovery), and the nonrandom coisolation of subsets of proteins from other organelles, such as the β-oxidation peroxisomal enzymes (10), which suggests specialized regions for metabolically-productive droplet interactions at the synapses.Droplet-ER interactions are a special case; it is the rule rather than the exception that enzymes of lipid metabolism that are found in the droplet proteome are also found to varying extents in the ER. This has been well documented in yeast through genome-wide green fluorescent protein (GFP)-tagging (13, 14). Erg6p, an enzyme in the latter part of the ergosterol biosynthetic pathway, is the only droplet protein in the pathway with a near-exclusive droplet localization in yeast; Erg1p, Erg7p, and Erg 27p are dually localized, and the pattern changes depending on metabolic state. Whether this general rule is specific for yeast, in which droplets remain on the ER surface (15), is not yet clear. However, several examples already exist in mammalian cells: cytochrome b5 reductase (DT diaphorase) and various sterol dehydrogenases (see 12).

TABLE 1.

Metabolic functions of droplets as revealed by proteomics
ProteinReference(s)Comments
Fatty Acid Synthesis
ATP citrate lyase(e)Generates acetyl-CoA
Acetyl-CoA carboxylase/ACC1(i) (j) (n) (o)(e)Generates malonyl CoA
3-Oxoacyl(ACP) synthase(e)Drosophila; early step in FA synthesis
Fatty acid synthase(e)Drosophila
Diaphorase 1/Cytochrome b5 reductase(g)(h)(j) (l) (n) (o)Redox carrier in FA elongation and many others
Fatty acid desaturase 2(e) (m)Many hydrophobic spans likely
Fatty Acid Activation
Acyl-CoA synthetase/ACSL1(g) (n)Fatty acid-CoA ligase
Acyl-CoA synthetase/ACSL3(g)(h)(i) (j) (l) (n) (o)Fatty acid-CoA ligase
Acyl-CoA synthetase/ACSL4(g)(h) (j) (l) (n)Fatty acid-CoA ligase
Acyl-CoA synthetase/ACSL5(m)LACS2
Acyl-CoA synthetases/FAA1, FAA4, FAT1(a) (d)Yeast enzymes; FAT1 is a FA transporter; may have synthetase activity
Steroid Synthesis
Squalene epoxidase/ERG1(a) (i) (j) (o)(d)
Lanosterol synthase/ERG7(a)(g) (h) (i) (j) (m) (o)(d)
NAD(P) steroid dehydrogenase like (NSDHL)/ERG26(g)(h) (i)(m) (o)Sterol synthesis
3-keto reductase 17 βHSD7/ERG27(b)*(c)*(g) (j)(n) (o)(d)Sterol synthesis
C24-methyltransferase/ERG6(a) (c)* (d)Specific to ergosterol synthesis in fungi
17 β-HSD11 (retinal short chain dehydrogenase)(h) (i) (j) (l) (m) (n) (o) (e)Testosterone biosynthesis; steroid metabolism
17 β-HSD4(l)Bile salt snthesis
17 β-HSD13(m)A short-chain dehydrogenase
17 β-HSD3(m)Steroid metabolism
Triglyceride Synthesis
AcylDHAP reductase/AYR1(d)Determined early biochemically (68)
LysoPA acyltransferase/SLC1(d)Determined earlier biochemically (69)
DAG acyltransferase/DGA1Determined biochemically in yeast (70)
Lipolysis
Hormone-sensitive lipase(f)(g)Diglyceride lipase [first characterized in (71)]
Fat-specific gene 27(g)Lipase activity
ATGL(n) (o)Triglyceride lipase
Monoglyceride lipase(m)
Tgl3, Tgl4, Tgl5(a)Yeast triglyceride lipases [for Tgl4 and 5 see (60)]
Tgl1p, Yeh1p(a)Yeast steryl ester lipases; Yeh1 localized in (62)
PLC α(n)
Phospholipase A1(n)
Lipase Modulators
Perilipin(g)PAT family
ADRP(g)(h) (i) (k) (l) (m) (n) (o)PAT family
TIP47(g)(h) (l) (m) (o)PAT family
S3-12(g)PAT family
LSD2(e)(f)PAT family (Drosophila)
CGI-58(g) (i) (n) (o) (f)Regulator of ATGL; has endogenous acyltransferase activity (72)
Caveolin 1(g) (m) (n)May bridge perilipin with PKA to stimulate lipolysis
Other Redox Enzymes
Cytochrome p450(e)Mostly in ER
Cytochrome b5(e)Mostly in ER
Alcohol dehydrogenase 4(j) (m)(n) (e)Most in cytoplasm. Broad specificity, including retinols, aliphatic alcohols, and steroids
Aldehyde dehydrogenase /ALDH3B1(g)Can oxidize medium and long chain aldehydes
Glyceraldehyde phosphate dehydrogenase(a)(h) (l) (m) (n) (o) (e)Cytosolic glycolytic enzyme, but often found with droplets
Xanthine oxidoreductase(k)Identified in mammary tissue only
Gulonolactone oxidase(m)Drosophila; missing in humans. Role in ascorbic acid synthesis
Short-chain dehydrogenase/reductase member 1(g) (j) (n)(e)Unknown substrate
Other Enzymes
Acyl-CoA:ethanol o-acyltransferase /EHT1(a)(d)Generation of medium-chain ethyl esters
SCCPDH (CGI49)(h)(n) (o)Degradation of lysine
PI4 phosphatase/SAC1(n)
Serine palmitoyltransferase subunit 1 isoform a(n)Sphingolipid synthesis
SAM-dependent methyltransferase(j)Biosynthesis of phosphatidylcholine
Possible Contamination
Sterol carrier protein 2-related form(l) (e)May have thiolase activity. Peroxisomal contamination?
Palmitoyl-protein thioesterase(j) (n)Lysosomal contamination?
ER carboxyesterase(k)Mammary; used to make triglyc for lipooproteins
ATPsynthase2(g)Mitochondrial contamination
Carbamoyl P Synthetase 1(m)Mitochondrial contamination
Pyruvate carboxylase(g)(k)(e)Mitochondrial contamination?
Fatty acid translocase/CD36(g)Plasma membrane contamination?
Lipoprotein lipase (LPL)(g)Plasma membrane contamination
Open in a separate window*Non proteomics screens.(a) (29).*(b) (GFP screen) (13).*(c) (GFP screen) (14).(d) (10).(e) (73).(f) (74).(g) (23).(h) (75).(i) (76).(j) (24).(k) (77).(l) (78).(m) (79).(n) (40).(o) (5).The metabolic functions of droplets, as revealed or confirmed by proteomic studies, can be grouped into fatty acid synthesis and activation, sterol biosynthesis, triglyceride biosynthesis, and fatty acid mobilization from sterol esters and triglycerides. 相似文献   

19.
PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness-, and CO2-Induced Stomatal Regulation     
Ebe Merilo  Kristiina Laanemets  Honghong Hu  Shaowu Xue  Liina Jakobson  Ingmar Tulva  Miguel Gonzalez-Guzman  Pedro L. Rodriguez  Julian I. Schroeder  Mikael Broschè  Hannes Kollist 《Plant physiology》2013,162(3):1652-1668
  相似文献   

20.
Imaging cell biology in live animals: Ready for prime time     
Roberto Weigert  Natalie Porat-Shliom  Panomwat Amornphimoltham 《The Journal of cell biology》2013,201(7):969-979
Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobiology, immunology, and cancer biology.The discovery of GFP combined with the ability to engineer its expression in living cells has revolutionized mammalian cell biology (Chalfie et al., 1994). Since its introduction, several light microscopy–based techniques have become invaluable tools to investigate intracellular events (Lippincott-Schwartz, 2011). Among them are: time-lapse confocal microscopy, which has been instrumental in studying the dynamics of cellular and subcellular processes (Hirschberg et al., 1998; Jakobs, 2006; Cardarelli and Gratton, 2010); FRAP, which has enabled determining various biophysical properties of proteins in living cells (Berkovich et al., 2011); and fluorescence resonance energy transfer (FRET), which has been used to probe for protein–protein interactions and the local activation of specific signaling pathways (Balla, 2009). The continuous search for improvements in temporal and spatial resolution has led to the development of more sophisticated technologies, such as spinning disk microscopy, which allows the resolution of fast cellular events that occur on the order of milliseconds (Nakano, 2002); total internal reflection microscopy (TIRF), which enables imaging events in close proximity (100 nm) to the plasma membrane (Cocucci et al., 2012); and super-resolution microscopy (SIM, PALM, and STORM), which captures images with resolution higher than the diffraction limit of light (Lippincott-Schwartz, 2011).Most of these techniques have been primarily applied to in vitro model systems, such as cells grown on solid substrates or in 3D matrices, explanted embryos, and organ cultures. These systems, which are relatively easy to maintain and to manipulate either pharmacologically or genetically, have been instrumental in providing fundamental information about cellular events down to the molecular level. However, they often fail to reconstitute the complex architecture and physiology of multicellular tissues in vivo. Indeed, in a live organism, cells exhibit a 3D organization, interact with different cell types, and are constantly exposed to a multitude of signals originated from the vasculature, the central nervous system, and the extracellular environment. For this reason, scientists have been attracted by the possibility of imaging biological processes in live multicellular organisms (i.e., intravital microscopy [IVM]). The first attempt in this direction was in 1839, when Rudolph Wagner described the interaction of leukocytes with the walls of blood vessels in the webbed feet of a live frog by using bright-field transillumination (Wagner, 1839). Since then, this approach has been used for over a century to study vascular biology in thin areas of surgically exposed organs (Irwin and MacDonald, 1953; Zweifach, 1954) or by implanting optical windows in the skin or the ears (Clark and Clark, 1932). In addition, cell migration has also been investigated using transparent tissues, such as the fin of the teleost (Wood and Thorogood, 1984; Thorogood and Wood, 1987). The introduction of epifluorescence microscopy has enabled following in more detail the dynamics of individual cells in circulation (Nuttall, 1987), in tumors (MacDonald et al., 1992), or in the immune system (von Andrian, 1996), and the spatial resolution has been significantly improved by the use of confocal microscopy, which has made it possible to collect serial optical sections from a given specimen (Villringer et al., 1989; O’Rourke and Fraser, 1990; Jester et al., 1991). However, these techniques can resolve structures only within a few micrometers from the surface of optically opaque tissues (Masedunskas et al., 2012a). It was only in the early nineteen nineties, with the development of multiphoton microscopy, that deep tissue imaging has become possible (Denk et al., 1990; Zipfel et al., 2003b), significantly contributing to several fields, including neurobiology, immunology, and cancer biology (Fig. 1; Svoboda and Yasuda, 2006; Amornphimoltham et al., 2011; Beerling et al., 2011). In the last few years, the development of strategies to minimize the motion artifacts caused by the heartbeat and respiration has made it possible to successfully image subcellular structures with spatial and temporal resolutions comparable to those achieved in in vitro model systems, thus providing the opportunity to study cell biology in live mammalian tissues (Fig. 1; Weigert et al., 2010; Pittet and Weissleder, 2011).Open in a separate windowFigure 1.Spatial resolution and current applications of intravital microscopy. IVM provides the opportunity to image several biological processes in live animals at different levels of resolution. Low-magnification objectives (5–10×) enable visualizing tissues and their components under physiological conditions and measuring their response under pathological conditions. Particularly, the dynamics of the vasculature have been one of topic most extensively studied by IVM. Objectives with higher magnification (20–30×) have enabled imaging the behavior of individual cell over long periods of time. This has led to major breakthroughs in fields such as neurobiology, immunology, cancer biology, and stem cell research. Finally, the recent developments of strategies to minimize the motion artifacts caused by the heartbeat and respiration combined with high power lenses (60–100×) have opened the door to image subcellular structures and to study cell biology in live animals.The aim of this review is to highlight the power of IVM in addressing cell biological questions that cannot be otherwise answered in vitro, due to the intrinsic limitations of reductionist models, or by other more classical approaches. Furthermore, we discuss limitations and areas for improvement of this imaging technique, hoping to provide cell biologists with the basis to assess whether IVM is the appropriate choice to address their scientific questions.

Imaging techniques currently used to perform intravital microscopy

Confocal and two-photon microscopy are the most widely used techniques to perform IVM. Confocal microscopy, which is based on single photon excitation, is a well-established technique (Fig. 2 A) that has been extensively discussed elsewhere (Wilson, 2002); hence we will only briefly describe some of the main features of two-photon microscopy and other nonlinear optical techniques.Open in a separate windowFigure 2.Fluorescent light microscopy imaging techniques used for intravital microscopy. (A) Confocal microscopy. (top) In confocal microscopy, a fluorophore absorbs a single photon with a wavelength in the UV-visible range of the spectrum (blue arrow). After a vibrational relaxation (orange curved arrow), a photon with a wavelength shifted toward the red is emitted (green arrow). (center) In thick tissue, excitation and emission occur in a relative large volume around the focal plane (F.P.). The off-focus emissions are eliminated through a pinhole, and the signal from the focal plane is detected via a photomultiplier (PMT). Confocal microscopy enables imaging at a maximal depth to 80–100 µm. (bottom) Confocal z stack of the tongue of a mouse expressing the membrane marker m-GFP (green) in the K14-positive basal epithelial layer, and the membrane marker mTomato in the endothelium (red). The xy view shows a maximal projection of 40 z slices acquired every 2.5 µm, whereas the xz view shows a lateral view of the stack. In blue are the nuclei labeled by a systemic injection of Hoechst. Excitation wavelengths: 450 nm, 488 nm, and 562 nm. (B) Two- and three-photon microscopy. (top) In this process a fluorophore absorbs almost simultaneously two or three photons that have half (red arrow) or a third (dark red arrow) of the energy required for its excitation with a single photon. Two- or three-photon excitations typically require near-IR or IR light (from 690 to 1,600 nm). (center) Emission and excitation occur only at the focal plane in a restricted volume (1.5 fl), and for this reason a pinhole is not required. Two- and three-photon microscopy enable imaging routinely at a maximal depth of 300–500 µm. (bottom) Two-photon z stack of an area adjacent to that imaged in A. xy view shows a maximal projection of 70 slices acquired every 5 µm. xz view shows a lateral view of the stack. Excitation wavelength: 840 nm. (C) SHG and THG. (top) In SHG and THG, photons interact with the specimen and combine to form new photons that are emitted with twice or three times their initial energy without any energy loss. (center) These processes have similar features to those described for two- and three-photon microscopy and enable imaging at a maximal depth of 200–400 µm. (bottom) z stack of a rat heart excited by two-photon microscopy (740 nm) to reveal the parenchyma (green), and SHG (930 nm) to reveal collagen fibers (red). xy shows a maximal projection of 20 slices acquired every 5 µm. xz view shows a lateral view of the stack. Bars: (xy views) 40 µm; (xz views) 50 µm.The first two-photon microscope (Denk et al., 1990) was based on the principle of two-photon excitation postulated by Maria Göppert-Mayer in her PhD thesis (Göppert-Mayer, 1931). In this process a fluorophore is excited by the simultaneous absorption of two photons with wavelengths in the near-infrared (IR) or IR spectrum (from 690 to 1,600 nm; Fig. 2 B). Two-photon excitation requires high-intensity light that is provided by lasers generating very short pulses (in the femtosecond range) and is focused on the excitation spot by high numerical aperture lenses (Zipfel et al., 2003b). There are three main advantages in using two-photon excitation for IVM. First, IR light has a deeper tissue penetration than UV or visible light (Theer and Denk, 2006). Indeed, two-photon microscopy can resolve structures up to a depth of 300–500 µm in most of the tissues (Fig. 2 B), and up to 1.5 mm in the brain (Theer et al., 2003; Masedunskas et al., 2012a), whereas confocal microscopy is limited to 80–100 µm (Fig. 2 A). Second, the excitation is restricted to a very small volume (1.5 fl; Fig. 2 B). This implies that in two-photon microscopy there is no need to eliminate off-focus signals, and that under the appropriate conditions photobleaching and phototoxicity are negligible (Zipfel et al., 2003b). However, confocal microscopy induces out-of-focus photodamage, and thus is less suited for long-term imaging. Third, selected endogenous molecules can be excited, thus providing the contrast to visualize specific biological structures without the need for exogenous labeling (Zipfel et al., 2003a). Some of these molecules can also be excited by confocal microscopy using UV light, although with the risk of inducing photodamage.More recently, other nonlinear optical techniques have been used for IVM, and among them are three-photon excitation, and second and third harmonic generation (SHG and THG; Campagnola and Loew, 2003; Zipfel et al., 2003b; Oheim et al., 2006). Three-photon excitation follows the same principle as two-photon (Fig. 2 B), and can reveal endogenous molecules such as serotonin and melatonin (Zipfel et al., 2003a; Ritsma et al., 2013). In SHG and THG, photons interact with the specimen and combine to form new photons that are emitted with two or three times their initial energy (Fig. 2 C). SHG reveals collagen (Fig. 2 C) and myosin fibers (Campagnola and Loew, 2003), whereas THG reveals lipid droplets and myelin fibers (Débarre et al., 2006; Weigelin et al., 2012). Recently, two other techniques have been used for IVM: coherent anti-Stokes Raman scattering (CARS) and fluorescence lifetime imaging (FLIM). CARS that is based on two laser beams combined to match the energy gap between two vibrational levels of the molecule of interest, has been used to image lipids and myelin fibers (Müller and Zumbusch, 2007; Fu et al., 2008; Le et al., 2010). FLIM, which measures the lifetime that a molecule spends in the excited state, provides quantitative information on cellular parameters such as pH, oxygen levels, ion concentration, and the metabolic state of various biomolecules (Levitt et al., 2009; Provenzano et al., 2009; Bakker et al., 2012).We want to emphasize that two-photon microscopy and the other nonlinear techniques are the obligatory choice when the imaging area is located deep inside the tissue, endogenous molecules have to be imaged, or long-term imaging with frequent sampling is required. However, confocal microscopy is more suited to resolve structures in the micrometer range, because of the possibility of modulating the optical slice (Masedunskas et al., 2012a).

IVM to investigate biological processes at the tissue and the single cell level

The main strength of IVM is to provide information on the dynamics of biological processes that otherwise cannot be reconstituted in vitro or ex vivo. Indeed, IVM has been instrumental in studying several aspects of tissue physiopathology (Fig. 3, A and B). Although other approaches such as classical immunohistochemistry, electron microscopy, and indirect immunofluorescence may provide detailed structural and quantitative information on blood vessels, IVM enables measuring events such as variations of blood flow at the level of the capillaries or local changes in blood vessel permeability. These data have been instrumental in understanding the mechanisms of ischemic diseases and tumor progression, and in designing effective anticancer treatments.

Table 1.

IVM to study tissue physiopathology
EventOrganProbesReference
Measurements of local blood flow and glial cell functionBrainDextranHelmchen and Kleinfeld, 2008
Ischemia and reperfusionBrainSulphorhodamine 101, DextranZhang and Murphy, 2007; Masamoto et al., 2012;
Glomerular filtration and tubular reabsorptionKidneyDextran, AlbuminKang et al., 2006; Yu et al., 2007; Camirand et al., 2011
Blood flow patternsPancreatic isletsDextranNyman et al., 2008
Capillary response and synaptic activationOlfactory bulbDextranChaigneau et al., 2003
Imaging angiogenesis during wound healingSkullcapDextranHolstein et al., 2011
Pulmonary microvasculature and endothelial activationLungDextranPresson et al., 2011
Morphology of blood vessels and permeability in tumorsXenograftsDextran, RGD quantum dotsTozer et al., 2005; Smith et al., 2008; Vakoc et al., 2009; Fukumura et al., 2010
Hepatic transport into the bile canaliculiLiverCarboxyfluorescein diacetate Rhodamine 123Babbey et al., 2012; Liu et al., 2012
Progression of amyloid plaques in Alzheimer’s diseaseBrainCurcumin and metoxy-04Spires et al., 2005; Garcia-Alloza et al., 2007
Mitochondrial membrane potentialLiverTetramethylrhodamine methyl ester Rhodamine 123Theruvath et al., 2008; Zhong et al., 2008
Oxygen consumptionLiverRu(phen3)2+Paxian et al., 2004
Sarcomere contraction in humansSkeletal muscleEndogenous fluorescenceLlewellyn et al., 2008
Open in a separate windowOpen in a separate windowFigure 3.Imaging tissues and individual cells in live animals. (A) The vasculature of an immunocompromised mouse was highlighted by the systemic injection of 2 MD dextran (red) before (left) and after (right) the implant of breast cancer cells in the back (green). Note the change in shape of the blood vessels and their increased permeability (arrow). Images were acquired by two-photon microscopy (excitation wavelength: 930 nm). (B) The microvasculature in the liver of a mouse expressing the membrane marker mTomato (red) was highlighted by the injection of cascade blue dextran (blue) and imaged by confocal microscopy (excitation wavelengths: 405 nm and 561 nm). Note the red blood cells that do not uptake the dye and appear as dark objects in the blood stream (arrow). (C) Metastatic and nonmetastatic human adenocarcinoma cells were injected in the tongue of an immunocompromised mouse and imaged for four consecutive days by using two-photon microscopy (excitation wavelength: 930 nm). The metastatic cells, which express the fluorescent protein mCherry (red), migrate away from the edge of the tumor (arrows), whereas the nonmetastatic cells, which express the fluorescent protein Venus (green), do not. (D) A granulocyte moving inside a blood vessel in the mammary gland of a mouse expressing GFP-tagged myosin IIb (green) and labeled with the mitochondrial vital dye MitoTracker (red) was imaged in time lapse by using confocal microscopy (excitation wavelengths: 488 nm and 561 nm). Figure corresponds to Video 1. Time is expressed as minutes:seconds. Bars: (A) 100 µm; (B) 10 µm; (C) 30 µm; (D) 10 µm.IVM has also been used successfully to study the dynamics and the morphological changes of individual cells within a tissue (EventOrganProbeReferenceNeuronal morphology of hippocampal neuronsBrainThy1-GFP mice, dextranBarretto et al., 2011Neuronal circuitryBrainBrainbow miceLivet et al., 2007Dendritic spine development in the cortexBrainYFP H-line micePan and Gan, 2008Calcium imaging in the brainBrainGCAMPZariwala et al., 2012Natural killer cell and cytotoxic T cell interactions with tumorsXenograftmCFP , mYFPDeguine et al., 2010Neutrophil recruitment in beating heartHeartDextran, CX3CR1-GFP miceLi et al., 2012Immune cells in the central nervous systemBrainDextran, CX3CR1-GFP, LysM-GFP and CD11c-YFP miceNayak et al., 2012Dendritic cells migrationSkinYFP, VE-caherin RFP mice, dextranNitschké et al., 2012CD8+ T cells interaction with dendritic cells during viral infectionLymph nodesEGFP, Dextran, SHGHickman et al., 2008B cells and dendritic cells interactions outside lymph nodesLymph nodesEGFPQi et al., 2006Change in gene expression during metastasisXenograftPinner et al., 2009Invasion and metastasis in head and neck cancerXenograftYFP, RFP-lifeact, dextranAmornphimoltham et al., 2013Fibrosarcoma cell migration along collagen fibersDorsal skin chamberSHG, EGFP, DsRed, DextranAlexander et al., 2008Long term imaging mammary tumors and photo-switchable probesMammary windowDendra-2Kedrin et al., 2008; Gligorijevic et al., 2009Long term imaging liver metastasis through abdominal windowLiverSHG, Dendra2, EGFPRitsma et al., 2012bMacrophages during intravasation in mammary tumorsXenograftEGFP, SHG, dextransWang et al., 2007; Wyckoff et al., 2007Melanoma collective migrationDorsal skin ChamberSHG, THG, EGFP, DextranWeigelin et al., 2012Hematopoietic stem cells and blood vesselSkullcupDextranLo Celso et al., 2009Epithelial stem cells during hair regenerationSkinH2B-GFP miceRompolas et al., 2012Open in a separate windowIn neurobiology, for example, the development of approaches to perform long-term in vivo imaging has permitted the correlation of changes in neuronal morphology and neuronal circuitry to pathological conditions such as stroke (Zhang and Murphy, 2007), tumors (Barretto et al., 2011), neurodegenerative diseases (Merlini et al., 2012), and infections (McGavern and Kang, 2011). This has been accomplished by the establishment of surgical procedures to expose the brain cortex, and the implantation of chronic ports of observations such as cranial windows and imaging guide tubes for micro-optical probes (Svoboda and Yasuda, 2006; Xu et al., 2007; Barretto et al., 2011). In addition, this field has thrived thanks to the development of several transgenic mouse models harboring specific neuronal populations expressing either one or multiple fluorescent molecules (Svoboda and Yasuda, 2006; Livet et al., 2007).In tumor biology, the ability to visualize the motility of cancer cells within a tumor in vivo has provided tremendous information on the mechanisms regulating invasion and metastasis (Fig. 3 C; Beerling et al., 2011). Tumor cells metastasize to distal sites by using a combination of processes, which include tumor outgrowth, vascular intravasation, lymphatic invasion, or migration along components of the extracellular matrix and nerve fibers. Although classical histological analysis and indirect immunofluorescence have been routinely used to study these processes, the ability to perform long-term IVM through the optimization of optical windows (Alexander et al., 2008; Kedrin et al., 2008; Gligorijevic et al., 2009; Ritsma et al., 2012b) has provided unique insights. For example, a longitudinal study performed by using a combination of two-photon microscopy, SHG, and THG has highlighted the fact that various tissue components associated with melanomas may play either a migration-enhancing or migration-impeding role during collective cell invasion (Weigelin et al., 2012). In mammary tumors, the intravasation of metastatic cells has been shown to require macrophages (Wang et al., 2007; Wyckoff et al., 2007). In head and neck cancer, cells have been shown to migrate from specific sites at the edge of the tumor, and to colonize the cervical lymph nodes by migrating though the lymphatic vessels (Fig. 3 C; Amornphimoltham et al., 2013). In highly invasive melanomas, the migratory ability of cells has been correlated with their differentiation state, as determined by the expression of a reporter for melanin expression (Pinner et al., 2009).Imaging the cells of the immune system in a live animal has revealed novel qualitative and quantitative aspects of the dynamics of cellular immunity (Fig. 2 C and Video 1; Germain et al., 2005; Cahalan and Parker, 2008; Nitschke et al., 2008). Indeed, the very complex nature of the immune response, the involvement of a multitude of tissue components, and its tight spatial and temporal coordination clearly indicate that IVM is the most suited approach to study cellular immunity. This is highlighted in studies either in lymphoid tissues, where the exquisite coordination between cell–cell interactions and cell signaling has been studied during the interactions of B lymphocytes and T cell lymphoid tissues (Qi et al., 2006), T cell activation (Hickman et al., 2008; Friedman et al., 2010), and migration of dendritic cells (Nitschké et al., 2012), or outside lymphoid tissues, such as, for example, brain during pathogen infections (Nayak et al., 2012), heart during inflammation (Li et al., 2012), and solid tumors (Deguine et al., 2010).

Imaging subcellular structures in vivo and its application to cell biology

The examples described so far convey that IVM has contributed to unraveling how the unique properties of the tissue environment in vivo significantly regulate the dynamics of individual cells and ultimately tissue physiology. Is IVM suitable to determine (1) how subcellular events occur in vivo, (2) whether they differ in in vitro settings, and (3), finally, the nature of their contribution to tissue physiology?IVM has been extensively used to image subcellular structures in smaller organisms (i.e., zebrafish, Caenorhabditis elegans) that are transparent and can be easily immobilized (Rohde and Yanik, 2011; Tserevelakis et al., 2011; Hove and Craig, 2012). In addition, the ability to easily perform genetic manipulations has made these systems extremely attractive to study several aspects of developmental and cell biology. However, their differences in term of organ physiology with respect to rodents do not make them suitable models for human diseases. For a long time, subcellular imaging in live rodents has been hampered by the motion artifacts derived from the heartbeat and respiration. Indeed, small shifts along the three axes make it practically impossible to visualize structures whose sizes are in the micrometer or submicrometer range, whereas it marginally affects larger structures. This issue has been only recently addressed by using a combination of strategies, which include: (1) the development of specific surgical procedures that allow the exposure and proper positioning of the organ of interest (Masedunskas et al., 2013), (2) the improvement of specific organ holders (Cao et al., 2012; Masedunskas et al., 2012a), and (3) the synchronization of the imaging acquisition with the heartbeat and respiration (Presson et al., 2011; Li et al., 2012). Very importantly, these approaches have been successfully implemented without compromising the integrity and the physiology of the tissue, thus opening the door to study cell biology in a live animal.For example, large subcellular structures such as the nuclei have been easily imaged, making it possible to study processes such as cell division and apoptosis (Fig. 4 A; Goetz et al., 2011; Orth et al., 2011; Rompolas et al., 2012). Interestingly, these studies have highlighted the fact that the in vivo microenvironment substantially affects nuclear dynamics. Indeed, mitosis and the structure of the mitotic spindle were followed over time in a xenograft model of human cancer expressing the histone marker mCherry-H2B and GFP-tubulin (Orth et al., 2011). Specifically, the effects of the anticancer drug Paclitaxel were studied, revealing that the tumor cells in vivo have a higher mitotic index and lower pro-apoptotic propensity than in vitro (Orth et al., 2011). FRET has been used in subcutaneous tumors to image cytotoxic T lymphocyte–induced apoptosis and highlighted that the kinetics of this process are much slower than those reported for nontumor cells in vivo that are exposed to a different microenvironment (Breart et al., 2008). Cell division has also been followed in the hair-follicle stem cells of transgenic mice expressing GFP-H2B. This study determined that epithelial–mesenchymal interactions are essential for stem cell activation and regeneration, and that nuclear divisions occur in a specific area of the hair follicles and are oriented toward the axis of growth (Rompolas et al., 2012). These processes show an extremely high level of temporal and spatial organization that can only be appreciated in vivo and by using time-lapse imaging.Open in a separate windowFigure 4.Imaging subcellular events in live animals. (A) Human squamous carcinoma cells were engineered to stably express the Fucci cell cycle reporter into the nucleus and injected in the back of an immunocompromised mouse. After 1 wk, the tumor was imaged by two-photon microscopy and SHG (excitation wavelength: 930 nm). (top) Maximal projection of a z stack (xy view). Cells in G2/M are in green, cells in G1 are in red, and collagen fibers are in cyan. (bottom) Lateral view (xz) of a z stack. (B) Clusters of GLUT4-containing vesicles (green) in the soleus muscle of a transgenic mouse expressing GFP-GLUT4 and injected with 70 kD Texas red–dextran to visualize the vasculature and imaged by two-photon microscopy (excitation wavelength: 930 nm). (C) Confocal microscopy (excitation wavelength: 488 nm) of hepatocytes in the liver of a transgenic mouse expressing the autophagy marker GFP-LC3. The inset shows small GFP-LC3 autophagic vesicles. (D–G) Dynamics of intracellular compartments imaged by time-lapse two-photon (E) or confocal microscopy (D, F, and G). (D) Endocytosis of systemically injected 10 kD Texas red–dextran into the kidney of a transgenic mouse expressing the membrane marker m-GFP. The dextran (red) is transported from the microvasculature into the proximal tubuli, and then internalized in small endocytic vesicles (arrows; Video 2). (E) Endocytosis of a systemically injected 10 kD of Alexa Fluor 488 dextran into the salivary glands of a live rat. The dextran (green) diffuses from the vasculature into the stroma, and it is internalized by stromal cells (insets). Collagen fibers (red) are highlighted by SHG. (F) Regulated exocytosis of large secretory granules in the salivary glands of a live transgenic mouse expressing cytoplasmic GFP. The GFP is excluded from the secretory granules and accumulates on their limiting membranes (arrows) after fusion with the plasma membrane (broken lines). The gradual collapse of an individual granule is highlighted in the insets. (G) Dynamics of mitochondria labeled with the membrane potential dye TMRM in the salivary glands of a live mouse. Time is expressed as minutes:seconds. Bars: (A) 40 µm; (B) 15 µm; (C, D, E, and G) 10 µm; (F) 5 µm.Imaging membrane trafficking has been more challenging because of its dynamic nature and the size of the structures to image. The first successful attempt to visualize membrane traffic events was achieved in the kidney of live rats by using two-photon microscopy where the endocytosis of fluid-phase markers, such as dextrans, or the receptor-mediated uptake of folate, albumin, and the aminoglycoside gentamicin were followed in the proximal tubuli (Fig. 4 D and Video 2; Dunn et al., 2002; Sandoval et al., 2004; Russo et al., 2007). These pioneering studies showed for the first time that apical uptake is involved in the filtration of large molecules in the kidney, whereas previously it was believed to be exclusively due to a barrier in the glomerular capillary wall. However, in the kidney the residual motion artifacts limited the imaging to short periods of time. Recently, the salivary glands have proven to be a suitable organ to study the dynamics of membrane trafficking by using either two-photon or confocal microscopy. Systemically injected dextrans, BSA, and transferrin were observed to rapidly internalize in the stromal cells surrounding the salivary gland epithelium in a process dependent on the actin cytoskeleton (Masedunskas and Weigert, 2008; Masedunskas et al., 2012b). Moreover, the trafficking of these molecules through the endo-lysosomal system was documented, providing interesting insights on early endosomal fusion (Fig. 4 E; Masedunskas and Weigert, 2008; Masedunskas et al., 2012b). Notably, significant differences were observed in the kinetics of internalization of transferrin and dextran. In vivo, dextran was rapidly internalized by stromal cells, whereas transferrin appeared in endosomal structures after 10–15 min. However, in freshly explanted stromal cells adherent on glass, transferrin was internalized within 1 min, whereas dextran appeared in endosomal structures after 10–15 min. Although the reasons for this difference were not addressed, it is clear that the environment in vivo has profound effects on the regulation of intracellular processes (Masedunskas et al., 2012b). Similar differences have been reported for the caveolae that in vivo are more dynamic than in cell cultures (Thomsen et al., 2002; Oh et al., 2007). Endocytosis has also been investigated in the epithelium of the salivary glands (Sramkova et al., 2009). Specifically, plasmid DNA was shown to be internalized by a clathrin-independent pathway from the apical plasma membrane of acinar and ductal cells, and to subsequently escape from the endo-lysosomal system, thus providing useful information on the mechanisms of nonviral gene delivery in vivo (Sramkova et al., 2012). Receptor-mediated endocytosis has also been studied in cancer models. Indeed, the uptake of a fluorescent EGF conjugated to carbon nanotubes has been followed in xenografts of head and neck cancer cells revealing that the internalization occurs primarily in cells that express high levels of EGFR (Bhirde et al., 2009). The role of endosomal recycling has also been investigated during tumor progression. Indeed, the small GTPase Rab25 was found to regulate the ability of head neck cancer cells to migrate to lymph nodes by controlling the dynamic assembly of plasma membrane actin reach protrusion in vivo (Amornphimoltham et al., 2013). Interestingly, this activity of Rab25 was reconstituted in cells migrating through a 3D collagen matrix but not in cells grown adherent to a solid substrate.IVM has been a powerful tool in investigating the molecular machinery controlling regulated exocytosis in various organs. In salivary glands, the use of selected transgenic mice expressing either soluble GFP or a membrane-targeted peptide has permitted the characterization of the dynamics of exocytosis of the secretory granules after fusion with the plasma membrane (Fig. 4 E; Masedunskas et al., 2011a, 2012d). These studies revealed that the regulation and the modality of exocytosis differ between in vivo and in vitro systems. Indeed, in vivo, regulated exocytosis is controlled by stimulation of the β-adrenergic receptor, and secretory granules undergo a gradual collapse after fusion with the apical plasma membrane, whereas, in vitro, regulated exocytosis is also controlled by the muscarinic receptor and the secretory granules fuse to each other, forming strings of interconnected vesicles at the plasma membrane (compound exocytosis; Masedunskas et al., 2011a, 2012d). Moreover, the transient expression of reporter molecules for F-actin has revealed the requirement for the assembly of an actomyosin complex to facilitate the completion of the exocytic process (Masedunskas et al., 2011a, 2012d). This result underscores the fact that the dynamics of the assembly of the actin cytoskeleton can be studied both qualitatively and quantitatively in live animals at the level of individual secretory granules. In addition, this approach has highlighted some of the mechanisms that contribute to regulate the apical plasma membrane homeostasis in vivo that cannot be recapitulated in an in vitro model systems (Masedunskas et al., 2011b, 2012c; Porat-Shliom et al., 2013). Indeed, the hydrostatic pressure that is built inside the ductal system by the secretion of fluids that accompanies exocytosis plays a significant role in controlling the dynamics of secretory granules at the apical plasma membrane. This aspect has never been appreciated in organ explants where the integrity of the ductal system is compromised. Finally, a very promising model has been developed in the skeletal muscle, where the transient transfection of a GFP-tagged version of the glucose transporter type 4 (GLUT4) has made possible to characterize the kinetics of the GLUT4-containing vesicles in resting conditions and their insulin-dependent translocation to the plasma membrane (Fig. 4 B; Lauritzen et al., 2008, 2010). This represents a very powerful experimental model that bridges together physiology and cell biology and has the potential to provide fundamental information on metabolic diseases.These examples underscore the merits of subcellular IVM to investigate specific areas of cell biology such as membrane trafficking, the cell cycle, apoptosis, and cytoskeletal organization. However, IVM is rapidly extending to other areas, such as cell signaling (Stockholm et al., 2005; Rudolf et al., 2006; Ritsma et al., 2012a), metabolism (Fig. 4 C; Débarre et al., 2006; Cao et al., 2012), mitochondrial dynamics (Fig. 4 F; Sun et al., 2005; Hall et al., 2013), or gene and protein expression (Pinner et al., 2009) that have just begun to be explored.

Future perspectives

IVM has become a powerful tool to study biological processes in live animals that is destined to have an enormous impact on cell biology. The examples described here give a clear picture of the broad applicability of this approach. In essence, we foresee that IVM is going to be the obligatory choice to study highly dynamic subcellular processes that cannot be reconstituted in vitro or ex vivo, or when a link between cellular events and tissue physiopathology is being pursued. In addition, IVM will provide the opportunity to complement and confirm data generated from in vitro studies. Importantly, the fact that in several instances confocal microscopy can be effectively used for subcellular IVM makes this approach immediately accessible to several investigators.In terms of future directions, we envision that other light microscopy techniques will soon become standard tools for in vivo studies, as shown by the recent application of FRET to study signaling (Stockholm et al., 2005; Rudolf et al., 2006; Breart et al., 2008; Ritsma et al., 2012a), and FRAP, which has been used in the live brain to measure the diffusion of α synuclein, thus opening the door to studying the biophysical properties of proteins in vivo (Unni et al., 2010). Moreover, super-resolution microscopy may be applied for imaging live animals, although this task may pose some challenges. Indeed, these techniques require: (1) the complete stability of the specimen, (2) extended periods of time for light collection, (3) substantial modifications to the existing microscopes, and (4) the generation of transgenic mice expressing photoactivatable probes.To reach its full potential, IVM has to further develop two main aspects: animal models and instrumentations. Indeed, a significant effort has to be invested in developing novel transgenic mouse models, which express fluorescently labeled reporter molecules. One example is the recently developed mouse that expresses fluorescently tagged lifeact. This model will provide the unique opportunity to study F-actin dynamics in vivo in the context of processes such as cell migration and membrane trafficking (Riedl et al., 2010). Moreover, the possibility of crossing these reporter mice with knockout animals will provide the means to further study cellular processes at a molecular level. Alternatively, reporter molecules or other transgenes that may perturb a specific cellular pathway can be transiently transfected into live animals in several ways. Indeed, the remarkable advancements in gene therapy have contributed to the development of several nonviral- and viral-mediated strategies for gene delivery to selected target organs. In this respect, the salivary glands and the skeletal muscle are two formidable model systems because either transgenes or siRNAs can be successfully delivered without any adverse reaction and expressed in a few hours. In terms of the current technical limitations of IVM, the main areas of improvement are the temporal resolution, the ability to access the organ of interest with minimal invasion, and the ability to perform long-term imaging. As for the temporal resolution, the issue has begun to be addressed by using two different approaches: (1) the use of spinning disk microscopy, as shown by its recent application to image platelet dynamics in live mice (Jenne et al., 2011); and (2) the development of confocal and two-photon microscopes equipped with resonant scanners that permit increasing the scanning speed to 30 frames per second (Kirkpatrick et al., 2012). As for accessing the organs, recently several microlenses (350 µm in diameter) have been inserted or permanently implanted into live animals, minimizing the exposure of the organs and the risk of affecting their physiology (Llewellyn et al., 2008). Finally, although some approaches for the long-term imaging of the brain, the mammary glands, and the liver have been developed, additional effort has to be devoted to establish chronic ports of observations in other organs.In conclusion, these are truly exciting times, and a new era full of novel discoveries is just around the corner. The ability to see processes inside the cells of a live animal is no longer a dream.

Online supplemental material

Video 1 shows time-lapse confocal microscopy of a granulocyte moving inside a blood vessel in the mammary gland of a mouse expressing GFP-tagged myosin IIb (green) and labeled with MitoTracker (red). Video 2 shows time-lapse confocal microscopy of the endocytosis of systemically injected 10 kD Texas red–dextran (red) into the kidney-proximal tubuli of a transgenic mouse expressing the membrane marker m-GFP (green). Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201212130/DC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号