首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
工业酶制剂研发与应用已经渗透到各大工业领域,但中国作为用酶大国、产酶小国面临重大挑战,鉴于以化学催化为核心的基础物质加工业面临资源、能源和环境三大危机,酶工程与生物催化已被列入许多国家的科技与产业发展战略,应用高效、清洁的生物催化技术是实现化学工业可持续发展以及发酵工业产业升级的重要途径之一。文中以2017年第十一届中国酶工程学术研讨会杜邦-杰能科中国酶工程杰出贡献奖获得者特邀报告为基础整理编写而成,从自主酶库构建、酶分子机器/细胞工厂创制及产业化应用等角度概述当前酶工程与生物催化发展现状及前景。  相似文献   

2.
随着生物技术的飞速发展,作为食品生物工程的主要组成部分,食品发酵工程技术不断升级,在传统发酵食品的菌种、发酵过程、产品品质得到改善的同时,生物制造的功能食品组分、未来食品等新型产品也应运而生。首先概述了由生物技术和信息技术的进步带来的食品发酵研究手段与生产方式的多层面变革,并重点阐释了利用食品合成生物学设计构建细胞工厂的思路和方法,以及食品生物工程在微生物分析、过程工程和分离工程方面的智能化进程。其次,介绍了现代食品生物工程技术在改善传统发酵食品品质及安全性、生产功能食品组分、添加剂和酶制剂、创制未来食品和开发新型益生食品方面的应用进展。最后,对全球和我国食品发酵产业面临的挑战和未来发展趋势进行了总结和展望,以期为食品发酵的技术革新和工业化应用提供参考。  相似文献   

3.
刘波  陶勇 《生物工程学报》2019,35(10):1942-1954
以化石资源为原料的化学品制造行业在消耗不可再生资源的同时,还对生态环境造成了破坏,这给以可再生资源为原料的生物制造带来了发展机遇。与传统化工制造不同,生物制造把细胞作为"生产车间","车间"内每一道工序由酶催化完成。"细胞工厂"除了反应条件温和,还具有较强的可塑性,可根据需求调整或者重构代谢途径来合成各种目标化学品。"细胞工厂"的设计过程遵循如下的准则:1)构建一条由原料到产品的最优合成途径;2)平衡代谢途径中每步反应的代谢流,使该途径代谢通量远高于细胞基础代谢;3)足量地供应合成途径的前体,多个前体根据需要调整供应比例;4)酶促反应往往有各种辅因子的参与,顺畅的代谢通路需要平衡或者再生各种辅因子;5)通过遗传改造或者工艺改进解除产物和代谢中间体的反馈抑制,以获取更高的产量。  相似文献   

4.
聚羟基脂肪酸酯(PHA)是一类全生物可降解的高分子聚酯材料.近年来,随着代谢工程和合成生物学等技术的发展,PHA的微生物发酵生产取得了进一步突破.目前PHA的生物制造体系主要分为传统工业生物技术和下一代工业生物技术.本文从下一代工业生物技术体系比较分析出发,简要综述了PHA生物合成过程强化、PHA分离纯化及改性加工等研...  相似文献   

5.
李寅 《生物工程学报》2022,38(4):1267-1294
本文对2021年《生物工程学报》在合成生物制造领域发表的综述和论文进行了评述.重点讨论了大肠杆菌、枯草芽孢杆菌、谷氨酸棒杆菌、酿酒酵母、丝状真菌以及非模式细菌、非传统酵母等主要底盘细胞的设计改造,氨基酸、有机酸、维生素、高级醇、天然化合物(萜类、黄酮类、生物碱类)、抗生素类、酶与生物催化产品、生物聚合物等产品的生物制造...  相似文献   

6.
马延和 《生物工程学报》2010,26(10):1321-1326
对生物炼制细胞工厂的发展进行了简要回顾,从微生物糖代谢的分子机制、细胞工厂的代谢网络及调控、细胞工厂的构建技术及细胞工厂的优化4个方面介绍了本期专刊发表的17篇生物炼制细胞工厂方面的论文。  相似文献   

7.
随着经济发展节奏加快,由此造成的环境污染问题严重影响了人们的生产与生活。类似于光化学烟雾,臭氧层空洞、放射性污染等问题困扰着我们,严峻的环境现状已经不容乐观。现阶段的险峻情势要求我们在盲目发展经济的同时兼顾对自然环境的保护,维持好大环境下的生态平衡,而低碳技术以其低耗能低污染的特点受到了广泛关注与热议,逐渐步入人们的生活,成为不  相似文献   

8.
食品功能因子作为功能性食品制造的基础素材,是食品中真正起生理作用的有效成分,在调节人体机能,改善睡眠和促进生长发育等方面发挥着重要作用.合成生物学作为一种更安全、更健康和绿色可持续的食品获取方式,已经成为推动食品行业发展的重要技术支撑.食品合成生物技术主要通过采用合成生物学技术设计构建食品组分的合成途径,创建具有食品工业应用能力的智能化细胞工厂,大幅提升食品功能因子等高附加值产品的合成效率.目前,以大肠杆菌、枯草芽孢杆菌、谷氨酸棒杆菌和酿酒酵母等模式微生物作为合成载体,通过对其生长进行精细调控,食品功能因子的生物制造已取得重大进展.本文主要从转运蛋白工程改造提高细胞生长速率、重编程细胞能量代谢和平衡细胞生长与产物合成方面总结了基于模式微生物生长特性调控合成食品功能因子的研究策略和进展,提出了目前所面临的挑战,并对其未来发展做出展望.  相似文献   

9.
利用微生物细胞工厂实现高效的原料利用和目标物质合成是合成生物学的重要研究方向之一。传统工业微生物主要以糖基类原料作为发酵底物,而发掘更为廉价的碳资源并实现其高效利用,值得探究。甲酸是重要的有机一碳资源,亦是基本有机化工原料之一,广泛应用于农药、皮革、染料、医药和橡胶等工业。近年来受产业需求波动的影响,甲酸生产面临产能过剩的困境,亟待发展新的转化路径来拓展和延伸相关产业链,而生物路线是重要方向之一。然而,天然的甲酸利用微生物普遍存在生长缓慢、甲酸代谢效率低以及分子工具匮乏造成遗传改造困难等问题,亟待改造和优化;而人工构建甲酸利用微生物的研究尚处于起始阶段,存在极大的发展空间,值得关注。文中对近年来甲酸生物利用的研究进展进行了梳理和总结,并对今后的研究重点和方向提出建议。  相似文献   

10.
<正>手性化学品广泛应用于医药、农业、食品、材料等领域,在国计民生中占据极其重要的地位。例如人们服用消旋体药物,在摄入活性对映体的同时,也摄取了大量无效甚至有毒有害的对映体,对人体的健康构成了直接或潜在的威胁;农药在以外消旋体形式使用时,在施用活性对映体的同时,也施用了大量  相似文献   

11.
Exogenous carbon turnover within soil food web is important in determining the trade-offs between soil organic carbon (SOC) storage and carbon emission. However, it remains largely unknown how soil food web influences carbon sequestration through mediating the dual roles of microbes as decomposers and contributors, hindering our ability to develop policies for soil carbon management. Here, we conducted a 13C-labeled straw experiment to demonstrate how soil food web regulated the residing microbes to influence the soil carbon transformation and stabilization process after 11 years of no-tillage. Our work demonstrated that soil fauna, as a “temporary storage container,” indirectly influenced the SOC transformation processes and mediated the SOC sequestration through feeding on soil microbes. Soil biota communities acted as both drivers of and contributors to SOC cycling, with 32.0% of exogenous carbon being stabilizing in the form of microbial necromass as “new” carbon. Additionally, the proportion of mineral-associated organic carbon and particulate organic carbon showed that the “renewal effect” driven by the soil food web promoted the SOC to be more stable. Our study clearly illustrated that soil food web regulated the turnover of exogenous carbon inputs by and mediated soil carbon sequestration through microbial necromass accumulation.  相似文献   

12.
Food safety and quality are among the most significant and prevalent research areas worldwide. The fabrication of appropriate technical procedures or devices for the recognition of hazardous features in foods is essential to safeguard food materials. In the recent era, developing high-performance sensors based on carbon nanomaterial for food safety investigation has made noteworthy progress. Hence this review briefly highlights the different detection approaches (colorimetric sensor, fluorescence sensor, surface-enhanced Raman scattering, surface plasmon resonance, chemiluminescence, and electroluminescence), functional carbon nanomaterials with various dimensions (quantum dots, graphene quantum dots) and detection mechanisms. Further, this review emphasizes the assimilation of carbon nanomaterials with optical sensors to identify multiple contaminants in food products. The insights of carbon-based nanomaterials optical sensors for pesticides and insecticides, toxic metals, antibiotics, microorganisms, and mycotoxins detection are described in detail. Finally, the opportunities and future perspectives of nanomaterials-based optical analytical approaches for detecting various food contaminants are discussed.  相似文献   

13.
Abstract

The glue of proteins, microbial transglutaminase (MTG) has been adopted in the food processing industries for its broad enzymatic action. Microorganisms such as Streptoverticillium and Streptomyces are the major sources, to decrease the cost of manufacturing animal origin transglutaminase. The net % increase of its demands in the food processing is estimated at 21.9% per year. In fact, MTG is consumed by most food industries, spanning the meat, dairy, seafood and fish, plant proteins, edible film preparation and more. It used to improve gelation and change foaming, emulsification, viscosity, consistency and water-holding capacity properties. This paper presents an overview of the literature that described and explored the recent microbial origins, production media and applications of microbial transglutaminase.  相似文献   

14.
The total carbon contents of gymnamoebae and ciliates, dwelling in the water column of the Hudson Estuary and a highly productive freshwater pond, were monitored during a 7-month period from April through October 2006. The carbon contents of the gymnamoebae and the ciliates were greater in the pond compared with the estuary, and carbon contents of gymnamoebae were greater in the spring and autumn in both locations than those of ciliates. Given the global distribution of gymnamoebae, these results suggest that greater attention should be given to the potential role of gymnamoebae in microbial food webs.  相似文献   

15.
Primary production is the basis for energy and biomolecule flow in food webs. Nutritional importance of terrestrial and plastic carbon via mixotrophic algae to upper trophic level is poorly studied. We explored this question by analysing the contribution of osmo- and phagomixotrophic species in boreal lakes and used 13C-labelled materials and compound-specific isotopes to determine biochemical fate of carbon backbone of leaves, lignin–hemicellulose and polystyrene at four-trophic level experiment. Microbes prepared similar amounts of amino acids from leaves and lignin, but four times more membrane lipids from lignin than leaves, and much less from polystyrene. Mixotrophic algae (Cryptomonas sp.) upgraded simple fatty acids to essential omega-3 and omega-6 polyunsaturated fatty acids. Labelled amino and fatty acids became integral parts of cell membranes of zooplankton (Daphnia magna) and fish (Danio rerio). These results show that terrestrial and plastic carbon can provide backbones for essential biomolecules of mixotrophic algae and consumers at higher trophic levels.  相似文献   

16.
Crops with the C4 photosynthetic pathway are vital to global food supply, particularly in the tropical regions where human well-being and agricultural productivity are most closely linked. While rising atmospheric [CO2] is the driving force behind the greater temperatures and water stress, which threaten to reduce future crop yields, it also has the potential to directly benefit crop physiology. The nature of C4 plant responses to elevated [CO2] has been controversial. Recent evidence from free-air CO2 enrichment (FACE) experiments suggests that elevated [CO2] does not directly stimulate C4 photosynthesis. Nonetheless, drought stress can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and greater intercellular [CO2]. Therefore, unlike C3 crops for which there is a direct enhancement of photosynthesis by elevated [CO2], C4 crops will only benefit from elevated [CO2] in times and places of drought stress. Current projections of future crop yields have assumed that rising [CO2] will directly enhance photosynthesis in all situations and, therefore, are likely to be overly optimistic. Additional experiments are needed to evaluate the extent to which amelioration of drought stress by elevated [CO2] will improve C4 crop yields for food and fuel over the range of C4 crop growing conditions and genotypes.  相似文献   

17.
A new mediated amperometric biosensor for fructose is described. The sensor is based on a commercially available D-fructose dehydrogenase. The enzyme is incorporated in a carbon paste matrix containing Os(bpy)2Cl2 as redox mediator that achieves electron transfer at 0·1 V (versus Ag/AgCl) with maximum apparent current densities of 1·2 mA/cm2. The dependence of the steady-state current on the loading of the mediator and the enzyme, other electrode construction parameters, the operating potential, the pH and the temperature was studied. In the steady-state mode the response current was directly proportional to D-fructose concentration from 0·2 to 20mM with a detection limit of 35 μM (signal-to-noise ratio, S/N, 3). In the flow injection analysis mode the response current was directly proportional to D-fructose concentration from 0·5 to 15 M with a detection limit of 115 μM (S/N 3). The sensor was used for the determination of fructose in food samples in a flow injection system and validated with a commercial enzyme kit.  相似文献   

18.
The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural daphnid populations. Epibiotic bacteria incorporated considerable amounts of dissolved organic carbon (DOC), as estimated via uptake of tritiated leucine: three times more tracer was consumed by microbes on a single Daphnia than in 1 ml of lake water. However, there was virtually no incorporation if daphnids were anaesthetised, suggesting that their filtration activity was essential for this process. Microbial DOC uptake could predominantly be assigned to microbes that were located on the filter combs of daphnids, where the passage of water would ensure a continuously high DOC supply. Most of these bacteria were Betaproteobacteria from the genus Limnohabitans. Specifically, we identified a monophyletic cluster harbouring Limnohabitans planktonicus that encompassed sequence types from D. galeata cultures, from the gut of Daphnia magna and from daphnids of Lake Zurich. Our results suggest that the epibiotic growth of bacteria related to Limnohabitans on Daphnia spp. may be a widespread and rather common phenomenon. Moreover, most of the observed DOC flux to Daphnia in fact does not seem to be associated with the crustacean biomass itself but with its epibiotic microflora. The unexplored physical association of daphnids with heterotrophic bacteria may have considerable implications for our understanding of carbon transfer in freshwater food webs, that is, a trophic ‘shortcut'' between microbial DOC uptake and predation by fish.  相似文献   

19.
A simple method was developed to prepare ultra‐low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra‐low Pt loading down to 35 μg cm?2 which was comparable to that of the commercial Pt catalyst on carbon powder with 400 μg cm?2. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order‐structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods.  相似文献   

20.
The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesized 30 years of data on the stable carbon isotope (δ13C) signatures in dissolved inorganic carbon (δ13C‐DIC; 1977–2014), marine and riverine particulate organic carbon (δ13C‐POC; 1986–2013) and tissues of marine mammals in the Arctic. δ13C values in consumers can change as a result of environmentally driven variation in the δ13C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ13C baseline, with spatial gradients in the δ13C‐POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ13C‐DIC values (?0.011‰ per year) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO2) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ13C‐POC values and δ13C in arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ13C‐POC values in the Arctic Ocean and partially explain the δ13C values in marine mammals with consideration of time‐varying integration of δ13C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号