首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan‐cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis‐defined CNA signatures are predictive of glycolytic phenotypes, including 18F‐fluorodeoxy‐glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer‐linked metabolic enzymes. A pan‐cancer and cross‐species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer‐driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.  相似文献   

5.
To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18 (58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors: within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<0.01). Focal aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET, and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A, which also showed high concordance between copy number and expression. Survival analysis associated a specific patient segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss, consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.  相似文献   

6.
N Kumar  H Cai  C von Mering  M Baudis 《PloS one》2012,7(8):e43689

Background

Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems.

Principal Findings

We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into 160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly recurrent (hot-spot) cytogenetic imbalance regions.

Conclusions

Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential for cancer development.  相似文献   

7.
8.
Three patients with elevated blood lactate values are described. The first, despite moderate hyperlactatemia of 5.3 mEq./1. and severe acidosis with an arterial blood pH of 6.98, had no “excess lactate”. In a second patient, moderate acidosis with a pH of 7.27 and blood lactate of 7.5 mEq./1., of which 33% was excess lactate, was found to be secondary to tissue hypoxia on an ischemic basis and preceded the onset of clinical shock by four hours. A third patient, diabetic and under treatment with phenformin hydrochloride, presented with many features suggestive of pulmonary embolism, including marked pulmonary hypertension. A diagnosis of idiopathic lactic acidosis was established when the arterial blood pH was found to be 6.77 and a blood lactate value of 14.2 mEq./1., 60% as excess lactate, was discovered in the absence of a demonstrable cause of tissue hypoxia. Exploration of the pulmonary vascular bed showed no sign of mechanical blockage. The diagnostic, therapeutic and prognostic value of measuring blood lactic acid, and of quantitating the proportion circulating as “excess lactate”, is emphasized.  相似文献   

9.
Human disease studies using DNA microarrays in both clinical/observational and experimental/controlled studies are having increasing impact on our understanding of the complexity of human diseases. A fundamental concept is the use of gene expression as a “common currency” that links the results of in vitro controlled experiments to in vivo observational human studies. Many studies – in cancer and other diseases – have shown promise in using in vitro cell manipulations to improve understanding of in vivo biology, but experiments often simply fail to reflect the enormous phenotypic variation seen in human diseases. We address this with a framework and methods to dissect, enhance and extend the in vivo utility of in vitro derived gene expression signatures. From an experimentally defined gene expression signature we use statistical factor analysis to generate multiple quantitative factors in human cancer gene expression data. These factors retain their relationship to the original, one-dimensional in vitro signature but better describe the diversity of in vivo biology. In a breast cancer analysis, we show that factors can reflect fundamentally different biological processes linked to molecular and clinical features of human cancers, and that in combination they can improve prediction of clinical outcomes.  相似文献   

10.

Background  

DNA copy number aberration (CNA) is very important in the pathogenesis of tumors and other diseases. For example, CNAs may result in suppression of anti-oncogenes and activation of oncogenes, which would cause certain types of cancers. High density single nucleotide polymorphism (SNP) array data is widely used for the CNA detection. However, it is nontrivial to detect the CNA automatically because the signals obtained from high density SNP arrays often have low signal-to-noise ratio (SNR), which might be caused by whole genome amplification, mixtures of normal and tumor cells, experimental noise or other technical limitations. With the reduction in SNR, many false CNA regions are often detected and the true CNA regions are missed. Thus, more sophisticated statistical models are needed to make the CNAs detection, using the low SNR signals, more robust and reliable.  相似文献   

11.
Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.  相似文献   

12.
We propose a novel conditional graphical model—spaceMap—to construct gene regulatory networks from multiple types of high dimensional omic profiles. A motivating application is to characterize the perturbation of DNA copy number alterations(CNAs) on downstream protein levels in tumors. Through a penalized multivariate regression framework, spaceMap jointly models high dimensional protein levels as responses and high dimensional CNAs as predictors. In this setup, spaceMap infers an undirected network among proteins together with a directed network encoding how CNAs perturb the protein network. spaceMap can be applied to learn other types of regulatory relationships from high dimensional molecular profiles, especially those exhibiting hub structures. Simulation studies show spaceMap has greater power in detecting regulatory relationships over competing methods. Additionally, spaceMap includes a network analysis toolkit for biological interpretation of inferred networks. We applies spaceMap to the CNAs, gene expression and proteomics data sets from CPTAC-TCGA breast(n=77) and ovarian(n=174) cancer studies. Each cancer exhibits disruption of ‘ion transmembrane transport' and‘regulation from RNA polymerase Ⅱ promoter' by CNA events unique to each cancer. Moreover, using protein levels as a response yields a more functionally-enriched network than using RNA expressions in both cancer types. The network results also help to pinpoint crucial cancer genes and provide insights on the functional consequences of important CNA in breast and ovarian cancers. The R package spaceMap—including vignettes and documentation—is hosted on https://topherconley.github.io/spacemap.  相似文献   

13.
Zhou X  Cole SW  Hu S  Wong DT 《Human genetics》2004,114(5):464-467
Gene copy-number abnormalities (CNAs) are characteristic of solid tumors and are found in association with developmental abnormalities and/or mental retardation. The ultimate impact of CNAs is exerted by the altered expression of encoded genes. We have utilized high-density oligonucleotide arrays from Affymetrix to identify DNA CNAs via their impact on mRNA expression levels. In these studies, we have used three different trisomic cell lines (trisomy 9, trisomy 18, trisomy 21) as models of CNAs and have compared mRNA expression in those trisomic cells with that observed in diploid cell lines of matched tissue origin. Our data clearly show that genes from CNA chromosome regions are substantially over-represented (P<0.000001 by chi-square analysis) in the differentially expressed subset from comparisons of all three trisomic cell lines with normal matching cells. In addition, we have been able to detect the origin of the duplication by a statistical scan for over-expressed genes. These data show that microarray detection of differential mRNA expression can be used to identify significant DNA CNAs.  相似文献   

14.
Breast cancer recurrence (BCR) is a common treatment outcome despite curative-intent primary treatment of non-metastatic breast cancer. Currently used prognostic and predictive factors utilize tumor-based markers, and are not optimal determinants of risk of BCR. Germline-based copy number aberrations (CNAs) have not been evaluated as determinants of predisposition to experience BCR. In this study, we accessed germline DNA from 369 female breast cancer subjects who received curative-intent primary treatment following diagnosis. Of these, 155 experienced BCR and 214 did not, after a median duration of follow up after breast cancer diagnosis of 6.35 years (range = 0.60–21.78) and 8.60 years (range = 3.08–13.57), respectively. Whole genome CNA genotyping was performed on the Affymetrix SNP array 6.0 platform. CNAs were identified using the SNP-Fast Adaptive States Segmentation Technique 2 algorithm implemented in Nexus Copy Number 6.0. Six samples were removed due to poor quality scores, leaving 363 samples for further analysis. We identified 18,561 CNAs with ≥1 kb as a predefined cut-off for observed aberrations. Univariate survival analyses (log-rank tests) identified seven CNAs (two copy number gains and five copy neutral-loss of heterozygosities, CN-LOHs) showing significant differences (P<2.01×10−5) in recurrence-free survival (RFS) probabilities with and without CNAs.We also observed three additional but distinct CN-LOHs showing significant differences in RFS probabilities (P<2.86×10−5) when analyses were restricted to stratified cases (luminal A, n = 208) only. After adjusting for tumor stage and grade in multivariate analyses (Cox proportional hazards models), all the CNAs remained strongly associated with the phenotype of BCR. Of these, we confirmed three CNAs at 17q11.2, 11q13.1 and 6q24.1 in representative samples using independent genotyping platforms. Our results suggest further investigations on the potential use of germline DNA variations as prognostic markers in cancer-associated phenotypes.  相似文献   

15.
16.
17.
Haploinsufficiency drives Darwinian evolution. Siblings, while alike in many aspects, differ due to monoallelic differences inherited from each parent. In cancer, solid tumors exhibit aneuploid genetics resulting in hundreds to thousands of monoallelic gene-level copy-number alterations (CNAs) in each tumor. Aneuploidy patterns are heterogeneous, posing a challenge to identify drivers in this high-noise genetic environment. Here, we developed Shifted Weighted Annotation Network (SWAN) analysis to assess biology impacted by cumulative monoallelic changes. SWAN enables an integrated pathway-network analysis of CNAs, RNA expression, and mutations via a simple web platform. SWAN is optimized to best prioritize known and novel tumor suppressors and oncogenes, thereby identifying drivers and potential druggable vulnerabilities within cancer CNAs. Protein homeostasis, phospholipid dephosphorylation, and ion transport pathways are commonly suppressed. An atlas of CNA pathways altered in each cancer type is released. These CNA network shifts highlight new, attractive targets to exploit in solid tumors.  相似文献   

18.

Background

DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions.

Methods

We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases.

Results

Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.

Conclusion

These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.  相似文献   

19.
Lactic acidosis is occasionally responsible for metabolic acidosis in diabetics. It may occur in the presence of normal blood levels of the ketone bodies, and such cases are often described as having “non-ketotic diabetic acidosis.” Lactic acid may contribute to the metabolic acidosis in patients with true diabetic ketoacidosis, but the blood lactate concentrations in these patients are not usually very high. In some patients the ketoacidosis is replaced by a lactic acidosis during treatment. This usually occurs in association with a serious underlying disorder and is associated with a poor prognosis. A transient increase in blood lactate concentration was in fact observed in most patients after the beginning of treatment, but the significance of this finding is uncertain.  相似文献   

20.
Early gene expression studies classified breast tumors into at least three clinically relevant subtypes. Although most current gene signatures are prognostic for estrogen receptor (ER) positive/human epidermal growth factor receptor 2 (HER2) negative breast cancers, few are informative for ER negative/HER2 negative and HER2 positive subtypes. Here we present Gene Expression Prognostic Index Using Subtypes (GENIUS), a fuzzy approach for prognostication that takes into account the molecular heterogeneity of breast cancer. In systematic evaluations, GENIUS significantly outperformed current gene signatures and clinical indices in the global population of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号