首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Recently four new hypertrophic cardiomyopathy mutations in cardiac troponin C (cTnC) (A8V, C84Y, E134D, and D145E) were reported, and their effects on the Ca2+ sensitivity of force development were evaluated (Landstrom, A. P., Parvatiyar, M. S., Pinto, J. R., Marquardt, M. L., Bos, J. M., Tester, D. J., Ommen, S. R., Potter, J. D., and Ackerman, M. J. (2008) J. Mol. Cell. Cardiol. 45, 281–288). We performed actomyosin ATPase and spectroscopic solution studies to investigate the molecular properties of these mutations. Actomyosin ATPase activity was measured as a function of [Ca2+] utilizing reconstituted thin filaments (TFs) with 50% mutant and 50% wild type (WT) and 100% mutant cardiac troponin (cTn) complexes: A8V, C84Y, and D145E increased the Ca2+ sensitivity with only A8V demonstrating lowered Ca2+ sensitization at the 50% ratio when compared with 100%; E134D was the same as WT at both ratios. Of these four mutants, only D145E showed increased ATPase activation in the presence of Ca2+. None of the mutants affected ATPase inhibition or the binding of cTn to the TF measured by co-sedimentation. Only D145E increased the Ca2+ affinity of site II measured by 2-(4′-(2″-iodoacetamido)phenyl)aminonaphthalene-6-sulfonic acid fluorescence in isolated cTnC or the cTn complex. In the presence of the TF, only A8V was further sensitized to Ca2+. Circular dichroism measurements in different metal-bound states of the isolated cTnCs showed changes in the secondary structure of A8V, C84Y, and D145E, whereas E134D was the same as WT. PyMol modeling of each cTnC mutant within the cTn complex revealed potential for local changes in the tertiary structure of A8V, C84Y, and D145E. Our results indicate that 1) three of the hypertrophic cardiomyopathy cTnC mutants increased the Ca2+ sensitivity of the myofilament; 2) the effects of the mutations on the Ca2+ affinity of isolated cTnC, cTn, and TF are not sufficient to explain the large Ca2+ sensitivity changes seen in reconstituted and fiber assays; and 3) changes in the secondary structure of the cTnC mutants may contribute to modified protein-protein interactions along the sarcomere lattice disrupting the coupling between the cross-bridge and Ca2+ binding to cTnC.Hypertrophic cardiomyopathy (HCM)3 is typically inherited as an autosomal dominant disease that is caused by mutations in sarcomeric genes and is the most prevalent cause of sudden death in athletes and young people (1, 2). The clinical hallmark of HCM is an increased thickness of the left ventricular wall. Myocyte disarray, fibrosis, septal hypertrophy, and abnormal diastolic function can also be present in HCM patients (3). HCM mutations have been reported in 13 myofilament-related genes; however, the cardiac troponin C (cTnC) gene remained excluded from this list (47). The clinical and functional phenotypes may vary according to the gene and the location of the mutation (8). Recently our group has reported evidence that brings cTnC into focus as an HCM susceptibility gene (9). Interestingly the prevalence for cTnC HCM mutations was the same as other well characterized genes (i.e. actin and tropomyosin) (6). To date, prior to our recent report, only one mutation in cTnC (L29Q) had been linked to HCM (10). In vitro and in situ studies demonstrating changes in the functional parameters of cardiac muscle regulation suggest that this mutation is causative of the disease (11, 12).Analysis of a cohort of 1025 HCM patients from the Mayo Clinic revealed four new cTnC mutations (A8V, C84Y, E134D, and D145E) (9). The clinical records showed that the patients displayed left ventricle hypertrophy and significant left ventricular outflow obstruction managed by surgical myectomy. Symptoms such as dyspnea, syncope, and chest pain were also present. A8V, C84Y, and E134D patients did not present a familial history of HCM indicating that these were likely sporadic de novo mutations. The D145E mutation was observed in six family members suggesting genetic linkage. Functional analysis performed in skinned fibers showed increased Ca2+ sensitivity of force development (a characteristic of troponin (Tn) mutations related to HCM) for three of the four mutations. Additionally the A8V and D145E mutations that are located in different domains caused increases in maximal force in this system. These data strongly suggest that HCM mutations in distinct regions of cTnC can result in a similar functional phenotype (9).In cardiac muscle, the tropomyosin (Tm)·Tn complex, located in the thin filament, is responsible for muscle regulation (13, 14). Three Tn subunits are involved in this process: troponin T (TnT), which connects the Tn complex to the thin filament and is responsible for actomyosin ATPase activation in the presence of Ca2+ (8, 15); troponin I (TnI) is the subunit that binds to both TnT and TnC, inhibits muscle contraction, and is also implicated in HCM and restrictive cardiomyopathy (16); and TnC, a subunit that plays a crucial function in muscle regulation triggering contraction upon binding Ca2+ and is also considered an important intracellular Ca2+ buffer (17, 18). In the absence of Ca2+ binding to site II of cTnC, its N terminus is detached from the C terminus of cTnI, which under these conditions is bound to actin and inhibits muscle contraction. As Ca2+ binds to site II of cTnC, its N terminus binds to the C terminus of cTnI causing it to dissociate from actin. This is accompanied by the movement of cardiac Tm out of its inhibitory position on actin, thus relieving the inhibition of contraction (1921). The dynamics of the interactions between Tn subunits and the thin filament that regulate contraction have been extensively studied (2224).TnC consists of two globular regions that are connected by a long central helix (25). It is well known that cTnC has two EF-hands containing high affinity Ca2+ binding sites III and IV (∼107 m−1) in the C terminus and only one functional low affinity Ca2+ binding site II (∼105 m−1) in the N terminus (18). An additional feature of helix-loop-helix Ca2+-binding proteins is the presence of short segments of antiparallel β-sheets between the Ca2+ binding loops of each domain (25, 26). The C-terminal domain of cTnC can also bind Mg2+ competitively (∼103 m−1) and is termed the structural domain because it is essential to keep it bound to the thin filament. The N terminus is considered the regulatory domain because Ca2+ binding to site II initiates muscle contraction. When TnC is in the Tn complex, the Ca2+ binding affinity at all sites is increased by ∼10-fold (18, 27, 28). Several studies have shown that there is coupling between TnC and actomyosin ATPase. For example, bepridil and calmidazolium, two known Ca2+ sensitizers that bind to cTnC and enhance its Ca2+ binding affinity, also stimulate myofibrillar ATPase activity (29, 30). In addition, deletion of the N-helix of the TnC N-domain diminishes activation of regulated actomyosin ATPase activity (31, 32).The purpose of this study was to determine the functional effects of the four newly discovered HCM cTnC mutations not previously addressed and to investigate possible changes in their structure and Ca2+ binding properties. To answer these questions we performed reconstituted ATPase activity, co-sedimentation, and spectroscopy assays. In the presence of 100% HCM mutant or wild type (WT) cTnC, the ATPase activity rate measured by increasing the Ca2+ concentration in an actomyosin·Tm·Tn reconstituted complex showed increases in Ca2+ sensitivity similar to those obtained previously with cardiac skinned fibers (9). At a ratio of 50% mutant to 50% WT, only A8V had a diminished Ca2+ sensitivity. We also evaluated the ability of the Tn HCM mutants to activate and inhibit the ATPase activity in the presence and absence of Ca2+. Only cTnC-D145E showed higher levels of ATPase activation. Co-sedimentation did not show changes in the ability of the Tn complex containing the cTnC mutants to bind to actin·Tm. The Ca2+ binding properties of the regulatory site II of cTnC as estimated from fluorescence and measured at cTnC and cTn levels did not match the apparent affinity of this site in the fiber and reconstituted filaments. However, D145E showed increased Ca2+ affinity in the isolated and cTn states that was minimally affected in the presence of the thin filament (TF). In the presence of the TF, A8V was the only mutant that showed an increase in Ca2+ affinity that more closely approached the Ca2+ sensitivity measured in the fiber. However, the circular dichroism (CD) measurements suggest that significant structural changes exist in the secondary structure of the cTnC mutants A8V, C84Y, and D145E compared with wild type. All of these results considered together with the PyMol illustrations suggest that structural changes are present in at least three TnC HCM mutants that are likely to be crucial for protein-protein interactions but unable to affect the Ca2+ binding properties of TnC at the different levels of TF complexity. Here we show for the first time that the thick filament is probably essential to completely recreate the increased Ca2+ sensitivity produced by HCM TnCs and observed in ATPase and skinned fiber assays.  相似文献   

2.
Defined as clinically unexplained hypertrophy of the left ventricle, hypertrophic cardiomyopathy (HCM) is traditionally understood as a disease of the cardiac sarcomere. Mutations in TNNC1-encoded cardiac troponin C (cTnC) are a relatively rare cause of HCM. Here, we report clinical and functional characterization of a novel TNNC1 mutation, A31S, identified in a pediatric HCM proband with multiple episodes of ventricular fibrillation and aborted sudden cardiac death. Diagnosed at age 5, the proband is family history-negative for HCM or sudden cardiac death, suggesting a de novo mutation. TnC-extracted cardiac skinned fibers were reconstituted with the cTnC-A31S mutant, which increased Ca(2+) sensitivity with no effect on the maximal contractile force generation. Reconstituted actomyosin ATPase assays with 50% cTnC-A31S:50% cTnC-WT demonstrated Ca(2+) sensitivity that was intermediate between 100% cTnC-A31S and 100% cTnC-WT, whereas the mutant increased the activation of the actomyosin ATPase without affecting the inhibitory qualities of the ATPase. The secondary structure of the cTnC mutant was evaluated by circular dichroism, which did not indicate global changes in structure. Fluorescence studies demonstrated increased Ca(2+) affinity in isolated cTnC, the troponin complex, thin filament, and to a lesser degree, thin filament with myosin subfragment 1. These results suggest that this mutation has a direct effect on the Ca(2+) sensitivity of the myofilament, which may alter Ca(2+) handling and contribute to the arrhythmogenesis observed in the proband. In summary, we report a novel mutation in the TNNC1 gene that is associated with HCM pathogenesis and may predispose to the pathogenesis of a fatal arrhythmogenic subtype of HCM.  相似文献   

3.
The Ca2+ binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca2+ binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca2+ affinity by 27% in the steady-state measurement and increased the Ca2+ dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca2+ sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca2+ sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca2+ sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca2+ sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent.  相似文献   

4.
TNNC1, which encodes cardiac troponin C (cTnC), remains elusive as a dilated cardiomyopathy (DCM) gene. Here, we report the clinical, genetic, and functional characterization of four TNNC1 rare variants (Y5H, M103I, D145E, and I148V), all previously reported by us in association with DCM (Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., and Gonzalez-Quintana, J. (2010) Circ. Cardiovasc. Genet. 3, 155-161); in the previous study, two variants (Y5H and D145E) were identified in subjects who also carried MYH7 and MYBPC3 rare variants, respectively. Functional studies using the recombinant human mutant cTnC proteins reconstituted into porcine papillary skinned fibers showed decreased Ca(2+) sensitivity of force development (Y5H and M103I). Furthermore, the cTnC mutants diminished (Y5H and I148V) or abolished (M103I) the effects of PKA phosphorylation on Ca(2+) sensitivity. Only M103I decreased the troponin activation properties of the actomyosin ATPase when Ca(2+) was present. CD spectroscopic studies of apo (absence of divalent cations)-, Mg(2+)-, and Ca(2+)/Mg(2+)-bound states indicated that all of the cTnC mutants (except I148V in the Ca(2+)/Mg(2+) condition) decreased the α-helical content. These results suggest that each mutation alters the function/ability of the myofilament to bind Ca(2+) as a result of modifications in cTnC structure. One variant (D145E) that was previously reported in association with hypertrophic cardiomyopathy and that produced results in vivo in this study consistent with prior hypertrophic cardiomyopathy functional studies was found associated with the MYBPC3 P910T rare variant, likely contributing to the observed DCM phenotype. We conclude that these rare variants alter the regulation of contraction in some way, and the combined clinical, molecular, genetic, and functional data reinforce the importance of TNNC1 rare variants in the pathogenesis of DCM.  相似文献   

5.
Six missense mutations in human cardiac troponin I (cTnI) were recently found to cause restrictive cardiomyopathy (RCM). We have bacterially expressed and purified these human cTnI mutants and examined their functional and structural consequences. Inserting the human cTnI into skinned cardiac muscle fibers showed that these mutations had much greater Ca2+-sensitizing effects on force generation than the cTnI mutations in hypertrophic cardiomyopathy (HCM). The mutation K178E in the second actin-tropomyosin (Tm) binding region showed a particularly potent Ca2+-sensitizing effect among the six RCM-causing mutations. Circular dichroism and nuclear magnetic resonance spectroscopy revealed that this mutation does not extensively affect the structure of the whole cTnI molecule, but induces an unexpectedly subtle change in the structure of a region around the mutated residue. The results indicate that the K178E mutation has a localized effect on a structure that is critical to the regulatory function of the second actin-Tm binding region of cTnI. The present study also suggests that both HCM and RCM involving cTnI mutations share a common feature of increased Ca2+ sensitivity of cardiac myofilament, but more severe change in Ca2+ sensitivity is associated with the clinical phenotype of RCM.  相似文献   

6.
The human cardiac troponin I (hcTnI) mutation R145W has been associated with restrictive cardiomyopathy. In this study, simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145W transgenic mice (Tg-R145W) were explored. Tg-R145W fibers showed an ∼ 13-16% increase in maximal Ca2+-activated force and ATPase activity compared to hcTnI wild-type transgenic mice. The force-generating cross-bridge turnover rate (g) and the energy cost (ATPase/force) were the same in all groups of fibers. Also, the Tg-R145W fibers showed a large increase in the Ca2+ sensitivity of both force development and ATPase. In intact fibers, the mutation caused prolonged force and intracellular [Ca2+] transients and increased time to peak force. Analysis of force and Ca2+ transients showed that there was a 40% increase in peak force in Tg-R145W muscles, which was likely due to the increased Ca2+ transient duration. The above cited results suggest that: (1) there would be an increase in resistance to ventricular filling during diastole resulting from the prolonged force and Ca2+ transients that would result in a decrease in ventricular filling (diastolic dysfunction); and (2) there would be a large (approximately 53%) increase in force during systole, which may help to partly compensate for diastolic dysfunction. These functional results help to explain the mechanisms by which these mutations give rise to a restrictive phenotype.  相似文献   

7.
Two novel mutations (G159D and L29Q) in cardiac troponin C (CTnC) associate their phenotypic outcomes with dilated (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Current paradigms propose that sarcomeric mutations associated with DCM decrease the myofilament Ca2+ sensitivity, whereas those associated with HCM increase it. Therefore, we incorporated the mutant CTnCs into skinned cardiac muscle in order to determine if their effects on the Ca2+ sensitivities of tension and ATPase activity coincide with the current paradigms and phenotypic outcomes. The G159D-CTnC decreases the Ca2+ sensitivity of tension and ATPase activation and reduces the maximal ATPase activity when incorporated into regulated actomyosin filaments. Under the same conditions, the L29Q-CTnC has no effect. Surprisingly, changes in the apparent G159D-CTnC Ca2+ affinity measured by tension in fibers do not occur in the isolated CTnC, and large changes measured in the isolated L29Q-CTnC do not manifest in the fiber. These counterintuitive findings are justified through a transition in Ca2+ affinity occurring at the level of cardiac troponin and higher, implying that the true effects of these mutations become apparent as the hierarchical level of the myofilament increases. Therefore, the contractile apparatus, representing a large cooperative machine, can provide the potential for a change (G159D) or no change (L29Q) in the Ca2+ regulation of contraction. In accordance with the clinical outcomes and current paradigms, the desensitization of myofilaments from G159D-CTnC is expected to weaken the contractile force of the myocardium, whereas the lack of myofilament changes from L29Q-CTnC may preserve diastolic and systolic function.  相似文献   

8.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.  相似文献   

9.
In this study we explore the mechanisms by which a double mutation (E59D/D75Y) in cardiac troponin C (CTnC) associated with dilated cardiomyopathy reduces the Ca2+-activated maximal tension of cardiac muscle. Studying the single mutants (i.e. E59D or D75Y) indicates that D75Y, but not E59D, causes a reduction in the calcium affinity of CTnC in troponin complex, regulated thin filaments (RTF), and the Ca2+ sensitivity of contraction and ATPase in cardiac muscle preparations. However, both D75Y and E59D are required to reduce the actomyosin ATPase activity and maximal force in muscle fibers, indicating that E59D enhances the effects of D75Y. Part of the reduction in force/ATPase may be due to a defect in the interactions between CTnC and cardiac troponin T, which are known to be necessary for ATPase activation. An additional mechanism for the reduction in force/ATPase comes from measurements of the binding stoichiometry of myosin subfragment-1 (S-1) to the RTF. Using wild type RTFs, 4.8 mol S-1 was bound per mol filament (seven actins), whereas with E59D/D75Y RTFs, the number of binding sites was reduced by ∼23% to 3.7. Altogether, these results suggest that the reduction in force and ATPase activation is possibly due to a thin filament conformation that promotes fewer accessible S-1-binding sites. In the absence of any family segregation data, the functional results presented here support the concept that this is likely a dilated cardiomyopathy-causing mutation.  相似文献   

10.
The in situ structural coupling between the cardiac troponin (cTn) Ca2+-sensitive regulatory switch (CRS) and strong myosin cross-bridges was investigated using Förster resonance energy transfer (FRET). The double cysteine mutant cTnC(T13C/N51C) was fluorescently labeled with the FRET pair 5-(iodoacetamidoethyl)aminonaphthelene-1-sulfonic acid (IAEDENS) and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) and then incorporated into detergent skinned left ventricular papillary fiber bundles. Ca2+ titrations of cTnC(T13C/N51C)AEDENS/DDPM-reconstituted fibers showed that the Ca2+-dependence of the opening of the N-domain of cTnC (N-cTnC) statistically matched the force−Ca2+ relationship. N-cTnC opening still occurred steeply during Ca2+ titrations in the presence of 1 mM vanadate, but the maximal extent of ensemble-averaged N-cTnC opening and the Ca2+-sensitivity of the CRS were significantly reduced. At nanomolar, resting Ca2+ levels, treatment with ADP·Mg in the absence of ATP caused a partial opening of N-cTnC. During subsequent Ca2+ titrations in the presence of ADP·Mg and absence of ATP, further N-cTnC opening was stimulated as the CRS responded to Ca2+ with increased Ca2+-sensitivity and reduced steepness. These findings supported our hypothesis here that strong cross-bridge interactions with the cardiac thin filament exert a Ca2+-sensitizing effect on the CRS by stabilizing the interaction between the exposed hydrophobic patch of N-cTnC and the switch region of cTnI.  相似文献   

11.
Human cardiac Troponin I (cTnI) is the first sarcomeric protein for which mutations have been associated with restrictive cardiomyopathy. To determine whether five mutations in cTnI (L144Q, R145W, A171T, K178E, and R192H) associated with restrictive cardiomyopathy were distinguishable from hypertrophic cardiomyopathy-causing mutations in cTnI, actomyosin ATPase activity and skinned fiber studies were carried out. All five mutations investigated showed an increase in the Ca2+ sensitivity of force development compared with wild-type cTnI. The two mutations with the worst clinical phenotype (K178E and R192H) both showed large increases in Ca2+ sensitivity (deltapCa50 = 0.47 and 0.36, respectively). Although at least one of these mutations is not in the known inhibitory regions of cTnI, all of the mutations investigated caused a decrease in the ability of cTnI to inhibit actomyosin ATPase activity. Mixtures of wild-type and mutant cTnI showed that cTnI mutants could be classified into three different groups: dominant (L144Q, A171T and R192H), equivalent (K178E), or weaker (R145W) than wild-type cTnI in actomyosin ATPase assays in the absence of Ca2+. Although most of the mutants were able to activate actomyosin ATPase similarly to wild-type cTnI, L144Q had significantly lower maximal ATPase activities than any of the other mutants or wild-type cTnI. Three mutants (L144Q, R145W, and K178E) were unable to fully relax contraction in the absence of Ca2+. The inability of the five cTnI mutations investigated to fully inhibit ATPase activity/force development and the generally larger increases in Ca2+ sensitivity than observed for most hypertrophic cardiomyopathy mutations would likely lead to severe diastolic dysfunction and may be the major physiological factors responsible for causing the restrictive cardiomyopathy phenotype in some of the genetically affected individuals.  相似文献   

12.
The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca2+ sensitivity of human β-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca2+ activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca2+ concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.  相似文献   

13.
To study the functional consequences of various cardiomyopathic mutations in human cardiac alpha-tropomyosin (Tm), a method of depletion/reconstitution of native Tm and troponin (Tn) complex (Tm-Tn) in cardiac myofibril preparations has been developed. The endogenous Tm-Tn complex was selectively removed from myofibrils and replaced with recombinant wild-type or mutant proteins. Successful depletion and reconstitution steps were verified by SDS-gel electrophoresis and by the loss and regain of Ca2+-dependent regulation of ATPase activity. Five Tm mutations were chosen for this study: the hypertrophic cardiomyopathy (HCM) mutations E62Q, E180G, and L185R and the dilated cardiomyopathy (DCM) mutations E40K and E54K. Through the use of this new depletion/reconstitution method, the functional consequences of these mutations were determined utilizing myofibrillar ATPase measurements. The results of our studies showed that 1) depletion of >80% of Tm-Tn from myofibrils resulted in a complete loss of the Ca2+-regulated ATPase activity and a significant loss in the maximal ATPase activity, 2) reconstitution of exogenous wild-type Tm-Tn resulted in complete regain in the calcium regulation and in the maximal ATPase activity, and 3) all HCM-associated Tm mutations increased the Ca2+ sensitivity of ATPase activity and all had decreased abilities to inhibit ATPase activity. In contrast, the DCM-associated mutations both decreased the Ca2+ sensitivity of ATPase activity and had no effect on the inhibition of ATPase activity. These findings have demonstrated that the mutations which cause HCM and DCM disrupt discrete mechanisms, which may culminate in the distinct cardiomyopathic phenotypes.  相似文献   

14.

Aims

We have previously demonstrated that propyl gallate has a Ca2 + sensitizing effect on the force generation in membrane-permeabilized (skinned) cardiac muscle fibers. However, in vivo beneficial effects of propyl gallate as a novel Ca2 + sensitizer remain uncertain. In the present study, we aim to explore in vivo effects of propyl gallate.

Main methods

We compared effects of propyl gallate on ex vivo intact cardiac muscle fibers and in vivo hearts in healthy mice with those of pimobendan, a clinically used Ca2 + sensitizer. The therapeutic effect of propyl gallate was investigated using a mouse model of dilated cardiomyopathy (DCM) with reduced myofilament Ca2 + sensitivity due to a deletion mutation ΔK210 in cardiac troponin T.

Key findings

Propyl gallate, as well as pimobendan, showed a positive inotropic effect. Propyl gallate slightly increased the blood pressure without changing the heart rate in healthy mice, whereas pimobendan decreased the blood pressure probably through vasodilation via inhibition of phosphodiesterase and increased the heart rate. Propyl gallate prevented cardiac remodeling and systolic dysfunction and significantly improved the life-expectancy of knock-in mouse model of DCM with reduced myofilament Ca2 + sensitivity due to a mutation in cardiac troponin T. On the other hand, gallate, a similarly strong antioxidant polyphenol lacking Ca2 + sensitizing action, had no beneficial effects on the DCM mice.

Significance

These results suggest that propyl gallate might be useful for the treatment of inherited DCM caused by a reduction in the myofilament Ca2 + sensitivity.  相似文献   

15.
The effects of Troponin T (TnT) mutants R141W and DeltaK210, the only two currently known mutations in TnT that cause dilated cardiomyopathy(DCM) independent of familial hypertrophic cardiomyopathy (FHC), and TnT-K273E, a mutation that leads to a progression from FHC to DCM, were investigated. Studies on the Ca2+ sensitivity of force development in porcine cardiac fibers demonstrated that TnT-DeltaK210 caused a significant decrease in Ca2+ sensitivity, whereas the TnT-R141W did not result in any change in Ca2+ sensitivity when compared with human cardiac wild-type TnT (HCWTnT). TnT-DeltaK210 also caused a decrease in maximal force when compared with HCWTnT and TnT-R141W. In addition, the TnT-DeltaK210 mutant decreased maximal ATPase activity in the presence of Ca2+. However, the TnT-K273E mutation caused a significant increase in Ca2+ sensitivity but behaved similarly to HCWTnT in actomyosin activation assays. Inhibition of ATPase activity in reconstituted actin-activated myosin ATPase assays was similar for all three TnT mutants and HCWTnT. Additionally, circular dichroism studies suggest that the secondary structure of all three TnT mutants was similar to that of the HCWTnT. These results suggest that a rightward shift in Ca2+ sensitivity is not the only determinant for the phenotype of DCM.  相似文献   

16.
We have compared the in vitro regulatory properties of recombinant human cardiac troponin reconstituted using wild type troponin T with troponin containing the DeltaLys-210 troponin T mutant that causes dilated cardiomyopathy (DCM) and the R92Q troponin T known to cause hypertrophic cardiomyopathy (HCM). Troponin containing DeltaLys-210 troponin T inhibited actin-tropomyosin-activated myosin subfragment-1 ATPase activity to the same extent as wild type at pCa8.5 (>80%) but produced substantially less enhancement of ATPase at pCa4.5. The Ca(2+) sensitivity of ATPase activation was increased (DeltapCa(50) = +0.2 pCa units) and cooperativity of Ca(2+) activation was virtually abolished. Equimolar mixtures of wild type and DeltaLys-210 troponin T gave a lower Ca(2+) sensitivity than with wild type, while maintaining the diminished ATPase activation at pCa4.5 observed with 100% mutant. In contrast, R92Q troponin gave reduced inhibition at pCa8.5 but greater activation than wild type at pCa4.5; Ca(2+) sensitivity was increased but there was no change in cooperativity. In vitro motility assay of reconstituted thin filaments confirmed the ATPase results and moreover indicated that the predominant effect of the DeltaLys-210 mutation was a reduced sliding speed. The functional consequences of this DCM mutation are qualitatively different from the R92Q or any other studied HCM troponin T mutation, suggesting that DCM and HCM may be triggered by distinct primary stimuli.  相似文献   

17.
The Glu40Lys and Glu54Lys mutations in α-tropomyosin cause dilated cardiomyopathy (DCM). Functional analysis has demonstrated that both mutations decrease thin filament Ca2+-sensitivity and that Glu40Lys reduces maximum activation. To understand the molecular mechanism underlying these changes, we labeled wild type α-tropomyosin and both mutants at Cys190 with 5-iodoacetamide-fluorescein and incorporated the labeled proteins into ghost muscle fibers. Using the polarized fluorimetry, the position of the labeled tropomyosins on the thin filament and their affinity for actin were measured and the change in these parameters at different stages of the ATPase cycle determined. Both DCM mutations were found to shift tropomyosin towards the periphery of thin filament and to change the affinity of tropomyosin for actin; during the ATPase cycle the amplitude of tropomyosin movement was reduced and at some stages of the cycle even reversed. The correlation of these structural changes with the observed function effects is discussed.  相似文献   

18.
The major goal of this study was to elucidate how troponin T (TnT) dilated cardiomyopathy (DCM) mutations in fetal TnT and fetal troponin affect the functional properties of the fetal heart that lead to infantile cardiomyopathy. The DCM mutations R141W and DeltaK210 were created in the TnT1 isoform, the primary isoform of cardiac TnT in the embryonic heart. In addition to a different TnT isoform, a different troponin I (TnI) isoform, slow skeletal TnI (ssTnI), is the dominant isoform in the embryonic heart. In skinned fiber studies, TnT1-wild-type (WT)-treated fibers reconstituted with cardiac TnI.troponin C (TnC) or ssTnI.TnC significantly increased Ca(2+) sensitivity of force development when compared with TnT3-WT-treated fibers at both pH 7.0 and pH 6.5. Porcine cardiac fibers treated with TnT1 that contained the DCM mutations (R141W and DeltaK210), when reconstituted with either cardiac TnI.TnC or ssTnI.TnC, significantly decreased Ca(2+) sensitivity of force development compared with TnT1-WT at both pH values. The R141W mutation, which showed no significant change in the Ca(2+) sensitivity of force development in the TnT3 isoform, caused a significant decrease in the TnT1 isoform. The DeltaK210 mutation caused a greater decrease in Ca(2+) sensitivity and maximal isometric force development compared with the R141W mutation in both the fetal and adult TnT isoforms. When complexed with cardiac TnI.TnC or ssTnI.TnC, both TnT1 DCM mutations strongly decreased maximal actomyosin ATPase activity as compared with TnT1-WT. Our results suggest that a decrease in maximal actomyosin ATPase activity in conjunction with decreased Ca(2+) sensitivity of force development may cause a severe DCM phenotype in infants with the mutations.  相似文献   

19.
Diabetic cardiomyopathy is characterized by delayed cardiac relaxation. Delayed relaxation is suggested to be associated with sarcoplasmic reticulum (SR) dysfunction and/or increase in myofilament sensitivity to Ca2+. Although MCC-135, an intracellular Ca2+-handling modulator, accelerates the delayed relaxation without inotropic effect in the ventricular muscle isolated from rats with diabetic cardiomyopathy, the underlying mechanism has not been fully understood. We tested the hypotheses that MCC-135 modulates Ca2+ uptake by SR and myofilament sensitivity to Ca2+. Wistar rats were made diabetic by a single injection of streptozotocin (40 mg/kg i.v.). Seven months later, the left ventricular papillary muscle was isolated and skinned fibers with and without functional SR were prepared by treatment of the papillary muscle with saponin to study SR Ca2+ uptake and myofilament sensitivity to Ca2+, respectively. In diabetic rats, SR Ca2+ uptake was decreased, which was related to decrease in protein level of SR Ca2+-ATPase determined by western blot analysis. MCC-135 enhanced SR Ca2+ uptake in diabetic rats, but not in normal rats. In diabetic rats, maximum force was decreased but force at diastolic level of Ca2+ was increased, without significant change in myofilament sensitivity to Ca2+ compared with normal rats. MCC-135 decreased force at any pCa tested (pCa 7.0-4.4), but had no significant effect on myofilament sensitivity to Ca2+ in diabetic rats. These results suggest that MCC-135 enhances SR Ca2+ uptake and shifts force-pCa curve downward without modulating myofilament sensitivity to Ca2+. These effects may contribute to positive lusitropic effect without inotropic effect of MCC-135 observed in the ventricular muscle of diabetic cardiomyopathy.  相似文献   

20.
The troponin complex was discovered over thirty years ago and since then much insight has been gained into how this complex senses fluctuating levels of Ca2+ and transmits this signal to the myofilament. Advances in genetics methods have allowed identification of mutations that lead to the phenotypically distinct cardiomyopathies: hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM) and dilated cardiomyopathy (DCM). This review serves to highlight key in vivo studies of mutation effects that have followed many years of functional studies and discusses how these mutations alter energetics and promote the characteristic remodeling associated with cardiomyopathic diseases. Studies have been performed that examine alterations in signaling and genomic methods have been employed to isolate upregulated proteins, however these processes are complex as there are multiple roads to hypertrophy or dilation associated with genetic cardiomyopathies. This review suggests future directions to explore in the troponin field that would heighten our understanding of the complex regulation of cardiac muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号