首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Residual genetic recombination is carried out by recB - recC - mutants of E. coli. Recombinants (for one gene) formed by a recB - recC - parent were shown to be as recombination deficient as their parent, when recombination of a second gene is measured. Therefore the resididual recombination cannot be attributed to a genetically recombination proficient fraction of the parent recB - recC - culture. I conclude that each recB - recC - parent cell is capable of carrying out genetic recombination. This conclusion is consistent with the existence of an alternate (and minor) recombination mechanism in E. coli K12, independent of the recB + recC + mediated steps.The previous paper in this series was Capaldo-Kimball and Barbour, Involvement of Recombination Genes in Growth and Viability, J. Bact. April (1971).  相似文献   

2.
3.
Summary E. coli K12 was found to utilise both D-and L-stereoisomers of alanine as sole sources of carbon, nitrogen and energy for growth. This capability was absolutely dependent upon the possession of an active membrane-bound D-alanine dehydrogenase, and was lost by mutants in which the enzyme was defective. The Michaelis constant for the enzyme with D-alanine as substrate was 30 mM, and the pH optimum about 8.9. D-alanine was the most active substrate, L-alanine was inactive and several other D-amino acids were 10–50% as active as D-alanine. Oxidation of D-alanine was linked to oxygen via a cytochrome-containing respiratory chain. Synthesis of the dehydrogenase was induced 16 to 23-fold by incubation with D-or L-alanine, but only D-alanine was intrinsically active as an inducer. L-alanine was active either as a substrate or inducer only in the presence of an uninhibited alanine racemase which converted it to the D-isomer. The map-location of their structural genes between ara and leu, together with other similarities, indicate that D-alanine dehydrogenase and the alaninase of Wijsman (1972a) are the same enzyme. Both D-and L-alanine were intrinsically active as inducers of alanine racemase synthesis. The synthesis of both D-alanine dehydrogenase and alanine racemase was found to be regulated by catabolite repression.  相似文献   

4.
5.
6.
7.
8.
9.
An unusual Escherichia coli K12 mutant for carbamyl phosphate synthetase is described. The mutation was generated by bacteriophage MUI insertion and left a 5% residual activity of the enzyme using either ammonia or glutamine as donors. The mutation is recessive to the wild-type allele and maps at or near the pyrA gene, but the mutant requires only arginine and not uracil for growth. By a second block in the pyrB gene it was possible to shift the accumulated carbamyl phosphate to arginine biosynthesis. The Km values and the levels of ornithine activation and inhibition by UMP were normal in the mutant enzyme.  相似文献   

10.
Summary Conjugational recombination in Escherichia coli was investigated by measuring lacZ + product, -galactosidase, in crosses between lacZ mutants. Enzyme production in both Hfr and F-prime crosses was detected very soon after transfer of the donor lacZ allele. The level of enzyme activity was reduced by no more than two-fold when the recipient carried a recB mutation. With an F-prime donor, recombination appeared to be restricted largely to a short period immediately after transfer, with little evidence of recombination during subsequent exponential growth of the transconjugant cells. These observations are interpreted to suggest that recA dependent recombination is able to initiate with high efficiency at gaps present in the donor DNA before synthesis of a complementary strand is completed, and independently of recB function. A molecular model for conjugational recombination based on this idea is presented in terms of the known activities of recA and recBC products. Some of the predictions of the model are tested by analysing the recombinant genotypes produced in Hfr crosses with multiply marked strains.  相似文献   

11.
12.
13.
14.
Mutants of Escherichia coli K12 defective in the nirB gene lack NADH-dependent nitrite reductase activity and reduce nitrite slowly during anaerobic growth. With one exception these mutants require cysteine for growth. Cytochrome C552 synthesis and the assimilation of ammonia are unaffected by the nirB mutation. The defective gene is located between the crp and aroB genes at minute 73 on the E. coli chromosome. Mapping and reversion studies indicate the nirB is identical to the previously described cysG gene. It is suggested that the product of the cysG+ (nirB+)?gene is an enzyme required for the synthesis of sirohaem, a prosthetic group of enzymes which catalyse the six-electron reduction of nitrite to ammonia and sulphite to sulphide.  相似文献   

15.
16.
19 independent recombination-deficient mutants were isolated. 7 carried mutations that mapped near or in the recB and recC genes between thyA and argA. 10 mutants carried mutations cotransducible with pheA and exhibited no complementation with recA in temporary zygotic diploids.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号