首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a method for studying the permeability properties of human endothelia in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured on a substrate of human amnion. Confluent monolayers of these cells demonstrated 6-12 delta.cm2 of electrical resistance (a measure of their permeability to ions) and restricted the transendothelial passage of albumin from their apical to their basal surface. To determine whether leukocyte emigration alters endothelial permeability in this model, we examined the effects of migrating human polymorphonuclear leukocytes (PMN) on these two parameters. Few PMN migrated across the HUVEC monolayers in the absence of chemoattractants. In response to chemoattractants, PMN migration through HUVEC monolayers was virtually complete within 10 minutes and occurred at random locations throughout the monolayer. PMN migrated across the monolayer via the paracellular pathway. Although one PMN migrated across the monolayer for each HUVEC, PMN migration induced no change in electrical resistance or albumin permeability of these monolayers. At this PMN:HUVEC ratio, these permeability findings were correlated morphologically to measurements that HUVEC paracellular pathway size increases by less than 0.22% with PMN migration. This increase is insufficient to effect a measurable change in the electrical resistance of the endothelial cell monolayer. These findings demonstrate that increased permeability of cultured endothelial cell monolayers is not a necessary consequence of PMN emigration.  相似文献   

2.
Recent studies have shown that homozygous knockout of gene for calcitonin gene-related peptide (CALCA) receptor component, calcitonin receptor-like receptor (CALCRL), led to extreme hydrops fetalis and embryonic death, underlining the critical role of CALCA in embryonic development and fetal growth. The present study was designed to determine the cellular localization of CALCA and its receptor components, CALCRL and receptor activity modifying protein 1 (RAMP1), at the human implantation site during early pregnancy; to assess whether CALCA regulates in vitro angiogenesis of human endothelial cells; and to examine whether CALCA can improve angiogenic imbalance in preeclamptic placental explants. Our studies demonstrated that both protein and mRNA for CALCA were expressed by the villous and extravillous trophoblasts and decidual cells in the first-trimester villous tissues. CALCA receptor components, CALCRL and RAMP1, were expressed by both villous and extravillous trophoblast cells, as well as vascular endothelial cells. CALCA induced both endothelial proliferation and migration in a dose- and time-dependent manner, and it promoted capillarylike tube formation of human umbilical vein endothelial cells (HUVECs) on Matrigel. CALCA-induced angiogenesis of human endothelial cells was completely blocked by CALCA antagonist CALCA(8-37). Further, conditioned medium from preeclamptic placental explants significantly inhibited HUVEC capillarylike tube formation compared with gestational age-matched controls, and conditioned medium from preeclamptic placental explants incubated with CALCA significantly improved capillarylike tube formation. We conclude that CALCA induces in vitro angiogenesis by stimulating endothelial cell proliferation, migration, and capillarylike tube formation; thus, CALCA at the human implantation site may constitute a potential autocrine or paracrine mechanism that could modify placental angiogenesis and neovascularization.  相似文献   

3.
4.
Neuritin (NRN1), a neurotrophic factor, plays an important role in neurite growth and neuronal survival. In this study, we identify a new function of neuritin as a novel angiogenic factor in vitro and in vivo. Recombinant neuritin protein had no effect on the proliferation and adhesion of human umbilical vein endothelial cells (HUVEC), but it dose-dependently increased endothelial cell migration. Furthermore, overexpression of neuritin significantly promoted tumor angiogenesis, and surprisingly, it inhibited tumor growth in a xenograft tumor model. Thus, our results indicate that neuritin may act as an important angiogenic factor and serve as a potential target for cancer therapy.  相似文献   

5.
Vascular endothelial growth factor (VEGF) promotes vasculogenesis, arteriogenesis, and angiogenesis by stimulating proliferation, migration, and cell survival of endothelial cells. VEGF mediates its actions through activation of two receptor tyrosine kinases, VEGFR-1 and VEGFR-2. Serum starvation led to apoptosis of human umbilical vein endothelial cells (HUVEC), which was accompanied by activation of p38 MAPK and caspase-3. Stimulation of both VEGF-receptors resulted in a considerable decrease of apoptosis, which was associated with the inhibition of p38 MAPK and caspase-3 activity. Selective stimulation of VEGFR-2 showed similar results, whereas the isolated activation of VEGFR-1 was without effect. Incubation of HUVEC with SB203580, a p38 MAPK inhibitor, resulted in similar effects as VEGF-stimulation: p38 MAPK and caspase-3 enzyme activity were reduced and apoptosis was prevented. These data indicate that activation of VEGFR-2 prevents endothelial cell apoptosis by inhibiting p38 MAPK phosphorylation and thus, reducing caspase-3 activity.  相似文献   

6.
Sphingosine 1-phosphate (SPP), a platelet-derived bioactive lysophospholipid, is a regulator of angiogenesis. However, molecular mechanisms involved in SPP-induced angiogenic responses are not fully defined. Here we report the molecular mechanisms involved in SPP-induced human umbilical vein endothelial cell (HUVEC) adhesion and migration. SPP-induced HUVEC migration is potently inhibited by antisense phosphothioate oligonucleotides against EDG-1 as well as EDG-3 receptors. In addition, C3 exotoxin blocked SPP-induced cell attachment, spreading and migration on fibronectin-, vitronectin- and Matrigel-coated surfaces, suggesting that endothelial differentiation gene receptor signaling via the Rho pathway is critical for SPP-induced cell migration. Indeed, SPP induced Rho activation in an adherence-independent manner, whereas Rac activation was dispensible for cell attachment and focal contact formation. Interestingly, both EDG-1 and -3 receptors were required for Rho activation. Since integrins are critical for cell adhesion, migration, and angiogenesis, we examined the effects of blocking antibodies against alpha(v)beta(3), beta(1), or beta(3) integrins. SPP induced Rho-dependent integrin clustering into focal contact sites, which was essential for cell adhesion, spreading and migration. Blockage of alpha(v)beta(3)- or beta(1)-containing integrins inhibited SPP-induced HUVEC migration. Together our results suggest that endothelial differentiation gene receptor-mediated Rho signaling is required for the activation of integrin alpha(v)beta(3) as well as beta(1)-containing integrins, leading to the formation of initial focal contacts and endothelial cell migration.  相似文献   

7.
Cooke JP 《Life sciences》2007,80(24-25):2347-2351
An endothelial nicotinic acetycholine receptor (nAChR) mediates endothelial proliferation, survival, migration and tube formation in vitro, and angiogenesis in vivo. Exogenous nicotine stimulates this angiogenic pathway. This action of nicotine may contribute to tumor angiogenesis and tumor growth; atherosclerotic plaque neovascularization and progression; and other tobacco-related diseases. The endothelial nAChR mediates an angiogenic pathway that is interdependent with growth factor mediated pathways, as shown by pharmacological and molecular studies. The characterization of this new angiogenic pathway may provide a new therapeutic avenue for disorders of insufficient or pathological angiogenesis.  相似文献   

8.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

9.
Recently, we reported the therapeutic potential of mesenchymal stem/stromal cells (MSCs) from the maternal decidua basalis tissue of human term placenta (DBMSCs) to treat inflammatory diseases, such as atherosclerosis and cancer. DMSCs protect endothelial cell functions from the negative effects of oxidative stress mediators including hydrogen peroxide (H2O2) and monocytes. In addition, DBMSCs induce the generation of anti-cancer immune cells known as M1 macrophages. Diabetes is another inflammatory disease where endothelial cells are injured by H2O2 produced by high level of glucose (hyperglycaemia), which is associated with development of thrombosis. Here, we investigated the ability of DBMSCs to reverse the damaging effects of high levels of glucose on endothelial cells. DBMSCs and endothelial cells were isolated from human placental and umbilical cord tissues, respectively. Endothelial cells were incubated with glucose in presence of DBMSCs, and their functions were evaluated. The effect of DBMSCs on glucose- treated endothelial cell expression of genes was also determined. DBMSCs reversed the effects of glucose on endothelial cell functions including proliferation, migration, angiogenesis and permeability. In addition, DBMSCs modified the expression of several genes mediating essential endothelial cell functions including survival, apoptosis, permeability and angiogenesis. We report the first evidence that DBMSCs protect the functions of endothelial cells from the damaging effects of glucose. Based on these results, we establish that DBMSCs are promising therapeutic agents to repair glucose-induced endothelial cell injury in diabetes. However, these finding must be investigated further to determine the pathways underlying the protective role of DBMSCs on glucose-stimulated endothelial cell Injury.  相似文献   

10.
Glycation has been implicated in the endothelial dysfunction that contributes to both diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether Amadori-glycated phosphatidylethanolamine (Amadori-PE), a lipid-linked glycation compound that is formed at an increased rate in hyperglycemic states, affected proliferation, migration and tube formation of cultured human umbilical vein endothelial cells (HUVEC). Amadori-PE at a low concentration of less than 5 microM significantly enhanced these three factors involved in angiogenesis. Furthermore, stimulation of HUVEC with Amadori-PE resulted in secretion of matrix metalloproteinase 2 (MMP-2), a pivotal enzyme in the initial step of angiogenesis. Our results demonstrated for the first time that Amadori-PE may be an important compound that promotes vascular disease as a result of its angiogenic activity on endothelial cells. We also demonstrated that MMP-2 is a primary mediator of Amadori-PE-driven angiogenesis.  相似文献   

11.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

12.
13.
14.
Angiogenesis in the placenta   总被引:14,自引:0,他引:14  
The mammalian placenta is the organ through which respiratory gases, nutrients, and wastes are exchanged between the maternal and fetal systems. Thus, transplacental exchange provides for all the metabolic demands of fetal growth and development. The rate of transplacental exchange depends primarily on the rates of uterine (maternal placental) and umbilical (fetal placental) blood flows. In fact, increased uterine vascular resistance and reduced uterine blood flow can be used as predictors of high risk pregnancies and are associated with fetal growth retardation. The rates of placental blood flow, in turn, are dependent on placental vascularization, and placental angiogenesis is therefore critical for the successful development of viable, healthy offspring. Recent studies, including gene knockouts in mice, indicate that the vascular endothelial growth factors represent a major class of placental angiogenic factors. Other angiogenic factors, such as the fibroblast growth factors or perhaps the angiopoietins, also may play important roles in placental vascularization. In addition, recent observations suggest that these angiogenic factors interact with the local vasodilator nitric oxide to coordinate placental angiogenesis and blood flow. In the future, regulators of angiogenesis that are currently being developed may provide novel and powerful methods to ensure positive outcomes for most pregnancies.  相似文献   

15.
Angiogenesis is an essential step for many physiological and pathological processes. Tumor necrosis factor (TNF) superfamily cytokines are increasingly recognized as key modulators of angiogenesis. In this study, we tested whether TNF-related activation-induced cytokine (TRANCE), a new member of the TNF superfamily, possesses angiogenic activity in vitro and in vivo. TRANCE stimulated DNA synthesis, chemotactic motility, and capillary-like tube formation in primary cultured human umbilical vein endothelial cells (HUVECs). Both Matrigel plug assay in mice and chick chorioallantoic membrane assay revealed that TRANCE potently induced neovascularization in vivo. TRANCE had no effect on vascular endothelial growth factor (VEGF) expression in HUVECs and TRANCE-induced angiogenic activity was not suppressed by VEGF-neutralizing antibody, implying that TRANCE-induced angiogenesis may be the result of its direct action on endothelial cells. TRANCE evoked a time- and dose-dependent activation of the mitogen-activated protein kinases ERK1/2 and focal adhesion kinase p125(FAK) in HUVECs, which are closely linked to angiogenesis. These signaling events were blocked by the Src inhibitor PP1 or the phospholipase C (PLC) inhibitor. Furthermore, these inhibitors and the Ca(2+) chelator BAPTA-AM suppressed TRANCE-induced HUVEC migration. These results indicate that the angiogenic activity of TRANCE is mediated through the Src-PLC-Ca(2+) signaling cascade upon receptor engagement in endothelial cells, suggesting the role of TRANCE in neovessel formation under physiological and pathological conditions.  相似文献   

16.
Tumor growth and metastasis are dependent on angiogenesis, and endothelial cell invasion and migration are apparent means of regulating tumor progression. We report here that saxatilin, a snake venom-derived disintegrin, suppresses the angiogenesis-inducing properties of NCI-H460 human lung cancer cells. Culture supernatants of NCI-H460 cells are able to induce human umbilical vascular endothelial cell (HUVEC) invasion and tube formation. However, treatment of the cancer cells with saxatilin resulted in reduced angiogenic activity of the culture supernatant. This suppressed angiogenic property was found to be associated with the level of vascular endothelial growth factor (VEGF) in the culture supernatant. Further experimental evidence indicated that saxatilin inhibits VEGF production in NCI-H460 cells by affecting hypoxia induced factor-1 alpha (HIF-1 alpha) expression via the Akt pathway.  相似文献   

17.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

18.
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N‐sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N‐sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2‐mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM‐induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N‐sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2‐mediated cell–cell communication.  相似文献   

19.
Angiogenesis inhibitors are beneficial for the prevention and treatment of angiogenesis‐dependent diseases including cancer. We examined the cytotoxic, anti‐metastatic, anti‐cancer and anti‐angiogenic effects of diallyl trisulfide (DATS). In HT29 cells, DATS inhibited migration and invasion through the inhibition of focal adhesion kinase (FAK), extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase and p38 which was associated with inhibition of matrix metalloproteinases‐2, ‐7 and ‐9 and VEGF. In human umbilical vein endothelial cells (HUVEC), DATS inhibited the migration and angiogenesis through FAK, Src and Ras. DATS also inhibited the secretion of VEGF. The capillary‐like tube structure formation and migration by HUVEC was inhibited by DATS. The chicken egg chorioallantoic membrane (CAM) assay indicated that DATS treatment inhibited ex‐vivo angiogenesis. We investigated the anti‐tumour effects of DATS against human colon cancer xenografts in BALB/cnu/nu mice and its anti‐angiogenic activity in vivo. In this in‐vivo study, DATS also inhibited the tumour growth, tumour weight and angiogenesis (decreased the levels of haemoglobin) in HT29 cells. In conclusion, the present results suggest that the inhibition of angiogenesis may be an important mechanism in colon cancer chemotherapy by DATS.  相似文献   

20.
The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号