As bacterial resistance to currently used antibiotics increases, so too must efforts to identify novel agents and strategies for the prevention and treatment of bacterial infection. In the past, antimicrobial drug discovery efforts have focused on eradicating infection by either cidal or static agents, resulting in clearance of the bacterium from the infected host. To this end, drug discovery targets have been those proteins or processes essential for bacterial cell viability. However, inhibition of the interaction between the bacterium and its host may also be a target. During establishment of an infection, pathogenic bacteria use carefully regulated pathways of conditional gene expression to transition from a free-living form to one that must adapt to the host milieu. This transition requires the regulated production of both extracellular and cell-surface molecules, often termed virulence factors. As the biological imperatives of the invading organism change during the course of an infection, the expression of these factors is altered in response to environmental cues. These may be changes in the host environment, for example, pH, metabolites, metal ions, osmolarity, and temperature. Alternatively, effector molecules produced by the bacterium to sense changing cell density can also lead to changes in virulence gene expression. Although the mechanisms of pathogenesis among different bacteria vary, the principles of virulence are generally conserved. Bacterial virulence may therefore offer unique opportunities to inhibit the establishment of infection or alter its course as a method of antimicrobial chemotherapy. 相似文献
Antimicrobial peptides (AMPs) or host defense peptides (HDPs) are vital components of human innate defense system targeting human‐related bacteria. Many bacteria have various mechanisms interfering with AMP activity, causing resistance to AMPs. Since AMPs are considered as potential novel antimicrobial drugs, understanding the mechanisms of bacterial resistance to direct killing of AMPs is of great significance. In this review, a comparative overview of bacterial strategies for resistance to direct killing of various AMPs is presented. Such strategies include bacterial cell envelope modification, AMP degradation, sequestration, expelling, and capsule. 相似文献
Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an increase in the coherence between spikes and the local field potential (LFP) in the gamma-frequency range (30-50 Hz). The hypothesis explored here is that these observed effects of attention could be a consequence of changes in the synchrony of local interneuron networks. We performed computer simulations of a Hodgkin-Huxley type neuron driven by a constant depolarizing current, I, representing visual stimulation and a modulatory inhibitory input representing the effects of attention via local interneuron networks. We observed that the neuron's firing rate and the coherence of its output spike train with the synaptic inputs was modulated by the degree of synchrony of the inhibitory inputs. When inhibitory synchrony increased, the coherence of spiking model neurons with the synaptic input increased, but the firing rate either increased or remained the same. The mean number of synchronous inhibitory inputs was a key determinant of the shape of the firing rate versus current (f-I) curves. For a large number of inhibitory inputs (approximately 50), the f-I curve saturated for large I and an increase in input synchrony resulted in a shift of sensitivity-the model neuron responded to weaker inputs I. For a small number (approximately 10), the f-I curves were non-saturating and an increase in input synchrony led to an increase in the gain of the response-the firing rate in response to the same input was multiplied by an approximately constant factor. The firing rate modulation with inhibitory synchrony was highest when the input network oscillated in the gamma frequency range. Thus, the observed changes in firing rate and coherence of neurons in the visual cortex could be controlled by top-down inputs that regulated the coherence in the activity of a local inhibitory network discharging at gamma frequencies. 相似文献
The poxviruses (Poxviridae) are a family of viruses with double-stranded DNA genomes and substantial numbers (often >200) of genes per genome. We studied the patterns of gene gain and loss over the evolutionary history of 17 poxvirus complete genomes. A phylogeny based on gene family presence/absence showed good agreement with families based on concatenated amino acid sequences of conserved single-copy genes. Gene duplications in poxviruses were often lineage specific, and the most extensively duplicated viral gene families were found in only a few of the genomes analyzed. A total of 34 gene families were found to include a member in at least one of the poxvirus genomes analyzed and at least one animal genome; in 16 (47%) of these families, there was evidence of recent horizontal gene transfer (HGT) from host to virus. Gene families with evidence of HGT included several involved in host immune defense mechanisms (the MHC class I, interleukin-10, interleukin-24, interleukin-18, the interferon gamma receptor, and tumor necrosis factor receptor II) and others (glutaredoxin and glutathione peroxidase) involved in resistance of cells to oxidative stress. Thus "capture" of host genes by HGT has been a recurrent feature of poxvirus evolution and has played an important role in adapting the virus to survive host antiviral defense mechanisms. 相似文献
A hallmark of active centromeres is the presence of the histone H3 variant CenH3 in the centromeric chromatin, which ensures faithful genome distribution at each cell division. A functional centromere can be inactivated, but the molecular mechanisms underlying the process of centromere inactivation remain largely unknown. Here, we describe the loss of CenH3 protein as part of a developmental program leading to the formation of the somatic nucleus in the eukaryote Paramecium. We identify two proteins whose depletion prevents developmental loss of CenH3: the domesticated transposase Pgm involved in the formation of DNA double strand cleavages and the Polycomb-like lysine methyltransferase Ezl1 necessary for trimethylation of histone H3 on lysine 9 and lysine 27. Taken together, our data support a model in which developmentally programmed centromere loss is caused by the elimination of DNA sequences associated with CenH3. 相似文献
The molecular changes responsible for the evolution of modern humans have primarily been discussed in terms of individual nucleotide substitutions in regulatory or protein coding sequences. However, rates of nucleotide substitution are slowed in primates, and thus humans and chimpanzees are highly similar at the nucleotide level. We find that a third source of molecular evolution, gene gain and loss, is accelerated in primates relative to other mammals. Using a novel method that allows estimation of rate heterogeneity among lineages, we find that the rate of gene turnover in humans is more than 2.5 times faster than in other mammals and may be due to both mutational and selective forces. By reconciling the gene trees for all of the gene families included in the analysis, we are able to independently verify the numbers of inferred duplications. We also use two methods based on the genome assembly of rhesus macaque to further verify our results. Our analyses identify several gene families that have expanded or contracted more rapidly than is expected even after accounting for an overall rate acceleration in primates, including brain-related families that have more than doubled in size in humans. Many of the families showing large expansions also show evidence for positive selection on their nucleotide sequences, suggesting that selection has been important in shaping copy-number differences among mammals. These findings may help explain why humans and chimpanzees show high similarity between orthologous nucleotides yet great morphological and behavioral differences. 相似文献
Antimicrobial resistance is a major concern in health care and farming settings throughout the world. The level of antimicrobial resistance continues to increase and the requirement for a novel and possibly dramatic change in therapy choices is required. One possible mechanism for overcoming resistance is the actual removal of antimicrobial treatment from the therapeutic armoury. This review examines the potential for success of a policy advocating the reduction of antimicrobial use and additionally the withdrawal of such treatments. Evidence from agriculture suggests that the removal of certain drugs from animal husbandry can result in concomitant falls in certain drug resistances in human patients. 相似文献
Tuberculosis remains an important global public health problem, with an estimated prevalence of 14 million individuals with tuberculosis worldwide in 2007. Because antibiotic treatment is one of the main tools for tuberculosis control, knowledge of Mycobacterium tuberculosis drug resistance is an important component for the disease control strategy. Although several gene mutations in specific loci of the M. tuberculosis genome have been reported as the basis for drug resistance, additional resistance mechanisms are now believed to exist. Efflux is a ubiquitous mechanism responsible for intrinsic and acquired drug resistance in prokaryotic and eukaryotic cells. Mycobacterium tuberculosis presents one of the largest numbers of putative drug efflux pumps compared with its genome size. Bioinformatics as well as direct and indirect evidence have established relationships among drug efflux with intrinsic or acquired resistance in M. tuberculosis. This minireview describes the current knowledge on drug efflux in M. tuberculosis. 相似文献
The increased phenomenon of antimicrobial resistance and the slow pace of development of new antibiotics are at the base of a global health concern regarding microbial infections. Antibiotic resistance kills an estimated 700,000 people each year worldwide, and this number is expected to increase dramatically if efforts are not made to develop new drugs or alternative containment strategies. Increased vaccination coverage, improved sanitation or sustained implementation of infection control measures are among the possible areas of action. Indeed, vaccination is one of the most effective tools of preventing infections. Starting from 1970s polysaccharide-based vaccines against Meningococcus, Pneumococcus and Haemophilus influenzae type b have been licensed, and provided effective protection for population. However, the development of safe and effective vaccines for infectious diseases with broad coverage remains a major challenge in global public health. In this scenario, nanosystems are receiving attention as alternative delivery systems to improve vaccine efficacy and immunogenicity. In this report, we provide an overview of current applications of glyconanomaterials as alternative platforms in the development of new vaccine candidates. In particular, we will focus on nanoparticle platforms, used to induce the activation of the immune system through the multivalent-displacement of saccharide antigens.
Gram-negative bacterial vesicle formation is a mechanism for specific secretion and transfer of a protein toxin to animals. This discovery should stimulate work on the mechanism of protein sorting into vesicles and the role of vesicles in bacterial pathogenesis. 相似文献
The capture and spread of antibiotic resistance determinants by integrons underlies the rapid evolution of multiple antibiotic resistance among diverse Gram-negative clinical isolates. The association of multiple resistance integrons (MRIs) with mobile DNA elements facilitates their transit across phylogenetic boundaries and augments the potential impact of integrons on bacterial evolution. Recently, ancestral chromosomal versions, the super-integrons (SIs), were found to be genuine components of the genomes of diverse bacterial species. SIs possess evolutionary characteristics and stockpiles of adaptive functions, including cassettes related to antibiotic resistance determinants previously characterized in clinical isolates, which suggest that MRIs and their resistance genes were originally recruited from SIs and their pool of amassed genes. However, the recombination activity of integrons has never been demonstrated in a bacterium other than Escherichia coli. We introduced a naturally occurring MRI (TpR, SulR) on a conjugative plasmid into Vibrio cholerae, a species known to harbour a SI. We show that MRIs can randomly recruit genes directly from the cache of SI cassettes. By applying a selective constraint for the development of antibiotic resistance, we demonstrate bacterial resistance evolution through the recruitment a novel, but phenotypically silent, chloramphenicol acetyltransferase gene from the V. cholerae SI and its precise insertion into the MRI. The resulting resistance profile (CmR, TpR, SulR) could then be disseminated by conjugation to other clinically relevant pathogens at high frequency. These results demonstrate that otherwise phenotypically sensitive strains may still be a genetic source for the evolution of resistance to clinically relevant antibiotics through integron-mediated recombination events. 相似文献
A DNA fragment (ADG2, 310 bp) 77% homologous to the gene N (resistance to tobacco mosaic virus in Nicotiana glutinosa) and 53% homologous to RPP5 (resistance to Peronospora parasitica in Arabidopsis thaliana) was amplified by PCR from the diploid potato genotype 2x(v-2)7 that carries the gene Ryadg located on chromosome XI and conferring extreme resistance to potato virus Y(PVY). Sequence comparison revealed that ADG2
spans a region corresponding to the predicted kinase-2 and kinase-3a motifs in N and RPP5. One of the 12 nucleotide differences detected between ADG2 and a homologous fragment from a PVY-susceptible potato genotype
was located within the predicted kinase-3a motif. This single nucleotide substitution of G→C, resulting in an amino-acid substitution
Ser→Thr, abolished the BbvI recognition site of ADG2, which was shown to distinguish all tested potato genotypes carrying Ryadg from those lacking this gene, irrespective of the genetic background and ploidy level. This PCR-based resistance marker,
developed using a resistance gene analogue as a target, is the first example of a PCR-based marker that is generally applicable
for selection of an economically important trait in potato.
Received: 28 November 1998 / Accepted: 28 December 1998 相似文献
It has been proposed that amplification of genes for esterase that provide resistance to insecticides may originate from
transposition events. To test this hypothesis, we have constructed a minigene coding for a soluble acetylcholinesterase under
the control of a nontissue-specific promoter (hsp70). When introduced into Drosophila, the gene is expressed in all tissues and the extra acetylcholinesterase produced confers a low level of insecticide resistance
(twofold). The minigene was mobilized by crossing the initial transformant with a strain providing a source of P-element transposase.
After 34 generations of exposure to the organophosphate parathion, we obtained a strain with a higher resistance (fivefold).
This strain had only one extra Ace gene, which overexpressed acetylcholinesterase. Thus, following transposition, resistance resulted from the overexpression
of a single copy of the gene and not from gene amplification.
Received: 9 August 1996 / Accepted: 27 May 1997 相似文献
Understanding gene duplication and gene structure evolution are fundamental goals of molecular evolutionary biology. A previous study by Babenko et al. (2004. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res. 32:3724-3733) employed Dollo parsimony to infer spliceosomal intron losses and gains in paralogous gene families and concluded that there was a general excess of gains over losses. This result contrasts with patterns in orthologous genes, in which most lineages show an excess of intron losses over gains, suggesting the possibility of fundamentally different modes of intron evolution between orthologous and paralogous genes. We further studied the data and found a low level of intron position conservation with outgroups, and this led to problems with using Dollo parsimony to analyze the data. Statistical reanalysis of the data suggests, instead, that intron losses have outnumbered intron gains in paralogous gene families. 相似文献