共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years researchers have investigated a growing number of weighted heterogeneous networks, where connections are not merely binary entities, but are proportional to the intensity or capacity of the connections among the various elements. Different degree centrality measures have been proposed for this kind of networks. In this work we propose weighted degree and strength centrality measures (WDC and WSC). Using a reducing factor we correct classical centrality measures (CD) to account for tie weights distribution. The bigger the departure from equal weights distribution, the greater the reduction. These measures are applied to a real network of Italian livestock movements as an example. A simulation model has been developed to predict disease spread into Italian regions according to animal movements and animal population density. Model’s results, expressed as infected regions and number of times a region gets infected, were related to weighted and classical degree centrality measures. WDC and WSC were shown to be more efficient in predicting node’s risk and vulnerability. The proposed measures and their application in an animal network could be used to support surveillance and infection control strategy plans. 相似文献
2.
Analysis of network dynamics became a focal point to understand and predict changes of complex systems. Here we introduce Turbine, a generic framework enabling fast simulation of any algorithmically definable dynamics on very large networks. Using a perturbation transmission model inspired by communicating vessels, we define a novel centrality measure: perturbation centrality. Hubs and inter-modular nodes proved to be highly efficient in perturbation propagation. High perturbation centrality nodes of the Met-tRNA synthetase protein structure network were identified as amino acids involved in intra-protein communication by earlier studies. Changes in perturbation centralities of yeast interactome nodes upon various stresses well recapitulated the functional changes of stressed yeast cells. The novelty and usefulness of perturbation centrality was validated in several other model, biological and social networks. The Turbine software and the perturbation centrality measure may provide a large variety of novel options to assess signaling, drug action, environmental and social interventions. 相似文献
3.
Attack Robustness and Centrality of Complex Networks 总被引:1,自引:0,他引:1
Many complex systems can be described by networks, in which the constituent components are represented by vertices and the connections between the components are represented by edges between the corresponding vertices. A fundamental issue concerning complex networked systems is the robustness of the overall system to the failure of its constituent parts. Since the degree to which a networked system continues to function, as its component parts are degraded, typically depends on the integrity of the underlying network, the question of system robustness can be addressed by analyzing how the network structure changes as vertices are removed. Previous work has considered how the structure of complex networks change as vertices are removed uniformly at random, in decreasing order of their degree, or in decreasing order of their betweenness centrality. Here we extend these studies by investigating the effect on network structure of targeting vertices for removal based on a wider range of non-local measures of potential importance than simply degree or betweenness. We consider the effect of such targeted vertex removal on model networks with different degree distributions, clustering coefficients and assortativity coefficients, and for a variety of empirical networks. 相似文献
4.
Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it''s urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node''s controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. 相似文献
5.
We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the network’s degree distribution. We show that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks. 相似文献
6.
Cooperation played a significant role in the self-organization and evolution of living organisms. Both network topology and the initial position of cooperators heavily affect the cooperation of social dilemma games. We developed a novel simulation program package, called ‘NetworGame’, which is able to simulate any type of social dilemma games on any model, or real world networks with any assignment of initial cooperation or defection strategies to network nodes. The ability of initially defecting single nodes to break overall cooperation was called as ‘game centrality’. The efficiency of this measure was verified on well-known social networks, and was extended to ‘protein games’, i.e. the simulation of cooperation between proteins, or their amino acids. Hubs and in particular, party hubs of yeast protein-protein interaction networks had a large influence to convert the cooperation of other nodes to defection. Simulations on methionyl-tRNA synthetase protein structure network indicated an increased influence of nodes belonging to intra-protein signaling pathways on breaking cooperation. The efficiency of single, initially defecting nodes to convert the cooperation of other nodes to defection in social dilemma games may be an important measure to predict the importance of nodes in the integration and regulation of complex systems. Game centrality may help to design more efficient interventions to cellular networks (in forms of drugs), to ecosystems and social networks. 相似文献
7.
8.
DNA序列信息的一种新的测度 总被引:1,自引:3,他引:1
根据信息理论给出了测度DNA序列信息的一种新的方法,获得DNA序列4个层次的信息量测度:Ib,If(1),If(2)andIf(3),这4种信息测度可分别用来测度DNA的碱基序列、密码子序列、编码蛋白质序列和功能蛋白质序列的信息量。从M.edulis的线粒体基因组中两个较短的编码蛋白质的DNA序列和使用具有不同倍性的间并密码子组组成的模拟DNA序列中所获得计算结果表明,这些信息测度确实能用来揭示所 相似文献
9.
Gabriele Lohmann Daniel S. Margulies Annette Horstmann Burkhard Pleger Joeran Lepsien Dirk Goldhahn Haiko Schloegl Michael Stumvoll Arno Villringer Robert Turner 《PloS one》2010,5(4)
Functional magnetic resonance data acquired in a task-absent condition (“resting state”) require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Google''s PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular “betweenness centrality” - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level. 相似文献
10.
Robert H. Cox 《BMJ (Clinical research ed.)》1897,1(1892):844-845
11.
12.
We propose a new method for aggregating the information of multiple users rating multiple items. Our approach is based on the network relations induced between items by the rating activity of the users. Our method correlates better than the simple average with respect to the original rankings of the users, and besides, it is computationally more efficient than other methods proposed in the literature. Moreover, our method is able to discount the information that would be obtained adding to the system additional users with a systematically biased rating activity. 相似文献
14.
15.
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. 相似文献
16.
Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia. 相似文献
17.
The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions, each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying structure. For example, functional magnetic resonance imaging (fMRI) datasets comprise a time series of three-dimensional images, where each voxel in an image (roughly) reflects the activity of the brain structure(s)–located at the corresponding point in space–at the time the image was collected. FMRI data often exhibit strong spatial correlations, whereby nearby voxels behave similarly over time as the underlying brain structure modulates its activity. Here we develop topographic factor analysis (TFA), a technique that exploits spatial correlations in fMRI data to recover the underlying structure that the images reflect. Specifically, TFA casts each brain image as a weighted sum of spatial functions. The parameters of those spatial functions, which may be learned by applying TFA to an fMRI dataset, reveal the locations and sizes of the brain structures activated while the data were collected, as well as the interactions between those structures. 相似文献
18.
19.
It has been argued that pension funds should have limitations on their asset allocation, based on the risk profile of the different financial instruments available on the financial markets. This issue proves to be highly relevant at times of market crisis, when a regulation establishing limits to risk taking for pension funds could prevent defaults. In this paper we present a framework for evaluating the risk level of a single financial instrument or a portfolio. By assuming that the log asset returns can be described by a multifractional Brownian motion, we evaluate the risk using the time dependent Hurst parameter H(t) which models volatility. To provide a measure of the risk, we model the Hurst parameter with a random variable with mixture of beta distribution. We prove the efficacy of the methodology by implementing it on different risk level financial instruments and portfolios. 相似文献
20.
Suk Yun Kang Chang-Hwan Im Miseon Shim Fatta B. Nahab Jihye Park Do-Won Kim John Kakareka Nathanial Miletta Mark Hallett 《PloS one》2015,10(8)
BackgroundSelf-agency (SA) is a person’s feeling that his action was generated by himself. The neural substrates of SA have been investigated in many neuroimaging studies, but the functional connectivity of identified regions has rarely been investigated. The goal of this study is to investigate the neural network related to SA.MethodsSA of hand movements was modulated with virtual reality. We examined the cortical network relating to SA modulation with electroencephalography (EEG) power spectrum and phase coherence of alpha, beta, and gamma frequency bands in 16 right-handed, healthy volunteers.ResultsIn the alpha band, significant relative power changes and phase coherence of alpha band were associated with SA modulation. The relative power decrease over the central, bilateral parietal, and right temporal regions (C4, Pz, P3, P4, T6) became larger as participants more effectively controlled the virtual hand movements. The phase coherence of the alpha band within frontal areas (F7-FP2, F7-Fz) was directly related to changes in SA. The functional connectivity was lower as the participants felt that they could control their virtual hand. In the other frequency bands, significant phase coherences were observed in the frontal (or central) to parietal, temporal, and occipital regions during SA modulation (Fz-O1, F3-O1, Cz-O1, C3-T4L in beta band; FP1-T6, FP1-O2, F7-T4L, F8-Cz in gamma band).ConclusionsOur study suggests that alpha band activity may be the main neural oscillation of SA, which suggests that the neural network within the anterior frontal area may be important in the generation of SA. 相似文献