首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spermatogenesis is precisely controlled by sophisticated gene expression programs and is driven by epigenetic reprogramming, including histone modification alterations and histone-to-protamine transition. Nuclear receptor binding SET domain protein 2 (Nsd2) is the predominant histone methyltransferase catalyzing H3K36me2 and its role in male germ cell development remains elusive. Here, we report that NSD2 protein is abundant in spermatogenic cells. Conditional loss of Nsd2 in postnatal germ cells impaired fertility owing to apoptosis of spermatocytes and aberrant spermiogenesis. Nsd2 deficiency results in dysregulation of thousands of genes and remarkable reduction of both H3K36me2 and H3K36me3 in spermatogenic cells, with H3K36me2 occupancy correlating positively with expression of germline genes. Nsd2 deficiency leads to H4K16ac elevation in spermatogenic cells, probably through interaction between NSD2 and PSMA8, which regulates acetylated histone degradation. We further reveal that Nsd2 deficiency impairs EP300-induced H4K5/8ac, recognized by BRDT to mediate the eviction of histones. Accordingly, histones are largely retained in Nsd2-deficient spermatozoa. In addition, Nsd2 deficiency enhances expression of protamine genes, leading to increased protamine proteins in Nsd2-deficient spermatozoa. Our findings thus reveal a previously unappreciated role of the Nsd2-dependent chromatin remodeling during spermatogenesis and provide clues to the molecular mechanisms in epigenetic abnormalities impacting male reproductive health.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target.  相似文献   

11.
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.  相似文献   

12.
Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl states. However, the interplay among these distinct modification states is not well understood. Here we investigate the relationships between dimethyl and trimethyl modifications on lysine 9 of histone H3 (H3K9me2 and H3K9me3) in the adult Caenorhabditis elegans germ line. Simultaneous immunofluorescence reveals very different temporal/spatial localization patterns for H3K9me2 and H3K9me3. While H3K9me2 is enriched on unpaired sex chromosomes and undergoes dynamic changes as germ cells progress through meiotic prophase, we demonstrate here that H3K9me3 is not enriched on unpaired sex chromosomes and localizes to all chromosomes in all germ cells in adult hermaphrodites and until the primary spermatocyte stage in males. Moreover, high-copy transgene arrays carrying somatic-cell specific promoters are highly enriched for H3K9me3 (but not H3K9me2) and correlate with DAPI-faint chromatin domains. We further demonstrate that the H3K9me2 and H3K9me3 marks are acquired independently. MET-2, a member of the SETDB histone methyltransferase (HMTase) family, is required for all detectable germline H3K9me2 but is dispensable for H3K9me3 in adult germ cells. Conversely, we show that the HMTase MES-2, an E(z) homolog responsible for H3K27 methylation in adult germ cells, is required for much of the germline H3K9me3 but is dispensable for H3K9me2. Phenotypic analysis of met-2 mutants indicates that MET-2 is nonessential for fertility but inhibits ectopic germ cell proliferation and contributes to the fidelity of chromosome inheritance. Our demonstration of the differential localization and independent acquisition of H3K9me2 and H3K9me3 implies that the trimethyl modification of H3K9 is not built upon the dimethyl modification in this context. Further, these and other data support a model in which these two modifications function independently in adult C. elegans germ cells.  相似文献   

13.
14.
15.
16.
17.
Many developmental control genes contain paused RNA polymerase II (Pol II) and are thereby "poised" for rapid and synchronous activation in the early Drosophila embryo. Evidence is presented that Polycomb group (PcG) repressors can influence paused Pol II. ChIP-Seq and GRO-Seq assays were used to determine the genome-wide distributions of Pol II, H3K27me3, and H3K4me3 in extra sex combs (esc) mutant embryos. ESC is a key component of the Polycomb repressive complex 2 (PRC2), which mediates H3K27me3 modification. Enhanced Pol II occupancy is observed for thousands of genes in esc mutant embryos, including genes not directly regulated by PRC2. Thus, it would appear that silent genes lacking promoter-associated paused Pol II in wild-type embryos are converted into "poised" genes with paused Pol II in esc mutants. We suggest that this conversion of silent genes into poised genes might render differentiated cell types susceptible to switches in identity in PcG mutants.  相似文献   

18.
19.
The nuclear receptor-binding SET domain 3 (NSD3) catalyzes methylation of histone H3 at lysine 36 (H3K36), and promotes malignant transformation and progression of human cancer. Its expression, potential functions and underlying mechanisms in pancreatic cancer are studied. Bioinformatics studies and results from local human tissues show that NSD3 is upregulated in human pancreatic cancer tissues, which is correlated with poor overall survival. In primary and established pancreatic cancer cells, NSD3 silencing (by shRNAs) or CRISPR/Cas9-induced NSD3 knockout potently inhibited cell proliferation, migration and invasion, while provoking cell cycle arrest and apoptosis. Conversely, ectopic expression of NSD3-T1232A mutation significantly accelerated proliferation, migration, and invasion of pancreatic cancer cells. H3K36 dimethylation, expression of NSD3-dependent genes (Prkaa2, Myc, Irgm1, Adam12, and Notch3), and mTOR activation (S6K1 phosphorylation) were largely inhibited by NSD3 silencing or knockout. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD3 shRNA potently inhibited pancreatic cancer xenograft growth in nude mice. These results suggest that elevated NSD3 could be an important driver for the malignant progression of pancreatic cancer.Subject terms: Pancreatic cancer, Oncogenes  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号