首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Our recent studies revealed that focal alterations in breast myoepithelial cell layers significantly impact the biological presentation of associated epithelial cells. As pregnancy-associated breast cancer (PABC) has a significantly more aggressive clinical course and mortality rate than other forms of breast malignancies, our current study compared tumor suppressor expression in myoepithelial cells of PABC and non-PABC, to determine whether myoepithelial cells of PABC may have aberrant expression of tumor suppressors. Tissue sections from 20 cases of PABC and 20 cases of stage, grade, and age matched non-PABC were subjected to immunohistochemistry, and the expression of tumor suppressor maspin, p63, and Wilms' tumor 1 (WT-1) in calponin positive myoepithelial cells were statistically compared. The expression profiles of maspin, p63, and WT-1 in myoepithelial cells of all ducts encountered were similar between PABC and non-PABC. PABC, however, displayed several unique alterations in terminal duct and lobular units (TDLU), acini, and associated tumor tissues that were not seen in those of non-PABC, which included the absence of p63 and WT-1 expression in a vast majority of the myoepithelial cells, cytoplasmic localization of p63 in the entire epithelial cell population of some lobules, and substantially increasing WT-1 expression in vascular structures of the invasive cancer component. All or nearly all epithelial cells with aberrant p63 and WT-1 expression lacked the expression of estrogen receptor and progesterone receptor, whereas they had a substantially higher proliferation index than their counterparts with p63 and WT-1 expression. Hyperplastic cells with cytoplasmic p63 expression often adjacent to, and share a similar immunohistochemical and cytological profile with, invasive cancer cells. To our best knowledge, our main finings have not been previously reported. Our findings suggest that the functional status of myoepithelial cells may be significantly associated with tumor aggressiveness and invasiveness.  相似文献   

2.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

3.
Disease aggressiveness remains a critical factor to the progression of prostate cancer. Transformation of epithelial cells to mesenchymal lineage, associated with the loss of E-cadherin, offers significant invasive potential and migration capability. Recently, Special AT-rich binding protein (SATB1) has been linked to tumor progression. SATB1 is a cell-type restricted nuclear protein, which functions as a tissue-specific organizer of DNA sequences during cellular differentiation. Our results demonstrate that SATB1 plays significant role in prostate tumor invasion and migration and its nuclear localization correlates with disease aggressiveness. Clinical specimen analysis showed that SATB1 was predominantly expressed in the nucleus of high-grade tumors compared to low-grade tumor and benign tissue. A progressive increase in the nuclear levels of SATB1 was observed in cancer tissues compared to benign specimens. Similarly, SATB1 protein levels were higher in a number of prostate cancer cells viz. HPV-CA-10, DU145, DUPro, PC-3, PC-3M, LNCaP and C4-2B, compared to non-tumorigenic PZ-HPV-7 cells. Nuclear expression of SATB1 was higher in biologically aggressive subclones of prostate cancer cells with their respective parental cell lines. Furthermore, ectopic SATB1 transfection conferred increased cell motility and invasiveness in immortalized human prostate epithelial PZ-HPV-7 cells which correlated with the loss of E-cadherin expression. Consequently, knockdown of SATB1 in highly aggressive human prostate cancer PC-3M cells inhibited invasiveness and tumor growth in vivo along with increase in E-cadherin protein expression. Our findings demonstrate that SATB1 has ability to promote prostate cancer aggressiveness through epithelial-mesenchymal transition.  相似文献   

4.
5.
SUMMARY: Gene copy number and DNA methylation alterations are key regulators of gene expression in cancer. Accordingly, genes that show simultaneous methylation, copy number and expression alterations are likely to have a key role in tumor progression. We have implemented a novel software package (CNAmet) for integrative analysis of high-throughput copy number, DNA methylation and gene expression data. To demonstrate the utility of CNAmet, we use copy number, DNA methylation and gene expression data from 50 glioblastoma multiforme and 188 ovarian cancer primary tumor samples. Our results reveal a synergistic effect of DNA methylation and copy number alterations on gene expression for several known oncogenes as well as novel candidate oncogenes. AVAILABILITY: CNAmet R-package and user guide are freely available under GNU General Public License at http://csbi.ltdk.helsinki.fi/CNAmet.  相似文献   

6.
Fan B  Dachrut S  Coral H  Yuen ST  Chu KM  Law S  Zhang L  Ji J  Leung SY  Chen X 《PloS one》2012,7(4):e29824

Background

Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level.

Principal Findings

We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis.

Conclusions

This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.  相似文献   

7.

Background

DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions.

Methods

We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases.

Results

Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.

Conclusion

These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.  相似文献   

8.
9.
The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.  相似文献   

10.
Analysis of candidate genes for prostate cancer   总被引:1,自引:0,他引:1  
Considerable evidence demonstrates that genetic factors are important in the development and aggressiveness of prostate cancer. To identify genetic variants that predispose to prostate cancer we tested candidate SNPs from genomic regions that show linkage to prostate cancer susceptibility and/or aggressiveness, as well as genes that show a significant difference in mRNA expression level between tumor and normal tissue. Cases had histologically verified prostate cancer. Controls were at least 65 years old, never registered a PSA above 2.5 ng/ml, always had digital rectal examinations that were not suspicious for cancer, and have no known family history of prostate cancer. Thirty-nine coding SNPs and nine non-coding SNPs were tested in up to 590 cases and 556 controls resulting in over 40,000 SNP genotypes. Significant differences in allele frequencies between cases and controls were observed for ID3 (inhibitor of DNA binding), p = 0.05, HPN (hepsin), p = 0.009, BCAS1 (breast carcinoma amplified sequence 1), p = 0.007, CAV2 (caveolin 2), p = 0.007, EMP3 (epithelial membrane protein 3), p < 0.0001, and MLH1 (mutL homolog 1), p < 0.0001. SNPs in three of these genes (BCAS1, EMP3 and MLH1) remained significant in an age-matched subsample.  相似文献   

11.
12.

Background

To elucidate gene expression associated with copy number changes, we performed a genome-wide copy number and expression microarray analysis of 25 pairs of gastric tissues.

Methods

We applied laser capture microdissection (LCM) to obtain samples for microarray experiments and profiled DNA copy number and gene expression using 244K CGH Microarray and Human Exon 1.0 ST Microarray.

Results

Obviously, gain at 8q was detected at the highest frequency (70%) and 20q at the second (63%). We also identified molecular genetic divergences for different TNM-stages or histological subtypes of gastric cancers. Interestingly, the C20orf11 amplification and gain at 20q13.33 almost separated moderately differentiated (MD) gastric cancers from poorly differentiated (PD) type. A set of 163 genes showing the correlations between gene copy number and expression was selected and the identified genes were able to discriminate matched adjacent noncancerous samples from gastric cancer samples in an unsupervised two-way hierarchical clustering. Quantitative RT-PCR analysis for 4 genes (C20orf11, XPO5, PUF60, and PLOD3) of the 163 genes validated the microarray results. Notably, some candidate genes (MCM4 and YWHAZ) and its adjacent genes such as PRKDC, UBE2V2, ANKRD46, ZNF706, and GRHL2, were concordantly deregulated by genomic aberrations.

Conclusions

Taken together, our results reveal diverse chromosomal region alterations for different TNM-stages or histological subtypes of gastric cancers, which is helpful in researching clinicopathological classification, and highlight several interesting genes as potential biomarkers for gastric cancer.  相似文献   

13.
Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.  相似文献   

14.
15.
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.  相似文献   

16.
Exposure to genotoxic carcinogens in tobacco smoke is a major cause of lung cancer. However, the effect this has on DNA copy number and genomic stability during lung carcinogenesis is unclear. Here we used bacterial artificial chromosome array-based comparative genomic hybridization to examine the effect of NNK, a potent human lung carcinogen present in tobacco smoke, on the major genomic changes occurring during mouse lung adenocarcinogenesis. Observed were significantly more gross chromosomal changes in NNK-induced tumors compared with the spontaneous tumors. An average of 5.6 chromosomes were affected by large-scale changes in DNA copy number per NNK-induced tumor compared with only 2.0 in spontaneous lung tumors (p = 0.017). Further analysis showed that gains on chromosomes 6 and 8, and losses on chromosomes 11 and 14 were more common in NNK-induced tumors (p 相似文献   

17.
High-grade serous ovarian cancer (HGSOC) is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. We performed exome analyses of tumors and matched normal tissues of 34 Japanese patients with HGSOC and observed a substantial number of patients without TP53 mutation (24%, 8/34). Combined with the results of copy number variation analyses, we subdivided the 34 patients with HGSOC into subtypes designated ST1 and ST2. ST1 showed intact p53 pathway and was characterized by fewer somatic mutations and copy number alterations. In contrast, the p53 pathway was impaired in ST2, which is characterized by abundant somatic mutations and copy number alterations. Gene expression profiles combined with analyses using the Gene Ontology resource indicate the involvement of specific biological processes (mitosis and DNA helicase) that are relevant to genomic stability and cancer etiology. In particular we demonstrate the presence of a novel subtype of patients with HGSOC that is characterized by an intact p53 pathway, with limited genomic alterations and specific gene expression profiles.  相似文献   

18.
The DNA content of ductal breast carcinomas of varying histological grade was measured using static image cytometry and correlated with pS2 expression in the tumour cells. Our study was performed on imprint of surgical biopsies of 60 women with ductal breast cancer. A statistically significant difference was observed between pS2+ expression and grade of malignancy ( P <0.001). The percentage of euploid tumours significantly decreased from grade I to grade II to grade III ( P =0.01). The percentage of aneuploid tumours increased from pS2+ to pS2 breast tumours ( P <0.001). These findings may be indicative of pS2 and DNA ploidy alterations and tumour aggressiveness.  相似文献   

19.
The present study was aimed at discovering DNA copy number alterations (CNAs) involved in the carcinogenesis of stomach and at understanding their clinicopathological significances in the Korean population. DNA copy numbers were analyzed using Agilent 244K or 400K array comparative genomic hybridization (aCGH) in fresh-frozen tumor and matched normal tissues from 40 gastric cancer patients. Some of the detected CNA regions were validated using multiplex ligation-dependent probe amplification (MLPA) in six of the 40 patients and customized Agilent 60K aCGH in an independent set of 48 gastric cancers. The mRNA levels of genes at common CNA regions were analyzed using quantitative real-time PCR. Copy number gains were more common than losses across the entire genome in tumor tissues compared to matched normal tissues. The mean number of alterations per case was 64 for gains and 40 for losses, and the median aberration length was 44016 bp for gains and 4732 bp for losses. Copy number gains were frequently detected at 7p22.1 (20%), 8q24.21 (27%–30%), 8q24.3 (22%–48%), 13q34 (20%–31%), and 20q11-q13 (25%–30%), and losses at 3p14.2 (43%), 4q35.2 (27%), 6q26 (23%), and 17p13.3 (20%–23%). CNAs at 7p22.1, 13q34, and 17p13.3 have not been reported in other populations. Most of the copy number losses were associated with down-regulation of mRNA levels, but the correlation between copy number gains and mRNA expression levels varied in a gene-dependent manner. In addition, copy number gains tended to occur more commonly in intestinal-type cancers than in diffuse-type cancers. In conclusion, the present study suggests that copy number gains at 8q24 and 20q11-q13 and losses at 3p14.2 may be common events in gastric cancer but CNAs at 7p22.1, 13q34, and 17p13.3 may be Korean-specific.  相似文献   

20.
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号