首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LFA-1 regulates T cell activation and signal transduction through the immunological synapse. T cell receptor (TCR) stimulation rapidly activates LFA-1, which provides unique LFA-1-dependent signals to promote T cell activation. However, the detailed molecular pathways that regulate these processes and the precise mechanism by which LFA-1 contributes to TCR activation remain unclear. We found LFA-1 directly participates in Erk1/2 signaling upon TCR stimulation in CD8+ T cells. The presence of LFA-1, not ligand binding, is required for the TCR-mediated Erk1/2 signal pathway. LFA-1-deficient T cells have defects in sustained Erk1/2 signaling and TCR/CD3 clustering, which subsequently prevents MTOC reorientation, cell cycle progression, and mitosis. LFA-1 regulates the TCR-mediated Erk1/2 signal pathway in the context of immunological synapse for recruitment and amplification of the Erk1/2 signal. In addition, LFA-1 ligation with ICAM-1 generates an additional Erk1/2 signal, which synergizes with the existing TCR-mediated Erk1/2 signal to enhance T cell activation. Thus, LFA-1 contributes to CD8+ T cell activation through two distinct signal pathways. We demonstrated that the function of LFA-1 is to enhance TCR signaling through the immunological synapse and deliver distinct signals in CD8+ T cell activation.Leukocyte function-associated antigen-1 (LFA-1)2 plays an important role in regulating leukocyte adhesion and T cell activation (1, 2). LFA-1 consists of the αL (CD11a) and β2 (CD18) subunits. The ligands for LFA-1 include intercellular adhesion molecular-1 (ICAM-1), ICAM-2, and ICAM-3 (3). LFA-1 participates in the formation of the immunological synapse, which regulates T cell activation synergistically with TCR engagement. The immunological synapse is a specialized structure that forms between the T cell and the APC or target cell (1, 2, 4). The function of the immunological synapse is to facilitate T cell activation and signal transduction. Mice deficient in LFA-1 (CD11a KO) have defects in leukocyte adhesion, lymphocyte proliferation, and tumor rejection (57).Upon TCR stimulation, the nascent immunological synapse is initiated with surface receptor clustering and cytoskeleton rearrangement, then followed by mature synapse formation after prolonged stimulation (8, 9). In the mature immunological synapse, LFA-1 forms a ring-like pattern at the peripheral supramolecular activation cluster (pSMAC), which surrounds the central supramolecular activation cluster (cSMAC) containing TCR/CD3/lipid rafts (10, 11). The structure of the mature synapse is stable for hours and thought to be important for sustained TCR signaling (1214). LFA-1 functions via pSMAC to stabilize the cSMAC and is associated with the induction of T cell proliferation, cytokine production, and lytic granule migration toward cSMAC (1, 15). Although LFA-1-containing pSMAC is self-evident in lipid bilayer systems and cell lines, whether it is required for T cell activation under physiological conditions remains controversial (15).TCR stimulation rapidly induces the functional activity of LFA-1, which then provides unique LFA-1-dependent signals to promote T cell activation (16). The process can be divided into two steps. First, the intracellular signaling from TCR regulating LFA-1 activation is known as “inside-out” signaling; second, activated LFA-1, as a signaling receptor, can feedback to transduce the intracellular signal, the “outside-in” signaling (1, 17). It is widely accepted that TCR stimulation activates LFA-1 through affinity and/or avidity regulation, as supported by increased adhesion to ICAM-1 and pSMAC formation (16, 17). The “inside-out” signal process has been investigated extensively (1821). The TCR proximal signal molecules, Lck, ZAP-70, and PI3K, are known to be important for TCR signaling to LFA-1 activation (2226). The molecular mechanisms of LFA-1 “outside-in” signaling have been explored only recently. Perez et al. (27) have demonstrated that LFA-1 and ICAM-1 ligation activates the downstream Erk1/2 MAPK signaling pathway upon TCR stimulation, which ultimately leads to the qualitative modulation of CD4+ T cell activation through distinct LFA-1-dependent signals. Another recent study provided compelling evidence that LFA-1 reshapes the Ras MAPK pathway downstream of TCR (28). However, the detailed molecular pathways that regulate these processes are poorly defined. Especially, the evidence in support of a distinctive role for LFA-1 in the T cell signaling pathway has lagged behind; whether the function of LFA-1 is to enhance TCR signaling through the immunological synapse and/or deliver distinct signal in T cell activation and whether LFA-1 is indispensable for or merely assists the existing TCR signal pathway. Furthermore, whether and how TCR proximal signal molecules regulate LFA-1 function remains unknown. Further studies are required to understand the LFA-1 and TCR signaling network.In this study, we found that LFA-1 directly participates in CD8+ T cell activation. Upon TCR stimulation, LFA-1 regulates both TCR-mediated and LFA-1-mediated Erk1/2 signal pathways. First, the presence of LFA-1, not ligand binding, is required for the sustained Erk1/2 signaling and TCR/CD3 clustering on the surface of CD8+ T cells, subsequently leading to MTOC reorientation, cell cycle progression, and mitosis. Second, LFA-1 ligation with ICAM-1 enhances Erk1/2 signaling, which promotes T cell activation with increased IL-2 production and cell proliferation. This LFA-1-mediated Erk1/2 signal pathway integrates with the existing TCR-mediated Erk1/2 signal pathway to enhance T cell activation.  相似文献   

2.
3.
4.
Due to its critical role in NK cell differentiation and CD8+ T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4+ T cells. The increased levels of IL-15 found in several CD4+ T cell-driven (auto-) immune diseases prompted us to examine how IL-15 influences murine CD4+ T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4+ and CD8+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4+ T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15Rα was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15Rβ, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4+ T cell suppression by a gradually expanding CD25HighCD4+ T cell subset that expresses Foxp3 and originates from CD4+CD25+ Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology.  相似文献   

5.

Background

Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice.

Methods and Findings

Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice.

Conclusions

Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes.  相似文献   

6.
7.
The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras −/−). An examination of the lymphoid organs of Rras −/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras −/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras −/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras −/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras −/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras −/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response.  相似文献   

8.
9.
The relative roles of CD4+ and CD8+ T cells in contact hypersensitivity responses have not been fully solved, and remain an important question. Using an adoptive transfer model, we investigated the role of the respective T cell subset. Magnetic bead separated CD4+ and CD8+ T cells from oxazolone sensitized C57BL/6 mice were transferred into RAG-/- mice, followed by hapten challenge and analysis of inflammatory parameters at 24 hours post exposure. The CD4+ T cell recipient mice developed partial contact hypersensitivity responses to oxazolone. CD8+ T cells caused significant amplification of the response in recipients of both CD4+ and CD8+ T cells including ear swelling, type 1 inflammatory mediators, and cell killing. Unexpectedly, CD8+ T cells were not sufficient to mediate contact hypersensitivity, although abundantly present in the lymph nodes in the CD8+ T cell reconstituted mice. There were no signs of inflammation at the site of hapten exposure, indicating impaired recruitment of CD8+ T cells in the absence of CD4+ T cells. These data show that CD4+ T cells mediate contact hypersensitivity to oxazolone, but CD8+ T cells contribute with the most potent effector mechanisms. Moreover, our results suggest that CD4+ T cell function is required for the mobilization of CD8+ effector T cells to the site of hapten exposure. The results shed new light on the relative importance of CD4+ and CD8+ T cells during the effector phase of contact hypersensitivity.  相似文献   

10.
11.
For 3 decades, the view of MHCII-dependent antigen presentation has been completely dominated by peptide antigens despite our 2004 discovery in which MHCII was shown to present processed fragments of zwitterionic capsular polysaccharides to T cells. Published findings further demonstrate that polysaccharide A (PSA) from the capsule of Bacteroides fragilis is a potent activator of CD4+ T cells and that these T cells have important biological functions, especially in the maintenance of immunological homeostasis. However, little is known about the nature of T cell recognition of the polysaccharide-MHCII complex or the phenotype of the resulting activated cells. Here, we use next-generation sequencing of the αβT cell receptor of CD4+ T cells from mice stimulated with PSA in comparison with protein antigen simulation and non-immunized controls and found that PSA immunization induced clonal expansion of a small subset of suppressive CD4+CD45RBlow effector/memory T cells. Moreover, the sequences of the complementarity-determining region 3 (CDR3) loop from top clones indicate a lack of specific variable β and joining region use and average CDR3 loop length. There was also a preference for a zwitterionic motif within the CDR3 loop sequences, aligning well with the known requirement for a similar motif within PSA to enable T cell activation. These data support a model in which PSA, and possibly other T cell-dependent polysaccharide antigens, elicits a clonal and therefore specific CD4+ T cell response often characterized by pairing dual-charged CDR3 loop sequences with dual-charged PSA.  相似文献   

12.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H2O2 on an antigen-specific CD8+ T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8+ T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8+ T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8+ T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8+ T cell pool. During chronic viral infection, increased antigen-specific CD8+ T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8+ T cell expansion, secondary memory generation, and immunopathology.  相似文献   

13.

Background

Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered.

Methods

C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival.

Results

Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003). Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury.

Conclusions

Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on the models used.  相似文献   

14.
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.  相似文献   

15.
CD28 is required for maximal proliferation of CD4(+) T cells stimulated through their TCRs. Two sites within the cytoplasmic tail of CD28, a YMNM sequence that recruits PI3K and activates NF-κB and a PYAP sequence that recruits Lck, are candidates as transducers of the signals responsible for these biological effects. We tested this proposition by tracking polyclonal peptide:MHCII-specific CD4(+) T cells in vivo in mice with mutations in these sites. Mice lacking CD28 or its cytoplasmic tail had the same number of naive T cells specific for a peptide:MHCII ligand as wild-type mice. However, the mutant cells produced one tenth as many effector and memory cells as wild-type T cells after infection with bacteria expressing the antigenic peptide. Remarkably, T cells with a mutated PI3K binding site, a mutated PYAP site, or both mutations proliferated to the same extent as wild-type T cells. The only observed defect was that T cells with a mutated PYAP or Y170F site proliferated even more weakly in response to peptide without adjuvant than wild-type T cells. These results show that CD28 enhances T cell proliferation during bacterial infection by signals emanating from undiscovered sites in the cytoplasmic tail.  相似文献   

16.
The vitamin A metabolite retinoic acid (RA) has potent immunomodulatory properties that affect T cell differentiation, migration and function. However, the precise role of RA metabolism in T cells remains unclear. Catabolism of RA is mediated by the Cyp26 family of cytochrome P450 oxidases. We examined the role of Cyp26b1, the T cell-specific family member, in CD4+ T cells. Mice with a conditional knockout of Cyp26b1 in T cells (Cyp26b1 −/− mice) displayed normal lymphoid development but showed an increased sensitivity to serum retinoids, which led to increased differentiation under both inducible regulatory T (iTreg) cell- and TH17 cell-polarizing conditions in vitro. Further, Cyp26b1 expression was differentially regulated in iTreg and TH17 cells. Transfer of naïve Cyp26b1 −/− CD4+ T cells into Rag1 −/− mice resulted in significantly reduced disease in a model of T cell-dependent colitis. Our results show that T cell-specific expression of Cyp26b1 is required for the development of T cell-mediated colitis and may be applicable to the development of therapeutics that target Cyp26b1 for the treatment of inflammatory bowel disease.  相似文献   

17.
Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection.  相似文献   

18.
19.
Immune responses and the components of protective immunity following norovirus infection in humans are poorly understood. Although antibody responses following norovirus infection have been partially characterized, T cell responses in humans remain largely undefined. In contrast, T cells have been shown to be essential for viral clearance of mouse norovirus (MNV) infection. In this paper, we demonstrate that CD4+ T cells secrete gamma interferon (IFN-γ) in response to stimulation with MNV virus-like particles (VLPs) after MNV infection, supporting earlier reports for norovirus-infected mice and humans. Utilizing this model, we immunized mice with alphavirus vectors (Venezuelan equine encephalitis [VEE] virus replicon particles [VRPs]) expressing Norwalk virus (NV) or Farmington Hills virus (FH) virus-like particles to evaluate T cell epitopes shared between human norovirus strains. Stimulation of splenocytes from norovirus VRP-immunized mice with overlapping peptides from complete libraries of the NV or FH capsid proteins revealed specific amino acid sequences containing T cell epitopes that were conserved within genoclusters and genogroups. Immunization with heterologous norovirus VRPs resulted in specific cross-reactive IFN-γ secretion profiles following stimulation with NV and FH peptides in the mouse. Identification of unique strain-specific and cross-reactive epitopes may provide insight into homologous and heterologous T cell-mediated norovirus immunity and provide a platform for the study of norovirus-induced cellular immunity in humans.Norovirus infection is characterized by the induction of both humoral and cellular immune responses. Humoral immunity in humans following norovirus infection has been described in detail for a limited number of norovirus strains (8, 10, 12, 17, 18, 29). Humans mount specific antibody responses to the infecting strain, which bear complex patterns of unique and cross-reactive, yet undefined, epitopes to other strains within or across genogroups (23, 29). Short-term immunity following homologous norovirus challenge has been documented, but long-term immunity remains controversial (16, 25). Furthermore, no studies to date have demonstrated cross-protection following heterologous norovirus challenge (30). While some susceptible individuals can become reinfected with multiple norovirus strains throughout their lifetimes, the mechanism of short-term protection and the impact of previous exposures on susceptibility to reinfection remain largely unknown.The role of T cells in controlling norovirus infection also remains largely undefined. A single comprehensive study detailing immune responses in genogroup II Snow Mountain virus-infected individuals revealed that CD4+ TH1 cells can be stimulated by virus-like particles (VLPs) to secrete gamma interferon (IFN-γ) and interleukin-2 (IL-2) (17). Furthermore, heterologous stimulation from VLPs derived from different norovirus strains within but not across genogroups also induced significant IFN-γ secretion compared to that for uninfected individuals (17). A follow-up study with genogroup I Norwalk virus (NV)-infected individuals confirmed high T cell cross-reactivity within a genogroup as measured by IFN-γ secretion (18). Further, vaccination of humans with VLPs also results in short-term IFN-γ production (27).Because norovirus infection studies in humans are confounded by previous exposure histories, the use of inbred mice maintained in pathogen-free environments allows for the study of norovirus immune responses in a naive background. While mice cannot be infected with human norovirus strains, VLP vaccines expressing norovirus structural proteins induce immune responses that can be measured and studied (14, 20). Mice immunized orally or intranasally with VLP vaccines in the presence of adjuvant similarly induced CD4+ IFN-γ responses in Peyer''s patches and spleen (22, 26). Induction of CD8+ T cells and secretion of the TH2 cytokine IL-4 were separately noted; however, it is unclear if these responses were influenced by VLPs or the coadministered vaccine adjuvants (22, 26). Further, coadministration of alphavirus adjuvant particles with multivalent norovirus VLP vaccine, including or excluding mouse norovirus (MNV) VLPs, resulted in significantly reduced MNV loads following MNV challenge (21). Multivalent VLP vaccines induced robust receptor-blocking antibody responses to heterologous human strains not included in the vaccine composition (20, 21). Moreover, natural infection with MNV supports a role for T cell immunity in viral clearance and protection (5).To advance our understanding of the scope of the cellular immune response within and between strains, we immunized mice with Venezuelan equine encephalitis (VEE) virus replicon particles (VRPs) expressing norovirus VLPs derived from the Norwalk virus (GI.1-1968) (1) or Farmington Hills virus (FH) (GII.4-2002) (19) strains and analyzed splenocytes for cytokine secretion, epitope identification, and heterologous stimulation. The data presented here indicate that the major capsid proteins of genogroup I and II noroviruses contain robust T cell epitopes that cross-react with related strains in the mouse yet also occur within regions of known variation, especially among the GII.4 noroviruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号