首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray.

Results

Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI.

Conclusion

Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.  相似文献   

2.
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.  相似文献   

3.
A nested PCR was developed for detection of the Clostridium botulinum type C1 toxin gene in sediments collected from wetlands where avian botulism outbreaks had or had not occurred. The C1 toxin gene was detected in 16 of 18 sites, demonstrating both the ubiquitous distribution of C. botulinum type C in wetland sediments and the sensitivity of the detection assay.  相似文献   

4.
Between 1978 and 2008, 13 avian botulism outbreaks were recorded in the wetlands of Mancha Húmeda (central Spain). These outbreaks caused the deaths of around 20,000 birds from over 50 species, including globally endangered white-headed ducks (Oxyura leucoceophala). Here, a significant association was found between the number of dead birds recorded in each botulism outbreak and the mean temperature in July (always >26°C). The presence of Clostridium botulinum type C/D in wetland sediments was detected by real-time PCR (quantitative PCR [qPCR]) in 5.8% of 207 samples collected between 2005 and 2008. Low concentrations of Cl and high organic matter content in sediments were significantly associated with the presence of C. botulinum. Seventy-five digestive tracts of birds found dead during botulism outbreaks were analyzed; C. botulinum was present in 38.7% of them. The prevalence of C. botulinum was 18.2% (n = 22 pools) in aquatic invertebrates (Chironomidae and Corixidae families) and 33.3% (n = 18 pools) in necrophagous invertebrates (Sarcophagidae and Calliphoridae families), including two pools of adult necrophagous flies collected around bird carcasses. The presence of the bacteria in the adult fly form opens up new perspectives in the epidemiology of avian botulism, since these flies may be transporting C. botulinum from one carcass to another.  相似文献   

5.
Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most potent biological substances known to mankind. BoNTs are the agents responsible for botulism, a rare condition affecting the neuromuscular junction and causing a spectrum of diseases ranging from mild cranial nerve palsies to acute respiratory failure and death. BoNTs are a potential biowarfare threat and a public health hazard, since outbreaks of foodborne botulism are caused by the ingestion of preformed BoNTs in food. Currently, mathematical models relating to the hazards associated with C. botulinum, which are largely empirical, make major contributions to botulinum risk assessment. Evaluated using statistical techniques, these models simulate the response of the bacterium to environmental conditions. Though empirical models have been successfully incorporated into risk assessments to support food safety decision making, this process includes significant uncertainties so that relevant decision making is frequently conservative and inflexible. Progression involves encoding into the models cellular processes at a molecular level, especially the details of the genetic and molecular machinery. This addition drives the connection between biological mechanisms and botulism risk assessment and hazard management strategies. This review brings together elements currently described in the literature that will be useful in building quantitative models of C. botulinum neurotoxin production. Subsequently, it outlines how the established form of modeling could be extended to include these new elements. Ultimately, this can offer further contributions to risk assessments to support food safety decision making.  相似文献   

6.
The mouse lethality test is the most sensitive method for confirming the diagnosis of infant botulism. Both Clostridium difficile and Clostridium botulinum produce heat-labile toxins which are lethal for mice and can be found in the feces of infants. These two toxins can be distinguished from one another in this assay when both are present in the same fecal specimen because they appear to be immunologically distinct toxins.  相似文献   

7.
Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.  相似文献   

8.
9.
Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.  相似文献   

10.

Background

Thailand has had several foodborne outbreaks of botulism, one of the biggest being in 2006 when laboratory investigations identified the etiologic agent as Clostridium botulinum type A. Identification of the etiologic agent from outbreak samples is laborious using conventional microbiological methods and the neurotoxin mouse bioassay. Advances in molecular techniques have added enormous information regarding the etiology of outbreaks and characterization of isolates. We applied these methods in three outbreaks of botulism in Thailand in 2010.

Methodology/Principal Findings

A total of 19 cases were involved (seven each in Lampang and Saraburi and five in Maehongson provinces). The first outbreak in Lampang province in April 2010 was associated with C. botulinum type F, which was detected by conventional methods. Outbreaks in Saraburi and Maehongson provinces occurred in May and December were due to C. botulinum type A1(B) and B that were identified by conventional methods and molecular techniques, respectively. The result of phylogenetic sequence analysis showed that C. botulinum type A1(B) strain Saraburi 2010 was close to strain Iwate 2007. Molecular analysis of the third outbreak in Maehongson province showed C. botulinum type B8, which was different from B1–B7 subtype. The nontoxic component genes of strain Maehongson 2010 revealed that ha33, ha17 and botR genes were close to strain Okra (B1) while ha70 and ntnh genes were close to strain 111 (B2).

Conclusion/Significance

This study demonstrates the utility of molecular genotyping of C. botulinum and how it contributes to our understanding the epidemiology and variation of boNT gene. Thus, the recent botulism outbreaks in Thailand were induced by various C. botulinum types.  相似文献   

11.
Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography–Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.  相似文献   

12.
Comparative genomic hybridization analysis of 32 Nordic group I Clostridium botulinum type B strains isolated from various sources revealed two homogeneous clusters, clusters BI and BII. The type B strains differed from reference strain ATCC 3502 by 413 coding sequence (CDS) probes, sharing 88% of all the ATCC 3502 genes represented on the microarray. The two Nordic type B clusters differed from each other by their response to 145 CDS probes related mainly to transport and binding, adaptive mechanisms, fatty acid biosynthesis, the cell membranes, bacteriophages, and transposon-related elements. The most prominent differences between the two clusters were related to resistance to toxic compounds frequently found in the environment, such as arsenic and cadmium, reflecting different adaptive responses in the evolution of the two clusters. Other relatively variable CDS groups were related to surface structures and the gram-positive cell wall, suggesting that the two clusters possess different antigenic properties. All the type B strains carried CDSs putatively related to capsule formation, which may play a role in adaptation to different environmental and clinical niches. Sequencing showed that representative strains of the two type B clusters both carried subtype B2 neurotoxin genes. As many of the type B strains studied have been isolated from foods or associated with botulism, it is expected that the two group I C. botulinum type B clusters present a public health hazard in Nordic countries. Knowing the genetic and physiological markers of these clusters will assist in targeting control measures against these pathogens.Clostridium botulinum produces a potent neurotoxin during its growth. The toxin causes a potentially lethal paralytic disease, botulism, in humans and animals. The classical food-borne botulism follows the consumption of toxin-containing food or drink, while infant and adult intestinal botulism results from in vivo spore germination, outgrowth, and toxin production in the gut. Apart from attenuated intestinal microbial population, other factors affecting the colonization of C. botulinum in the intestinal forms of botulism are not known.Based on their physiology and genetic background, C. botulinum strains are divided into groups I to IV (13). Strains of groups I and II are associated with human disease. Group I strains produce neurotoxin serotypes A, B, and/or F, while the group II strains produce type B, E, or F toxin. Physiologically, groups I and II differ markedly from each other as well as from groups III and IV. Genomic analysis of group I and II C. botulinum strains by 16S rrn sequencing (13), ribotyping (10), and amplified fragment length polymorphism (11, 15, 16) is consistent with the divergent physiologies of the two groups (18).Nordic C. botulinum group I strains show a remarkable homogeneity (15, 20, 21, 23). In a large pulsed-field gel electrophoresis (PFGE) analysis, the majority of group I strains isolated from various sources from Finland, Norway, and Denmark formed type B neurotoxin and clustered into two large groups, with the members of each group sharing identical or nearly identical restriction patterns (20, 23). Many of these strains were recovered from honey for human consumption (23), and one strain was related to an infant botulism case (22). Apart from a recent study showing that strains of the two type B clusters, further referred to as clusters BI and BII, differ in their abilities to grow at extreme temperatures (12), the physiological, epidemiological, and genetic markers of the two clusters are not known. An understanding of such traits will assist in designing control measures against these potential food- and environment-borne pathogens.The availability of group I C. botulinum genome sequences has enabled the construction of whole-genome DNA microarrays and a comprehensive genomic analysis of C. botulinum strains (26, 27). In this paper, we describe a comparative genomic hybridization (CGH) analysis of 32 Nordic group I C. botulinum type B cluster BI or BII strains with a DNA microarray based on the protein-coding sequences (CDS) in the ATCC 3502 genome. Strains within each cluster showed no substantial variation. Furthermore, strains belonging to the two clusters differed by their responses to 145 CDS probes, suggesting differential resistance to toxic compounds and a relatively large antigenic variability. Sequencing of botB in a representative cluster BI strain and a representative cluster BII strain revealed subtype B2 neurotoxin genes in both strains.  相似文献   

13.
The germination of spores of a neurotoxigenic Clostridium butyricum strain (BL 6340), which was isolated from infant botulism in Italy, and that of a non-toxigenic C. butyricum type strain (NCIB 7423) were studied. The spores of BL 6340 strain were killed at 80 C for 10 min, and required the mixture of L-alanine, L-lactate, glucose and bicarbonate for their optimal germination. These characteristics are the same as those of Clostridium botulinum type E strain, but different from those of NCIB 7423 strain. In a hybridization test, however, the labeled DNAs extracted from NCIB 7423 strain highly (98%) hybridized to the DNAs of the BL 6340 strain, but little (45%) to the DNAs of C. botulinum type E strain. The biochemical properties of the BL 6340 and NCIB 7423 strains were identical, but different from those of C. botulinum type E. These data confirmed that the BL 6340 strain belongs to C. butyricum species, but that only its characteristics of toxin production, its minimum requirements for germination, and the behavior of its spores to heat treatment are the same as those of C. botulinum type E. When conventionally raised suckling mice were injected with 5 × 107 spores of BL 6340 strain intra- or orogastrically, botulism was not observed. However, 8- to 13-day-old mice had type E botulinum toxin in the large intestine 3 days after introduction of its spores.  相似文献   

14.
Botulinum neurotoxins are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven distinct serotypes (A to G) known to cause botulism in animals and humans. In this study, a multiplexed quantitative real-time PCR assay for the simultaneous detection of the human pathogenic C. botulinum serotypes A, B, E, and F was developed. Based on the TaqMan chemistry, we used five individual primer-probe sets within one PCR, combining both minor groove binder- and locked nucleic acid-containing probes. Each hydrolysis probe was individually labeled with distinguishable fluorochromes, thus enabling discrimination between the serotypes A, B, E, and F. To avoid false-negative results, we designed an internal amplification control, which was simultaneously amplified with the four target genes, thus yielding a pentaplexed PCR approach with 95% detection probabilities between 7 and 287 genome equivalents per PCR. In addition, we developed six individual singleplex real-time PCR assays based on the TaqMan chemistry for the detection of the C. botulinum serotypes A, B, C, D, E, and F. Upon analysis of 42 C. botulinum and 57 non-C. botulinum strains, the singleplex and multiplex PCR assays showed an excellent specificity. Using spiked food samples we were able to detect between 103 and 105 CFU/ml, respectively. Furthermore, we were able to detect C. botulinum in samples from several cases of botulism in Germany. Overall, the pentaplexed assay showed high sensitivity and specificity and allowed for the simultaneous screening and differentiation of specimens for C. botulinum A, B, E, and F.Botulinum neurotoxins (BoNTs), the causative agents of botulism, are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven serotypes, A to G. While the botulinum neurotoxins BoNT/A, BoNT/B, BoNT/E, and BoNT/F are known to cause botulism in humans, BoNT/C and BoNT/D are frequently associated with botulism in cattle and birds. Despite its toxicity, BoNT/G has not yet been linked to naturally occurring botulism (26).Botulism is a life-threatening illness caused by food contaminated with BoNT (food-borne botulism), by the uptake and growth of C. botulinum in wounds (wound botulism), or by colonization of the intestinal tract (infant botulism) (14). In addition, C. botulinum and the botulinum neurotoxins are regarded as potential biological warfare agents (8).The gold standard for the detection of BoNTs from food or clinical samples is still the mouse lethality assay, which is highly sensitive but rather time-consuming. In addition to various immunological assays for BoNT detection, several conventional and real-time PCR-based assays for the individual detection of bont genes have been reported (2, 9-12, 15, 20, 23, 27-30). A major improvement is the simultaneous detection of more than one serotype, which results in a reduction of effort and in the materials used. In recent years, both conventional and real-time PCR-based multiplex assays have been developed for the simultaneous detection of C. botulinum serotypes (1, 6, 22, 24). To date, however, no internally controlled multiplex real-time PCR assay for the simultaneous detection and differentiation of all four serotypes relevant for humans has been reported.We describe here a highly specific and sensitive multiplex real-time PCR assay based on the 5′-nuclease TaqMan chemistry (17) for the simultaneous detection of the C. botulinum types A, B, E, and F, including an internal amplification control (IAC). Furthermore, we developed six different singleplex assays based on the TaqMan chemistry for the detection of C. botulinum serotypes A to F. Assays were validated on 42 C. botulinum strains, 57 non-C. botulinum strains, on spiked food samples, and on real samples from cases of botulism in Germany.  相似文献   

15.
Due to the scarcity of water resources in the “Mancha Húmeda” Biosphere Reserve, the use of treated wastewater has been proposed as a solution for the conservation of natural threatened floodplain wetlands. In addition, wastewater treatment plants of many villages pour their effluent into nearby natural lakes. We hypothesized that certain avian pathogens present in wastewater may cause avian mortalities which would trigger avian botulism outbreaks. With the aim of testing our hypothesis, 24 locations distributed in three wetlands, two that receive wastewater effluents and one serving as a control, were monitored during a year. Sediment, water, water bird feces, and invertebrates were collected for the detection of putative avian pathogenic Escherichia coli (APEC), Salmonella spp., Clostridium perfringens type A, and Clostridium botulinum type C/D. Also, water and sediment physicochemical properties were determined. Overall, APEC, C. perfringens, and C. botulinum were significantly more prevalent in samples belonging to the wetlands which receive wastewater. The occurrence of a botulism outbreak in one of the studied wetlands coincided with high water temperatures and sediment 5-day biochemical oxygen demand (BOD5), a decrease in water redox potential, chlorophyll a, and sulfate levels, and an increase in water inorganic carbon levels. The presence of C. botulinum in bird feces before the onset of the outbreak indicates that carrier birds exist and highlights the risk of botulinum toxin production in their carcasses if they die by other causes such as bacterial diseases, which are more probable in wastewater wetlands.  相似文献   

16.
From 41 dairy farms in Schleswig Holstein, Germany, 196 fecal specimens of diseased cows, 77 fecal specimens of farmers and family members from 26 of these farms, 35 animal feed specimens and 7 house dust specimens were investigated for Clostridium botulinum and its antigens, respectively. Four of the humans under study (one child, 8 month, and three adults) showed symptoms of infant/visceral botulism. Specimens were cultivated in reinforced clostridial medium (RCM). C. botulinum antigens were detected by ELISA. The aim of the study was to obtain information on the relationship of detected C. botulinum toxin-types in cows, in the feces of attending humans, and in the immediate environment. The results revealed that C. botulinum toxin-types were different for cows and humans. Toxin-type A was dominant in cow feces while type E was found in humans. Type E was also present in some animal feed specimens. Conversely, toxin-type A was prevalent in the house dust of farms. It may be assumed that the feeds were the source of human colonization with C. botulinum.  相似文献   

17.
Clostridium botulinum is a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA+ OrfX) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA OrfX+) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producing C. botulinum strains: two strains with the HA+ OrfX cluster (69A and 32A) and one strain with the HA OrfX+ cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly available C. botulinum group I strains revealed five distinct lineages. Strains 69A and 32A clustered with the C. botulinum type A1 Hall group, and strain CDC297 clustered with the C. botulinum type Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination of C. botulinum group I strains and demonstrates the utility of this analysis in quickly differentiating C. botulinum strains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.  相似文献   

18.
Botulism due to type F botulinum neurotoxin (BoNT/F) is rare (<1% of cases), and only a limited number of clostridial strains producing this toxin type have been isolated. As a result, analysis of the diversity of genes encoding BoNT/F has been challenging. In this study, the entire bont/F nucleotide sequences were determined from 33 type F botulinum toxin-producing clostridial strains isolated from environmental sources and botulism outbreak investigations. We examined proteolytic and nonproteolytic Clostridium botulinum type F strains, bivalent strains, including Bf and Af, and Clostridium baratii type F strains. Phylogenetic analysis revealed that the bont/F genes examined formed 7 subtypes (F1 to F7) and that the nucleotide sequence identities of these subtypes differed by up to 25%. The genes from proteolytic (group I) C. botulinum strains formed subtypes F1 through F5, while the genes from nonproteolytic (group II) C. botulinum strains formed subtype F6. Subtype F7 was composed exclusively of bont/F genes from C. baratii strains. The region of the bont/F5 gene encoding the neurotoxin light chain was found to be highly divergent compared to the other subtypes. Although the bont/F5 nucleotide sequences were found to be identical in strains harboring this gene, the gene located directly upstream (ntnh/F) demonstrated sequence variation among representative strains of this subtype. These results demonstrate that extensive nucleotide diversity exists among genes encoding type F neurotoxins from strains with different phylogenetic backgrounds and from various geographical sources.Botulism is a potentially fatal disease caused solely by the action of serologically distinct neurotoxins (BoNT/A, -B, -C, -D, -E, -F, or -G) which prevent acetylcholine release at neuromuscular junctions, resulting in paralysis. Food-borne botulism may result from the ingestion of a preformed toxin that is produced in inadequately preserved food. Under certain conditions, botulinum neurotoxin-producing Clostridium sp. may colonize and produce toxin in wounds (wound botulism) or in the intestine (infant botulism or adult colonization). Globally, human botulism cases are associated with botulinum neurotoxin serotypes A, B, E, and rarely F. The Centers for Disease Control and Prevention (CDC) maintains active surveillance for botulism cases in the United States. Of 1,269 U.S. cases of botulism reported to the CDC between 1981 and 2002, approximately 1% were due to type F toxin (13). An additional 10 cases of type F botulism were reported to the CDC from 2003 to 2007 (http://www.cdc.gov/nationalsurveillance/botulism_surveillance.html).Type F botulism was first described in 1960 following an outbreak occurring in Denmark involving liver paste (30). The organism isolated in this outbreak metabolically resembled proteolytic Clostridium botulinum strains of types A and B. In a subsequent outbreak, type F toxin was found to be produced by a nonproteolytic C. botulinum strain isolated from venison jerky (29). Bivalent toxin-producing strains have been described, including Bf strains isolated from infants in the United States and England (1, 16, 17, 35) and an Af strain isolated from individuals in Argentina with food-borne botulism (11). Bivalent strains may produce higher titers of one toxin type, which are denoted with a capital letter. The only reported organism isolated from infants with botulism due to type F toxin alone (i.e., not associated with additional serotypes as in bivalent strains) is Clostridium baratii (2, 14, 24). In addition, C. baratii type F has been isolated from adults with botulism (28) as well as suspect foods associated with botulism cases (15; CDC, unpublished data).Botulinum neurotoxin genes (bont) are typically found within toxin gene clusters that include other genes encoding components of the toxin complex (ha70, ha17, ha33, ntnh), regulatory proteins (botR), or proteins with unknown functions (p47, orfX1, orfX2, orfX3). Two general toxin gene cluster arrangements have been described, including the orfX cluster (orfX3-orfX2-orfX1-botR-p47-ntnh-bont) and the ha cluster (ha70-ha17-ha33-botR-ntnh-bont) (21, 22). The bont/F genes of type F and type Bf strains examined by Hill et al. (21) were found in an orfX cluster.The amino acid sequence identities of the BoNT serotypes A to G range from approximately 35 to 70% (36). In addition, within nearly all toxin serotypes, various levels of amino acid sequence variation have been observed, resulting in the identification of toxin subtypes (20, 36, 37).Although a limited number of genes encoding type F botulinum neurotoxin have been sequenced, a comparison of sequences available in public databases indicates that significant diversity exists within this serotype. The nucleotide sequence identity of the type F neurotoxin gene from the proteolytic strain Langeland differs from that of the gene in the nonproteolytic strain 202F by 7%. The type F gene from C. baratii strain ATCC 43756 differs from those of Langeland and 202F by 18% and 20%, respectively. Although the bivalent (Bf) strain CDC3281 is phenotypically proteolytic, the toxin gene shows greater similarity to those from nonproteolytic strains (34). In addition to metabolic differences observed between proteolytic and nonproteolytic C. botulinum strains as well as C. baratii, these organisms are phylogenetically distinct based on differences among their 16S rRNA sequences (5, 20).In order to define the degree of genetic diversity among strains encoding botulinum neurotoxin type F, we sequenced the bont/F gene and partially characterized the toxin gene cluster by using a panel of 33 strains with diverse origins. These strains were selected from those available in the CDC culture collection as well as several isolated in Argentina. The only reported Af strains have been isolated in Argentina. Among 68 outbreaks of serotype-confirmed food-borne botulism in Argentina between 1922 and 2007, type F was isolated in two outbreaks, and type Af was isolated in one outbreak. In addition, Lúquez et al. (26) reported isolation of type F and Af strains from Argentine soils.Here, we report that analysis of the bont/F genes from the strains examined in this study revealed a high degree of nucleotide sequence heterogeneity and the identification of seven type F subtypes (F1 to F7). In addition, the nucleotide sequence of one subtype (F5) has not been previously reported and contains evidence of recombination compared to the other subtypes.  相似文献   

19.
A model of interaction between fish and a bacterium (Clostridium botulinum) responsible for avian botulism is introduced, considering diffusion of both fish and bacterium in water. The fish population moves randomly in water. Death fish disintegrate in water, at different locations, causing bacteria to diffuse through water and infect other fish. Existence of uniform steady states is investigated and the linearized stability of the positive uniform steady state is analyzed. A Hopf bifurcation is proved to occur from the uniform steady state when the bifurcation parameter, here the time delay, passes through a critical value and diffusion coefficients satisfy some conditions, that induces time oscillations of the populations. Comments on diffusion-driven instability are provided, and numerical simulations are carried out to illustrate the results.  相似文献   

20.
A polymerase chain reaction (PCR)-based method was established to detect each type of neurotoxin genes of Clostridium botulinum types A to F by employing the oligonucleotide primer sets corresponding to special regions of the light chains of the neurotoxins. In this procedure, the PCR products were easily confirmed by restriction enzyme digestion profiles, and as little as 2.5 pg of template DNAs from toxigenic strains could be detected. The specific PCR products were obtained from toxigenic C. botulinum types A to F, a type E toxin-producing C. butyricum strain, and a type F toxin-producing C. baratii strain, but no PCR product was detected in nontoxigenic strains of C. botulinum and other clostridial species. The neurotoxin genes were also detected in food products of a seasoned dry salmon and a fermented fish (Izushi) which had caused type E outbreaks of botulism. Therefore, it is concluded that this PCR-based detection method can be used for the rapid diagnosis of botulism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号