首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
过氧化氢酶(catalase,CAT)是一种在食品、医疗、纺织等领域广泛应用的工业酶,具有催化效率高、专一性强、绿色环保等突出特点。工业中游离过氧化氢酶无法回收再利用,导致以其为核心的工业生物转化过程成本较高。开发一种简单、温和、低成本并且体现绿色化学理念的方法对过氧化氢酶进行固定化有望提高其利用率并且强化酶学性能,具有迫切的现实需求。本研究将源自枯草芽孢杆菌(Bacillus subtilis)168的过氧化氢酶KatA在大肠杆菌中进行重组表达,之后将分离纯化得到的纯酶以酶-无机杂化纳米花形式制备成固定化酶并进行酶学性质研究。结果显示,利用乙醇沉淀、DEAE阴离子交换层析、疏水层析3步纯化,最终获得电泳纯的重组KatA,之后通过优化制备条件获得了一种新型KatA/Ca3(PO4)2杂化纳米花固定化酶。酶学性质研究结果显示,游离酶KatA的最适反应温度为35℃,KatA/Ca3(PO4)2杂化纳米花的最适反应温度为30−35℃,二者最适反应pH值均为11.0。游离酶KatA和KatA/Ca3(PO4)2杂化纳米花在pH4.0−11.0和25−50℃条件下均表现出较好的稳定性。KatA/Ca3(PO4)2杂化纳米花显示出比游离酶KatA更好的储存稳定性,在4℃储存14d后仍保留82%的酶活力,而游离酶仅具有50%的酶活力。此外,纳米花在进行5次催化反应后仍具有55%的酶活力,表明其具有较好的操作稳定性。动力学研究结果显示,游离酶KatA对底物过氧化氢的Km为(8.80±0.42)mmol/L,kcat/Km为(13151.53±299.19)L/(mmol·s);而KatA/Ca3(PO4)2杂化纳米花的Km为(32.75±2.96)mmol/L,kcat/Km为(4550.67±107.51)L/(mmol·s)。与游离酶KatA相比,KatA/Ca3(PO4)2杂化纳米花对底物过氧化氢的亲和力下降,同时其催化效率也有所降低。综上所述,本研究以Ca2+作为自组装诱导剂,成功将KatA以酶-无机杂化纳米花形式制备成固定化酶,不仅对部分酶学性能实现了强化,而且为固定化过氧化氢酶的绿色制备和规模化应用奠定了基础。  相似文献   

2.
王明  李雪  韩雪容 《微生物学报》2024,64(4):1162-1174
【目的】构建马赛菌(Massilia sp.) UMI-21来源乙酰辅酶A合成酶ACSMU和聚羟基脂肪酸酯(polyhydroxyalkanoate, PHA)合酶PhaCMU的体外重组表达体系并过表达2种酶,利用体外合成体系确定2种酶在Massilia sp. UMI21聚3-羟基丁酸(polyhydroxybutyrate, PHB)合成途径中的主要功能。【方法】利用无缝克隆技术将来源于Massilia sp. UMI-21的乙酰辅酶A合成酶基因acsMU和PHA合酶基因phaCMU扩增后与pQE-80L质粒连接,转导大肠杆菌(Escherichia coli) BL21(DE3)构建2个基因的重组表达体系;利用6×His标签纯化蛋白ACSMU和PhaCMU,并采用5,5′-二硫双(2-硝基苯甲酸) [5,5′-dithiobis-(2-nitrobenzoic acid), DTNB]法测定其活性;使用体外单相合成系统(one-phase reaction system, OPRS),以(R)-3HB为底物,验证ACSMU和PhaCMU这2种酶在合成PHB途径中的功能。【结果】成功构建了ACSMU和PhaCMU蛋白重组表达菌株BL21-pQE-80L-acsMU和BL21-pQE-80L-phaCMU,提纯得到过表达蛋白ACSMU和PhaCMU产率分别为24.8 mg/L和25.6 mg/L;ACSMU酶比活力为(0.148±0.011) U/mg。PhaCMU酶对(R)-3HBCoA的比活力为(0.102±0.011) U/mg;核磁共振氢谱(nuclear magnetic resonance hydrogen spectroscopy, 1H-NMR)分析结果表明,使用ACSPt-PCTCP-PhaCRe、ACSMU-PCTCP-PhaCRe和ACSMU-PCTCP-PhaCMU这3条OPRS途径均能合成PHB,产量分别为0.62、0.76和0.64 g/L。【结论】acsMUphaCMU基因可利用大肠杆菌表达体系过表达并可获得具有活性的可溶性蛋白;对比ACSPt-PCTCP-PhaCRe合成体系,ACSMU替代ACSPt合成PHB产量增加22.58%,在聚合酶相同的情况下,PHB的合成产量依赖乙酰辅酶A合成酶(acetyl-CoA synthase, ACS)合成乙酰辅酶A的稳定性。使用PhaCMU代替PhaCRe,对比ACSMU-PCTCP-PhaCRe组合,合成PHB产量减少了15.79%。在聚合前体浓度相同的情况下,PHB合成量依赖聚合酶的活性。  相似文献   

3.
【背景】灵芝多糖是灵芝的重要活性物质之一。UDP-葡萄糖4-差向异构酶(UDP-glucose 4-epimerase,UGE,EC 5.1.3.2)是灵芝多糖合成途径中糖供体生成的重要酶,其参与了UDP-葡萄糖与UDP-半乳糖的相互转化,与多糖中半乳糖残基含量密切相关。【目的】通过对来源于灵芝的UGE基因进行异源表达,丰富灵芝多糖糖供体合成途径重要酶的酶学特性信息,深入了解灵芝多糖代谢合成途径。【方法】以灵芝菌株(Ganoderma lingzhi) CGMCC 5.26的cDNA为模板,克隆得到UGE基因GL30389,并在Escherichia coli BL21(DE3)中诱导表达,产物纯化后进行酶学性质、酶动力学、底物专一性及转化率的研究。【结果】灵芝UGE的分子量为45 kDa。最适反应pH值为6.0,在pH 7.0—9.0范围内有较好的稳定性;最适反应温度为30℃,温度在40℃时稳定性最好。Fe2+和Mg2+对UGE有激活作用。以UDP-葡萄糖为底物时,Km为0.824 mmol/L,Vmax为769.230 μmol/(L·min),kcat为1.333 s—1,kcat/Km为1.618 L/(mmol·s)。灵芝UGE对D-葡萄糖、半乳糖醛酸及N-乙酰葡萄糖胺有催化活性。通过优化pH、温度、底物与酶的配比、添加金属离子将转化率从16.0%提升至39.4%。【结论】灵芝UGE与植物来源的UGE酶学性质较为相似,其催化效率优于大部分细菌来源的UGE。本研究丰富了灵芝多糖糖供体合成途径重要酶的酶学特性信息,有利于深入了解灵芝多糖代谢合成途径。  相似文献   

4.
[背景] 烟曲霉α-1,2-甘露糖苷酶MsdS在高尔基体中将N-糖链Man8GlcNAc2加工为成熟分泌糖蛋白的糖型Man6GlcNAc2,有研究表明MsdS与烟曲霉的形态发生、细胞壁合成及蛋白质分泌密切相关;与烟曲霉不同的是,里氏木霉的成熟分泌糖蛋白上的N-糖链结构为Man8GlcNAc2,细胞却能正常生长,说明丝状真菌N-糖链的加工具有物种特异性,但其生物学意义不明。[目的] 为研究N-糖链加工对里氏木霉细胞生长及蛋白质分泌的影响,本研究将烟曲霉MsdS转入里氏木霉中以改变其成熟分泌糖蛋白的糖型。[方法] 构建带有烟曲霉msdS基因的重组质粒并转入里氏木霉中,获得msdS表达菌株Tr-MsdS,分析Tr-MsdS菌株的生长表型、N-糖组、蛋白质分泌途径和纤维素酶活性的变化。[结果] 在里氏木霉msdS表达菌株Tr-MsdS中,分泌糖蛋白的主要糖型由出发株的Man8GlcNAc2转变为Man6GlcNAc2,细胞壁组分发生变化,但细胞壁完整性未受影响;与出发株相比,Tr-MsdS菌株产孢、出芽及分枝增多;另外,MsdS的表达还影响蛋白质分泌,在50℃时降解纤维素和β-葡聚糖的能力分别提高9.9%和32.2%。[结论] 研究结果表明,N-糖链的加工可影响里氏木霉蛋白质,尤其是纤维素酶的分泌,干扰N-糖链加工可能是提高里氏木酶纤维素酶产量的新策略。  相似文献   

5.
利用KTAUPC-900快速蛋白液相色谱系统(FPLC)从绿色木霉MJ1固体发酵产物中分离纯化出内切β-葡聚糖苷酶。分离纯化后酶的比活力提高了28.6倍,回收率为19.7%。SDS-PAGE后经BIO-RAD凝胶成像系统分析该内切酶的分子量为64.7kD。酶学试验研究表明:该酶的最适反应温度53℃,最适pH为4.2,Lineweaver-Burk法求得动力学参数,KmVmax分别为1.230×10-2相似文献   

6.
[目的]假单胞菌SJTE-1可高效转化17β-雌二醇,但是催化该转化的酶尚不清楚。本文鉴定了该菌株的一个新的3-酮酰基-ACP还原酶(ANI01589.1),并对其进行了功能研究。[方法]首先,我们克隆了该3-酰基-ACP还原酶的编码基因,在大肠杆菌BL21(DE3)菌株中进行了异源表达;利用金属离子亲和层析法,纯化获得了重组蛋白。体外检测了重组蛋白的活性与酶学性质,并利用高效液相色谱法(HPLC)测定了该酶的催化产物。[结果]3-酮酰基-ACP还原酶可被17β-雌二醇诱导表达,重组蛋白纯化量可达19.6 mg/L。蛋白序列比对结果表明,该蛋白包含短链脱氢酶/还原酶(SDR)的2个共有区域和多个保守残基。该酶以NAD+为辅助因子,将17β-雌二醇转化为雌酮;其Km值为0.071 mmol/L,kcat值为2.4±0.06/s-1,5 min内可转化超过95.8%的雌二醇。该酶的最佳反应温度为42℃,最佳pH为8.0。不同二价离子对该酶的活性影响不同,Mg2+和Mn2+可增强其酶活性。[结论]这一假单胞菌SJTE-1来源的3-酮酰基-ACP还原酶可高效催化17β-雌二醇的转化,该酶可能在该菌株的雌激素代谢过程中起到重要作用。  相似文献   

7.
β-葡萄糖苷酶在食品、医药、生物质转化等领域具有重要的应用价值,因此发掘适应性强、性质优良的β-葡萄糖苷酶是国内外研究热点。本研究从嗜热古菌Infirmifilum uzonense中成功克隆出一个GH3家族的β-葡萄糖苷酶基因,命名为Iubgl3。基因序列分析显示Iubgl3全长为2109bp,编码702个氨基酸,理论分子量为77.0kDa。将该基因在大肠杆菌中进行克隆表达并对纯化后的IuBgl3进行酶学性质研究。结果显示,重组酶IuBgl3最适pH5.0,最适温度85℃。该酶具有良好的热稳定性,80℃处理2h后仍能保持85%以上的酶活力。其具有优良的pH稳定性,在pH4.0−11.0范围内处理1h,仍维持85%以上的酶活力。通过底物特异性测定发现,该酶对对硝基苯-β-d-吡喃葡萄糖苷(p-nitrophenylβ-d-glucoside,pNPG)和对硝基苯-β-d-吡喃木糖苷(p-nitrophenyl β-d-xylopyranoside,pNPX)均有很高的水解能力,是典型的双功能酶。以pNPG为底物时的动力学参数KmVmax分别为0.38mmol和248.55μmol/(mg·min),催化效率kcat/Km=6149.20s−1mmol−1。大多数金属离子对IuBgl3的酶活力没有显著影响,SDS可导致酶完全失活,而EDTA却能提高30%的酶活力。本研究丰富了高温古菌GH3家族的β-葡萄糖苷酶基因,获得了一个稳定性优良的高温酸性双功能酶,具有良好的工业应用前景。  相似文献   

8.
大鼠脑组织中一氧化氮合酶测定   总被引:14,自引:0,他引:14  
在含有一氧化氮合酶(NOS)底物左族精氨酸(L-Arg), 辅助因子还原性辅酶Ⅱ(NADPH)、四氢生物蝶呤(BH4)、黄素单核苷酸(FMN), 黄素腺嘌呤二核苷酸(FAD)以及Ca2+、钙调蛋白等溶液中加入大鼠脑组织匀浆离心上清液, 组成酶反应体系. 37℃温育80min, 应用N-(1-萘基)-乙二胺、对氨基苯磺酸的重氮、偶氮反应测定酶反应体系中一定时间内NO代谢产物NO-2浓度变化, 建立一种简便的NOS活性测定方法. 反应体系最佳pH为7.4, Km=0.1mmol/L, 体系内NO-2生成量与加入样品量之间有良好线性关系(r=0.998). 此方法简单、方便、重复性好, 批内CV为3.69%, 批间CV为5.16%. 10只健康大鼠脑组织中NOS活性为(39.61±7.64)nmol/(min·g).  相似文献   

9.
脂肪酶可以催化甘油三酯水解成脂肪酸和甘油,已广泛应用在工业领域,而获得产酶微生物是研究的基础。采用油脂平板法筛选出1株脂肪酶产生菌。经16S rRNA序列分析可知,该菌株属于柠檬酸杆菌(Citrobacter werkman and Gillen)。单因素试验对其进行产酶条件优化,优化后产酶条件(g/L):淀粉2.0,KH2PO4 1.0,K2HPO4·3H2O 2.2,(NH4)2SO4 1.0,MgSO4·7H2O 0.1,牛肉膏2.0,橄榄油10.0 mL,pH 7.5,接种量1.5%(v/v),37 ℃培养43 h。获得最大酶活为384 U/mL,是优化前的13倍。可以利用该菌制备脂肪酶。  相似文献   

10.
以2年生苹果矮化砧木M9 T337为试材,采用盆栽试验法,设置浇灌清水(CK)和盐碱胁迫(0.1 mol/L NaCl+NaHCO3溶液)+ 喷施5种浓度的H2O2 [0(T1)、0.2 mmol/L(T2)、0.4 mmol/L(T3)、0.6 mmol/L(T4)、0.8 mmol/L(T5)] 处理,测定各处理叶片叶绿素含量、光合气体交换参数、渗透调节物质含量、抗氧化酶活性和细胞膜透性,并利用相关性与主成分分析进行综合评价,以探讨外源过氧化氢(H2O2)增强其盐碱耐性的生理机制。结果表明:(1)随着盐碱胁迫(T1)的时间延长,M9 T337幼苗叶片叶绿素a(Chl a)含量、叶绿素b (Chl b)含量、叶绿素总量(Chl t)、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、可溶性蛋白(SP)含量均呈逐渐下降趋势;胞间CO2浓度(Ci)、可溶性总糖(TSS)含量、脯氨酸(Pro)含量、过氧化氢酶(CAT)活性、抗坏血酸过氧化物酶(APX)活性、相对电导率(REC)、丙二醛(MDA)含量均呈上升趋势;超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性均呈先升后降趋势。(2)与CK相比,盐碱胁迫+外源H2O2(T2- T5)处理后M9 T337幼苗叶片各指标均呈现不同幅度变化,且存在明显浓度效应,并以T3(0.4 mmol/L H2O2)处理叶片的Chl a、Chl b、Chl t、SP和Gs降幅最小,Ci、REC、MDA升幅最小,TSS、Pro、APX升幅最大。(3)M9 T337幼苗叶片PnTrGs、Chl a、Chl b、Chl t、SP、SOD、POD呈显著正相关,与Ci、MDA、CAT、APX、REC呈显著负相关。(4)综合评价表明,各处理对M9 T337幼苗叶片生理特性的效应依次为:CK>T3>T4>T2>T5>T1。研究发现,叶面喷施适宜浓度H2O2可有效改善盐碱胁迫下M9 T337幼苗光合能力,显著提高抗氧化酶活性和渗透调节物质的含量,降低细胞膜透性,从而达到缓解盐碱胁迫的作用,并以0.4 mmol/L H2O2处理效果最佳。  相似文献   

11.
A fundamental shift has taken place in agricultural research and world food production. In the past, the principal driving force was to increase the yield potential of food crops and to maximize productivity. Today, the drive for productivity is increasingly combined with a desire for sustainability. For farming systems to remain productive, and to be sustainable in the long-term, it will be necessary to replenish the reserves of nutrients which are removed or lost from the soil. In the case of nitrogen (N), inputs into agricultural systems may be in the form of N-fertilizer, or be derived from atmospheric N2 via biological N2 fixation (BNF).Although BNF has long been a component of many farming systems throughout the world, its importance as a primary source of N for agriculture has diminished in recent decades as increasing amounts of fertilizer-N are used for the production of food and cash crops. However, international emphasis on environmentally sustainable development with the use of renewable resources is likely to focus attention on the potential role of BNF in supplying N for agriculture. This paper documents inputs of N via symbiotic N2 fixation measured in experimental plots and in farmers' fields in tropical and temperate regions. It considers contributions of fixed N from legumes (crop, pasture, green manures and trees), Casuarina, and Azolla, and compares the relative utilization of N derived from these sources with fertilizer N.  相似文献   

12.
Unlike C-3 plants, cacti possess a crassulacean acid metabolism (CAM) physiology that can alter the pattern of carbon uptake and affect plant growth under artificial environmental conditions, especially in tissue culture. In vitro-derived plantlets of Coryphantha minima grew 7-fold larger than plants cultured under similar ex vitro conditions. Growth regulators incorporated into the culture media during shoot proliferation stage of micropropagation had a strong influence on this increased growth. Other important factors that contributed to increased growth under in vitro conditions were high relative humidity and sugar in the culture medium. An analysis of gas exchange and daily fluctuations of malic acid levels revealed an increase in net photosynthetic rate, in terms of carbon assimilation, by in vitro plants compared with that of ex vitro plants. This stimulated photosynthesis in the presence of an external carbon source was unexpected but apparently true for cacti exhibiting CAM physiology. Unlike CAM plants grown in ex vitro conditions, net CO2 uptake by in vitro-cultured cacti occurred continuously in the light as well as the dark. Once regenerated, cacti were transferred to ex vitro conditions where the normal CAM pathway resumed with a concomitant reduction in growth and CO2 uptake. These results showed that growth of cacti can be considerably accelerated by in vitro culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The autotrophic carbon fixation pathway was studied in the thermophilic hydrogen oxidizing eubacterium Aquifex pyrophilus and in the thermophilic sulfur reducing archaebacterium Thermoproteus neutrophilus. Neither organism contained ribulose-1,5-bisphosphate carboxylase activity suggesting that the Calvin cycle is not operating. Rather, all enzymes of the reductive citric acid cycle were found in A. pyrophilus. In T. neutrophilus ATP citrate lyase activity was detected which has not been achieved so far; this finding corroborates earlier work suggesting the presence of the reductive citric acid cycle in this archaebacterium. The reductive citric acid cycle for autotrophic CO2 fixation now has been documented in the eubacterial branches of the proteobacteria, in green sulfur bacteria, and in the thermophilic Knallgas bacteria as well as in the branch of the sulfur dependent archaebacteria.  相似文献   

14.
The activity of two carboxylating enzymes was studied in the green filamentous bacteriumChloroflexus aurantiacus. The carboxylation reaction involving pyruvate synthase was optimized using14CO2 and cell extracts. Pyruvate synthase was shown to be absent from cells ofCfl. aurantiacus OK-70 and present (in a quantity sufficient to account for autotrophic growth) in cells ofCfl. aurantiacus B-3. Differences in the levels of acetyl CoA carboxylase activity were revealed between cells of the strains studied grown under different conditions. The data obtained confirm the operation of different mechanisms of autotrophic CO2 assimilation inCfl. aurantiacus B-3 andCfl. aurantiacus OK-70: in the former organism, it is the reductive cycle of dicarboxylic acids, and in the latter one, it is the 3-hydroxypropionate cycle.  相似文献   

15.
Alginate beads containing axillary buds of in vitro-grown gentian (Gentiana scabra Bunge var. buergeri Maxim.), were successfully cryopreserved following 2 step-preculture with sucrose and desiccation. The optimal preculture conditions were as follows: axillary buds were excised from in vitro-grown gentian plants and precultured on semi-solid Murashige and Skoog (MS) medium containing 0.1 M sucrose for 10 days (25 °C, 16-h photoperiod) (first step). This was followed by incubation on semi-solid MS media containing 0.4 M (1 day) and then 0.7 M sucrose (1 day) (second step). After preculture, the buds were encapsulated in alginate beads and desiccated aseptically on silica gel for 9 h to a water content of 10% (fresh weight basis), followed by immersion in liquid nitrogen (LN). With this protocol, 87% of the gentian buds survived exposure to LN and showed normal development of shoots and roots in vitro and in vivo. Depletion of NH4NO3 in the regeneration medium did not improve survival following desiccation and exposure to LN. The results show that 2 step-preculture with sucrose is effectively applicable in encapsulation–desiccation based cryopreservation of gentian axillary buds. This preculture can replace the conventionally used lengthy cold-hardening treatment and is useful for routine cryopreservation of gentian germplasm.  相似文献   

16.
The unicellular Tetrahymena enzymatically split the synthetic phosphodiester, 4-methylum-belliferyl phosphocoline substrate. The enzyme activity was completely blocked in vitro and drastically inhibited in vivo by G-protein activating fluorides (NaF; AlF4 and BeF3 ). The phospholipase A2 inhibitor, quinacrine, and the protein phosphatase inhibitor, neomycin, inhibited the enzyme activity in vitro and activated it in vivo. Another phospholipase A2 inhibitor 4-bromo phenacyl bromide was ineffective in vivo and in vitro alike, as well as the cyclooxygenase inhibitor indomethacin. Results of these experiments indicate that some treatments could be specific for a well defined activity (e.g., phospholipase A2, G-protein) but subject to influence by other enzymes (e.g., phospholipase C, sphingomyelinase). The experiments call attention to the differences in the results of the in vivo and in vitro studies.  相似文献   

17.
Melis A 《Planta》2007,226(5):1075-1086
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis–respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature’s most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.  相似文献   

18.
Summary Observations are presented on the patterns of DNA synthesis and mitotic activity in medullary parenchyma cells excised from tubers ofHelianthus tuberosus in four different periods of dormancy. Dormancy break (activation) was induced byin vitro culture on media added with 2,4-dichlorophenoxyacetic acid. The cell cycle responsein vitro to different combinations of growth substances has also been investigated.The results show that remarkable changes in the timing of the first and second cell cycles and their phases occur with the progression of dormancy. With increasing time after tuber harvest, the following behaviours are observed: (i) a lengthening of the first cell cycle, chiefly due to a lengthening of the G2 phase (G2 is absent at the beginning of dormancy) and an increase in the time interval between the start of thein vitro culture and the onset of the first mitotic wave; (ii) an increased duration of the S phase; (iii) a remarkable reduction in the cell synchrony.These behaviours, as indicated also by their comparison with thein vitro response of the cell cycle to different hormonal treatments, seem to depend on the physiological status of the tubers at the time of explant. It is concluded that the analysis of the cell cycle is an useful tool for understanding some aspects of such a complex physiological situation as dormancy.Istituto di Mutagenesi e Differenziamento del C.N.R., Pisa, Italy, publication no. 321.  相似文献   

19.
In the succulent leaves of Aloe arborescens Mill diurnal oscillations of the malic acid content, being indicative of Crassulacean Acid Metabolism (CAM), were exhibited only by the green mesophyll. In contrast, the malic acid level of the central chloroplast-free water-storing tissue remained constant throughout the day-night cycle. Apart from malate, the green tissue contained high amounts of isocitrat which was lacking in the water tissue. There was no significant transfer from the green mesophyll to the water tissue of 14C fixed originally via dark 14CO2 fixation in the mesophyll. Both isolated mesophyll and water tissue were capable of dark CO2 fixation yielding mainly malate as the first stable product. Both tissues have phosphoenolpyruvate carboxylase. However, the enzymes derived from the both sources could be distinguished by their molecular weights and by their kinetic properties, suggesting different phosphoenolpyruvate carboxylase proteins. The conclusion drawn from the experiments is that in a. arborescens the CAM cycle proceeds exclusively in the green mesophyll and that the water tissue, though capable of malate synthesis via -carboxylation of phosphoenolpyruvate, behaves as an independent metabolic system where CAM is lacking. This view is supported by the finding that the cell walls bordering the green mesophyll from the water tissue lack plasmodesmata, hence conveniant pathways of metabolite transport.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEP-C phosphoenolpyruvate carboxylase  相似文献   

20.
Low production rates and sensitivity to O2 are two major obstacles which prevent the technical exploitation of the ability of green algae to produce H2 from water. Both problems were addressed in the present work. The inhibitory effect of O2 on the hydrogen photoproduction of the green alga Chlorella fusca could be minimized by using algal cells which had not yet fully restored their oxygen evolving capacities after an artificially induced chloroplast de/regeneration cycle (de-/regreening). The H2 photoproductivity peaked after 30 h of greening light while the O2 evolution at this time reached only 59% of its normal capacity. The H2PP yields could be further increased if NH4Cl was added to the reaction medium at the beginning of the anaerobic preincubation period. No stimulatory effect was observed when NH4Cl was added just before illumination, i.e. at the end of the 5-h-preincubation period. It is assumed that NH4Cl inhibited the photosynthetic reduction of nitrite, which competed with hydrogen photoproduction indirectly by feedback repression of the NO 2 - /NO 3 - -reductive system. The impacts of the given results on an optimized H2-production in green algae based on photosynthesis are discussed.Abbreviations H2PP H2 photoproduction - H2ase hydrogenase - DA dark adaptation - LRG light regreening - DCMU 3-(3,4-dichlorophenyl)-l, 1-dimethylurea - Dit sodium dithionite - HEPES N-2-hydroxyethylpiperazin-N-2-ethan-sulfonic acid - PS I/II photosystem I/II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号