首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor.  相似文献   

4.
5.
6.
7.
Nuclear factor erythroid 2-related factor 2 (NRF2) is aberrantly activated in about 93% of pancreatic cancers. Activated NRF2 regulates multiple downstream molecules involved in cancer cell metabolic reprogramming, translational control, and treatment resistance; however, targeting NRF2 for pancreatic cancer therapy remains largely unexplored. In this study, we used the online computational tool CellMinerTM to explore the NCI-60 drug databases for compounds with anticancer activities correlating most closely with the mRNA expression of NQO1, a marker for NRF2 pathway activity. Among the >100,000 compounds analyzed, NSC84167, termed herein as NRF2 synthetic lethality compound-01 (NSLC01), was one of the top hits (r = 0.71, P < 0.001) and selected for functional characterization. NSLC01 selectively inhibited the viabilities of four out of seven conventional pancreatic cancer cell lines and induced dramatic apoptosis in the cells with high NRF2 activation. The selective anticancer activity of NSLC01 was further validated with a panel of nine low-passage pancreatic patient-derived cell lines, and a significant reverse correlation between log(IC50) of NSLC01 and NQO1 expression was confirmed (r = −0.5563, P = 0.024). Notably, screening of a panel of nine patient-derived xenografts (PDXs) revealed six PDXs with high NQO1/NRF2 activation, and NSLC01 dramatically inhibited the viabilities and induced apoptosis in ex vivo cultures of PDX tumors. Consistent with the ex vivo results, NSLC01 inhibited the tumor growth of two NRF2-activated PDX models in vivo (P < 0.01, n = 7–8) but had no effects on the NRF2-low counterpart. To characterize the mechanism of action, we employed a metabolomic isotope tracer assay that demonstrated that NSLC01-mediated inhibition of de novo synthesis of multiple amino acids, including asparagine and methionine. Importantly, we further found that NSLC01 suppresses the eEF2K/eEF2 translation elongation cascade and protein translation of asparagine synthetase. In summary, this study identified a novel compound that selectively targets protein translation and induces synthetic lethal effects in NRF2-activated pancreatic cancers.Subject terms: Drug discovery, Gastrointestinal diseases  相似文献   

8.
9.
S-(-)equol, a natural product of the isoflavone daidzein, has been reported to offer cytoprotective effects with respect to the cardiovascular system, but how this occurs is unclear. Interestingly, S-(-)equol is produced by the human gut, suggesting a role in physiological processes. We report that treatment of human umbilical vein endothelial cells and EA.hy926 cells with S-(-)equol induces ARE-luciferase reporter gene activity that is dose and time dependent. S-(-)equol (10–250 nM) increases nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as gene products of Nrf2 target genes heme oxygenase-1 (HO-1) and NAD(P)H (nicotinamide-adenine-dinucleotide-phosphate) quinone oxidoreductase 1 (NQO1). Endothelial cells transfected with an HA-Nrf2 expression plasmid had elevated HA-Nrf2, HO-1, and NQO1 in response to S-(-)equol exposure. S-(-)equol treatment affected Nrf2 mRNA only slightly but significantly increased HO-1 and NQO1 mRNA. The pretreatment of cells with specific ER inhibitors or PI3K/Akt (ICI182,780 and LY294002) increased Nrf2, HO-1, and NQO1 protein, impaired nuclear translocation of HA-Nrf2, and decreased ARE-luciferase activity. Identical experiments were conducted with daidzein, which had effects similar to S-(-)equol. In addition, DPN treatment (an ERβ agonist) induced the ARE-luciferase reporter gene, promoting Nrf2 nuclear translocation. Cell pretreatment with an ERβ antagonist (PHTPP) impaired S-(-)equol-induced Nrf2 activation. Pre-incubation of cells followed by co-treatment with S-(-)equol significantly improved cell survival in response to H2O2 or tBHP and reduced apoptotic and TUNEL-positively-stained cells. Notably, the ability of S-(-)equol to protect against H2O2-induced cell apoptosis was attenuated in cells transfected with an siRNA against Nrf2. Thus, beneficial effects of S-(-)equol with respect to cytoprotective antioxidant gene activation may represent a novel strategy to prevent and treat cardiovascular diseases.  相似文献   

10.
11.
12.
13.
14.
15.
The nuclear matrix is defined as the insoluble framework of the nucleus and has been implicated in the regulation of gene expression, the cell cycle, and nuclear structural integrity via linkage to intermediate filaments of the cytoskeleton. We have discovered a novel nuclear matrix protein, NRP/B (nuclear restricted protein/brain), which contains two major structural elements: a BTB domain–like structure in the predicted NH2 terminus, and a “kelch motif” in the predicted COOH-terminal domain. NRP/B mRNA (5.5 kb) is predominantly expressed in human fetal and adult brain with minor expression in kidney and pancreas. During mouse embryogenesis, NRP/B mRNA expression is upregulated in the nervous system. The NRP/B protein is expressed in rat primary hippocampal neurons, but not in primary astrocytes. NRP/B expression was upregulated during the differentiation of murine Neuro 2A and human SH-SY5Y neuroblastoma cells. Overexpression of NRP/B in these cells augmented neuronal process formation. Treatment with antisense NRP/B oligodeoxynucleotides inhibited the neurite development of rat primary hippocampal neurons as well as the neuronal process formation during neuronal differentiation of PC-12 cells. Since the hypophosphorylated form of retinoblastoma protein (p110RB) is found to be associated with the nuclear matrix and overexpression of p110RB induces neuronal differentiation, we investigated whether NRP/B is associated with p110RB. Both in vivo and in vitro experiments demonstrate that NRP/B can be phosphorylated and can bind to the functionally active hypophosphorylated form of the p110RB during neuronal differentiation of SH-SY5Y neuroblastoma cells induced by retinoic acid. Our studies indicate that NRP/B is a novel nuclear matrix protein, specifically expressed in primary neurons, that interacts with p110RB and participates in the regulation of neuronal process formation.  相似文献   

16.
Nuclear factor (erythroid‐derived 2)‐like 2 (NRF2) regulates antioxidant enzymes and phase II detoxifying enzymes, such as NAD(P)H: quinone oxidoreductase 1 (NQO1). Modified Xiaoyao powder (MXP) is most frequently used in the prevention and treatment of breast cancer in China. This study aimed to screen active components of MXP for antioxidant stress and chemoprevention, which depend on NRF2‐NQO1 signalling pathway. A total of 25 monomeric compounds contained in MXP were screened using an antioxidant response element–luciferase reporter. The most potent antioxidant response element–luciferase inducers were chosen to further examine their effects on NRF2 and NQO1 in MCF‐7 cells. These results were then confirmed by determining the oxidative stress levels and chemopreventive effect on inhibiting carcinogenesis transformation in NRF2 knockdown (NRF2KD) and NRF2 wild‐type MCF‐10A cells. We found that quercetin, kaempferol, and atractylenolide II in MXP were potent NRF2 inducers, which could up‐regulate the expression of NRF2 and its downstream enzymes NQO1. In addition, these components could decrease reduced oxidative stress and inhibit carcinogenesis transformation, which depended on NRF2‐NQO1 pathway. In conclusion, NRF2‐NQO1 pathway plays an essential role in mediating the activity of MXP and its active components, at least in part; some beneficial effects of MXP may be applicable to breast cancer chemoprevention. Our study firstly found MXP active components including quercetin, kaempferol, and atractylenolide II. Our results firstly demonstrate that NRF2‐NQO1 pathway plays an essential role in mediating the activity of MXP and its active components in breast cancer chemoprevention. Our study firstly found that atractylenolide II is a novel NRF2 inducer.  相似文献   

17.
18.
Although anti-inflammatory effects of astaxanthin (ASTX) have been suggested, the underlying mechanisms have not been fully understood. Particularly, the modulatory action of ASTX in the interplay between nuclear factor E2-related factor 2 (NRF2) and nuclear factor κB (NFκB) to exert its anti-inflammatory effect in macrophages is unknown. The effect of ASTX on mRNA and protein expression of pro-inflammatory and antioxidant genes and/or cellular reactive oxygen species (ROS) accumulation were determined in RAW 264.7 macrophages, bone marrow-derived macrophages (BMDM) from wild-type (WT) and Nrf2-deficient mice, and/or splenocytes and peritoneal macrophages of obese mice fed ASTX. The effect of ASTX on M1 and M2 macrophage polarization was evaluated in BMDM. ASTX significantly decreased LPS-induced mRNA expression of interleukin 6 (Il-6) and Il-1β by inhibiting nuclear translocation of NFκB p65; and attenuated LPS-induced ROS with an increase in NRF2 nuclear translocation, concomitantly decreasing NADPH oxidase 2 expression in RAW 264.7 macrophages. In BMDM of WT and Nrf2-deficient mice, ASTX decreased basal and LPS-induced ROS accumulation. The induction of Il-6 mRNA by LPS was repressed by ASTX in both types of BMDM while Il-1β mRNA was decreased only in WT BMDM. Furthermore, ASTX consumption lowered LPS sensitivity of splenocytes in obese mice. ASTX decreased M1 polarization of BMDM while increasing M2 polarization. ASTX exerts its anti-inflammatory effect by inhibiting nuclear translocation of NFκB p65 and by preventing ROS accumulation in NRF2-dependent and -independent mechanisms. Thus, ASTX is an agent with anti-inflammatory and antioxidant properties that may be used for the prevention of inflammatory conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号