首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The crustacean class Mystacocarida is restricted to the interstitial marine sand environment. A cinemicrographic analysis of the functional morphology of locomotion in the mystacocarid D. typica was undertaken to demonstrate how this species progresses through the interstitial spaces. Locomotion is completely dependent on the presence of dorsal and ventral substrates. The biramous second antennae and mandibles are the force-generating appendages. During a locomotory cycle, the exopods of the second antennae and mandibles are directed dorsolaterally against a dorsal substrate. This creates a downward force enabling the endopods to gain purchase on the ventral substrate. The second antennae and mandibles undergo coordinated cyclic movements. Each cycle results in two power and two recovery strokes. The animals undergo approximately 4 complete cycles per second. The calculated maximum rate of locomotion is 420 m/s. The measured rate under test conditions is 250 m/s. A turning-escape reaction in response to air bubbles and other factors results in a 180° turn in a confined space within 1.5 s. These data are discussed in relation to the morphological conservatism of mystacocarids, their presumed neotenic origin and their observed migration over a tidal cycle. It is proposed that all crawling interstitial animals will have developed specific mechanisms to increase frictional forces between their locomotory appendages and the surrounding substrate.This investigation was supported in part by a National Science Foundation grant # DEB-7823395 to E. Ruppert. Contribution # 442 of the Belle W. Baruch Institute for Marine and Coastal Research  相似文献   

2.
The striated muscles of Derocheilocaris typica consist of mononucleated cells, each containing one filament bundle. Large muscles consist of two or more cells adjacent to each other. The mitochondria line up along the filament bundle on one side. The nucleus is situated in the mitochondrial row and has a small cytoplasmic area around it filled with glycogen. The sarcomeres are between 3 and 6 μm long. The Z-line and H band are present. Six thin filaments surround one thick filament. All muscles belong to the phasic type. The tubular system emanates from the ends of the muscle cell and penetrates the whole cell. The tubules are formed as cisterns, which also open at the cell membrane at the level of the I bands. They have sarcoplasmic cisterns on both sides forming a continuous triad system. Partially transformed epidermal cells mediate muscle insertions on the cuticle. Tendons are formed with the transformed epidermal cells being supplemented by fibroblasts forming collagen fibers. Dorsal and ventral abdominal muscles are innervated from the dorso-lateral nerve arising from the nerve chain. Each muscle cell receives one axon, which forms one synapse on the mitochondrial-free side of the muscles. Axons form terminal spines, which make axo-axonal synapses.  相似文献   

3.
The gut-associated cells (GA-cells) of the mystacocarid Derocheilocaris remanei were investigated by transmission electron microscopy. These cells are characterized by a dense cytoplasm, the presence of clear vesicles adjacent to the gut epithelium, glycogen, and lipid droplets. GA-cells envelop the midgut and hindgut and send blunt cytoplasmic extensions to the gut epithelium through its basal lamina. The GA-cells also extend dorsolateral projections to the body wall by means of intermediate cells. In addition to a mechanical function of suspending and stabilizing the gut, these cells may affect the flow of the hemocoelic fluid and may be implicated in the processes of transport, assimilation, and storage of nutrients.  相似文献   

4.
The cuticle-lined foregut of Derocheilocaris remanei consists of the mouth with its associated labrum, and an undifferentiated esophagus. It is separated from the midgut by an esophageal valve. The labrum is a conspicuous structure moved by five pairs of muscles (four dorsoventral and one longitudinal). Four pairs of subcuticular glands open to its inner face forming two longitudinal, lateral rows of cuticular pores. Each secretory unit is composed of a glandular component (with one or two secretory cells), a neck cell, and a duct cell. In addition, a single gland cell opens mesially into the buccal cavity. The ventrally located mouth is a complex structure characterized by a filter-like system, a sensory organ, and epithelial cells with highly developed microvilli. The esophagus is a simple tube with a characteristic curvature following the mouth. It has a rounded cross section and a triradiate lumen. A layer of circular musculature surrounds this region. The end of the esophagus protrudes into the midgut lumen forming the so-called esophageal valve. The ultrastructural features of the foregut, with the presence of a mucus-trapping mechanism, a relatively well-developed filter system and associated structures and an esophagus lacking glands confirm the microphagic feeding habits of mystacocarids. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Ultrastructural features and structure of the midgut and hindgut of Derocheilocaris remanei were studied. The large endodermal midgut is differentiated into an anterior midgut and a posterior midgut separated by a conspicuous constriction. Both circular and longitudinal striated muscle bands surround the midgut, while the hindgut only presents longitudinal muscles. The limit between the midgut and the cuticle-lined hindgut is marked by a rectal valve. In cross-section, the short hindgut is triradiate and has a distinct Y-shaped lumen. The hindgut cuticular lining appears interrupted at the tip of every branch of the Y. Three different cell types are found in the midgut epithelium: basally located undifferentiated cells that give rise to the other two specialized cell types; secretory zymogen-like cells responsible for extracellular digestion and located mainly in the anterior midgut; and vacuolated cells, distributed all along the midgut and appearing to have several functions, including absorption, intracellular digestion, and nutrient transport. A single basic cell type forms the hindgut epithelium. The suggested function for the hindgut is the transport and ejection of waste products.  相似文献   

6.
An excretory antennal gland, composed of only eight cells, is found entirely in the limb in the mystacocarid Derocheilocaris typica. The end sac is composed of podocytes, valve cells and cap cells. The podocytes contain enormous residual vesicles. There are few pedicel complexes, and they arise directly from the cell surface without intermediate foot processes. The excretory duct is entirely lined with microvilli, which are separated from the lumen by a modified layer of thin cuticle.  相似文献   

7.
The mystacocarid crustacean Derocheilocaris typica has two microvillar organs, one new, the other previously unappreciated in crustacean literature. The first is situated on the head-shield and consists of three pairs of cells: one with microvilli and a ballooned nucleus; one smaller and without special features; the third large and investing the other two and extending down to the foregut. We call this new organ the "cephalic microvillar organ" and discuss the value of the concept "dorsal organ", to which it might have been included. The second organ consists of about 21 cells that cover the proximal part of the dorsal surface of the labrum. The cells are alike, being characterized by an apical field of microvilli and a large residual body. This organ is here called the "labral microvillar organ". Both organs are neither sensory nor secretory and do not qualify for membership in any of the other recognized organ systems. We are unable to deduce their Dero-cheilocaris functions.  相似文献   

8.
Commensal pea crabs inhabiting bivalves have a high reproductive output due to the extension andfecundity of the ovary. We studied the underlying morphology of the female reproductive system in the Pinnotheridae Pinnotheres pisum, Pinnotheres pectunculi and Nepinnotheres pinnotheres using light microscopy and transmission electron microscopy (TEM). Eubrachyura have internal fertilization: the paired vaginas enlarge into storage structures, the spermathecae, which are connected to the ovaries by oviducts. Sperm is stored inside the spermathecae until the oocytes are mature. The oocytes are transported by oviducts into the spermathecae where fertilization takes place. In the investigated pinnotherids, the vagina is of the “concave pattern” (sensu Hartnoll 1968 ): musculature is attached alongside flexible parts of the vagina wall that controls the dimension of its lumen. The genital opening is closed by a muscular mobile operculum. The spermatheca can be divided into two distinct regions by function and morphology. The ventral part includes the connection with vagina and oviduct and is regarded as the zone where fertilization takes place. It is lined with cuticle except where the oviduct enters the spermatheca by the “holocrine transfer tissue.” At ovulation, the oocytes have to pass through this multilayered glandular epithelium performing holocrine secretion. The dorsal part of the spermatheca is considered as the main sperm storage area. It is lined by a highly secretory apocrine glandular epithelium. Thus, two different forms of secretion occur in the spermathecae of pinnotherids. The definite role of secretion in sperm storage and fertilization is not yet resolved, but it is notable that structure and function of spermathecal secretion are more complex in pinnotherids, and probably more efficient, than in other brachyuran crabs. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The male reproductive system of Artemia was studied by routine histological and histochemical techniques to demonstrate the general histology and distribution of proteins, carbohydrates, lipids, and alkaline and acid phosphatases. The System Consists Of Paired Testes, Vasa Deferentia, Accessory Glands, And Penes. The Testes Contain Germ Cells And Supporting Cells Throughout Their Entire Length. The Former Cells Are Located In Clusters And Undergo A Spermatogenic Maturation Which Is Similar To That Described For OtherAnimals. The Supporting Cells Seem Implicated In The Nourishment Of The Germ Cells. The Vas Deferens, Which Consists Of Secretory Epithelium Surrounded By Circular And Longitudinal Muscles, Secretes The Seminal Fluid, Containing A Neutral Mucopolysaccharide Or Mucoprotein, And Stores The Mature Sperm. The Accessory Gland Consists Of Approximately 20 Pairs Of Gland Cells, Each Pair Drained By A Neck Cell And Duct Cell Into The Collecting Duct. The Glandular Secretion, Mainly A Neutral Mucopolysaccharide Or Mucoprotein, Might Function As A Lubricant, A Copulatory Plug, Or An “Activator Substance” For The Sperm Or For Fertilization. Each Penis Consists Of A Non-Eversible Part And An Eversible Part Which Is A Tortuous Muscular Tube That Connects The Vas Deferens To The Outside.  相似文献   

10.
《Journal of morphology》2017,278(11):1536-1550
This study analyses the histological and cellular morphology of the testis and sperm development in the male Daphnia magna Straus 1820. Due to the rarity of males and predominately parthenogenetic lifecycle of Daphnia , there has been limited detailed information on males in contrast to the well‐studied female. Using light and electron microscopy approaches, we describe the morphology of the testis during the progression from an immature to mature testis. The testis has an encasing muscular mesh sheath outside the basal lamina, beneath which is a thin somatic epithelial cell layer. Internal to the epithelium are the spermatogonial stem cells and subsequent syncytial clusters of the germ cells as they progress through spermatogenesis; spermatozoa occupy the entire testis in sexually mature D. magna . We describe the structure of developing and mature spermatozoa; mature spermatozoa are non‐flagellated, ovoid in shape with plasmalemma filapodia and are encased in an extracellular capsule.  相似文献   

11.
12.
The histomorphology of the male reproductive system and surface morphology of the “peg-and-socket” in Argulus japonicus are described from serial sagittal and transverse sections and scanning electron micrographs. The prostate complex consists of a glandular part, a reservoir for storing the secretion, and an efferent duct opening into the ejaculatory duct. The openings of both the vas deferens and the prostate duct into the ejaculatory duct are guarded by sphincters. The ejaculatory ducts, which are lined by tall columnar epithelial cells, do not open into the cuticle-lined genital atrium but are blind-ending tubes. This observation and results obtained from observing live specimens, as well as the fact that no spermatophores are formed, suggest that semen could leave the ejaculatory duct only after puncturing of its walls. It is suggested that sperm transfer is accomplished in the following manner: during copulation contraction of the muscular walls of the vas deferens and prostate duct causes semen to be pumped into the ejaculatory duct, which is then closed off by sphincters and a high internal pressure is developed. When a spermathecal spine penetrates the walls of the ejaculatory duct, semen flows from the ejaculatory duct into the spermathecal vesicle due to the higher pressure in the ejaculatory duct. This mechanism is analogous to the sucking up of fluid with a hypodermic syringe. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Data on the reproductive biology of the genus Hippolyte are available from studies of Hippolyte inermis. These findings support the idea that these species are protandric hermaphrodites, exhibiting sex reversal. However, recent studies of this and other species, such as Hippolyte obliquimanus and Hippolyte williamsi, have not reported sex reversal and suggest a gonochoric condition. In the present study, histological analyses were conducted of the ovaries, testes, oviducts, vasa deferentia and the development of the male appendage. The results of this study show that the Hippolyte niezabitowskii population from southern Spain should also be viewed as a gonochoric species. The study found no evidence of sex reversals. These conclusions are also supported by information on the structure of the population and by the results of studies of the male appendage. The population structure involves different size distributions of males and of females. Size classes 2-14 exhibit substantial overlap. No evidence of sex reversal was obtained from the study of the male appendage.  相似文献   

14.
In order to understand branchiuran reproductive biology, it is imperative to know the sites of oogenesis and oocyte maturation, locate the accessory reproductive glands, and identify the fertilization site with the present knowledge of the sperm transfer mechanism of the genus Argulus. With these objectives, we attempted to describe the female reproductive system of Argulus bengalensis using serial histological sections through the ovaries and associated ducts in the transverse, longitudinal, and sagittal planes. The reproductive organs include a median ovary, one pair of ovarian lumina, a median oviduct, and a pair of collateral accessory glands. A duct from each of the collateral accessory glands leads into the proximal part of the median oviduct, which opens to the exterior through a genital opening at the distal end. The glandular secretion presumably contributes to the jelly coat of the egg. The ovary is bound with a tunica propria which extends further diametrically inside the ovary forming the paired lumina. The lumina are confluent into the median oviduct. Two distinct areas, the germarium and differentiating zones, are clearly distinguishable within the ovary. The tunica propria itself houses the oogonia within a matrix, serving as the germarium. Transmission electron micrograph reveals that the matrix is made of collagen. The collagen matrix confers elasticity to the tunica propria to accommodate the postvitellogenic oocytes within the ovarian lumen. The differentiating zone is situated in between the germarium: dorsally it is covered with a chromatophore layer. The ovary is ensheathed by a circum ovarian striated muscle. The presence of spermatophores in the ovarian lumen indicates the fertilization site. J. Morphol. 277:707–716, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
In the broader context of research on the Sicilian Porcellio imbutus-complex, the postmarsupial development of Porcellio siculoccidentalis Viglianisi, Lombardo & Caruso, 1992 was studied in detail. This research was conducted in the laboratory under controlled conditions, allowing us to follow the stages of development, from the formation of the marsupium in ovigerous females until the larval stages and development of the seventh pair of legs. The timing of developmental stages and the morphological modifications of appendages in the postmarsupial manca stages (M I-M III) are described. The manca stage M I had a duration of about one hour. Ovigerous females were collected and reared separately, and the number of parturial molts in the absence of males was counted. The results showed a maximum of four successive parturial molts. Fecundity and fertility were evaluated as the number of eggs and embryos, respectively, inside the marsupium of the ovigerous females. Both parameters were positively correlated with the size of the females. The maximum numbers of eggs and embryos in the marsupium were 113 and 141, respectively. Data describing the total number of postmarsupial mancas released per month indicated that the highest release occurred in April.  相似文献   

16.
17.
18.
19.
The male reproductive system of Ligia exotica consists of a pair of testes, a pair of vasa deferentia and a pair of genital pores. The testes are tube-like, unpigmented and translucent and each is composed of three elongate, fusiform follicles. The follicular lumen of the mature testis contains spermatogonia, spermatocytes, spermatids and spermatozoa. The histochemical reactions of the testis and the vas deferens show the presence of acidic sulphated mucopolysaccharides and neutral mucopolysaccharides. In addition, they contain basic proteins, tyrosine, disulphide groups, SH-groups, SH-groups, lipids, phospholipids, RNA and DNA.  相似文献   

20.
The morphology of the male reproductive system as well as sperm transfer in Branchiura has been described for Dolops ranarum and Argulus japonicus. In this study, the reproductive system and accessory structures are described for male Chonopeltis australis using histology, light microscopy, and scanning electron microscopy. For the first time, we describe sperm transfer by means of a spermatophore in this genus. The internal and external morphology and mechanism of sperm transfer is compared with other Branchiura, where it has been described. The morphology of the reproductive system of C. australis is similar to that of D. ranarum while the accessory structures and the spermatophore produced are similar to that of A. japonicus. A revision of the definition of Branchiura with respect to reproduction is provided. J. Morphol. 276:209–218, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号