首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP-activated kinase (AMPK) is a key regulator of many cellular mechanisms required for adjustment to various stresses induced by the changing environment. In C. elegans dauer larvae AMPK-null mutants expire prematurely due to hyperactive Adipose Triglyceride Lipase (ATGL-1) followed by rapid depletion of triglyceride stores. We found that the compromise of one of the three C. elegans orthologues of human cgi-58 significantly improves the survival of AMPK-deficient dauers. We also provide evidence that C. elegans CGI-58 acts as a co-activator of ATGL-1, while it also functions cooperatively to maintain regular lipid droplet structure. Surprisingly, we show that it also acts independently of ATGL-1 to restrict lipid droplet coalescence by altering the surface abundance and composition of long chain (C20) polyunsaturated fatty acids (PUFAs). Our data reveal a novel structural role of CGI-58 in maintaining lipid droplet homeostasis through its effects on droplet composition, morphology and lipid hydrolysis; a conserved function that may account for some of the ATGL-1-independent features unique to Chanarin-Dorfman Syndrome.  相似文献   

2.
Cells store lipids in droplets. Studies addressing how mammals control lipid-based energy homeostasis have implicated proteins of the PAT domain family, such as perilipin that surrounds the lipid droplets. Perilipin knock-out mice are lean and resistant to obesity. Factors that mediate lipid storage in fungi are still unknown. Here we describe a gene (Mpl1) in the economically important insect fungal pathogen Metarhizium anisopliae that has structural similarities to mammalian perilipins. Consistent with a role in lipid storage, Mpl1 is predominantly expressed when M. anisopliae is engaged in accumulating lipids and ectopically expressed green fluorescent protein-tagged MPL1 (Metarhizium perilipin-like protein) localized to lipid droplets. Mutant M. anisopliae lacking MPL1 have thinner hyphae, fewer lipid droplets, particularly in appressoria (specialized infection structures at the end of germ tubes), and a decrease in total lipids. Mpl1 therefore acts in a perilipin-like manner suggesting an evolutionary conserved function in lipid metabolism. However, reflecting general differences between animal and fungal lineages, these proteins have also been selected to cope with different tasks. Thus, turgor generation by DeltaMpl1 appressoria is dramatically reduced indicating that lipid droplets are required for solute accumulation. This was linked with the reduced ability to breach insect cuticle so that Mpl1 is a pathogenicity determinant. Blast searches of fungal genomes revealed that perilipin homologs are found only in pezizomycotinal ascomycetes and occur as single copy genes. Expression of Mpl1 in yeast cells, a fungus that lacks a perilipin-like gene, blocked their ability to mobilize lipids during starvation conditions.  相似文献   

3.
4.

Background

Perilipin 2 (Plin2) is a lipid droplet protein that has roles in both lipid and glucose homeostasis. An increase in Plin2 in liver is associated with the development of steatosis, glucose intolerance, and ceramide accumulation in alcoholic liver disease. We investigated the role of Plin2 on energy balance and glucose and lipid homeostasis in wildtype and Plin2 knockout (Plin2KO) mice chronically fed a Lieber-DeCarli liquid ethanol or control diet for six weeks.

Methods

We performed in vivo measurements of energy intake and expenditure; body composition; and glucose tolerance. After sacrifice, liver was dissected for histology and lipid analysis.

Results

We found that neither genotype nor diet had a significant effect on final weight, body composition, or energy intake between WT and Plin2KO mice fed alcohol or control diets. Additionally, alcohol feeding did not affect oxygen consumption or carbon dioxide production in Plin2KO mice. We performed glucose tolerance testing and observed that alcohol feeding failed to impair glucose tolerance in Plin2KO mice. Most notably, absence of Plin2 prevented hepatic steatosis and ceramide accumulation in alcohol-fed mice. These changes were related to downregulation of genes involved in lipogenesis and triglyceride synthesis.

Conclusions

Plin2KO mice chronically fed alcohol are protected from hepatic steatosis, glucose intolerance, and hepatic ceramide accumulation, suggesting a critical pathogenic role of Plin2 in experimental alcoholic liver disease.  相似文献   

5.
6.
Abstract: The protooncogene bcl-2 rescues cells from a wide variety of insults. Recent evidence suggests that the mechanism of action of Bcl-2 involves antioxidant activity. The involvement of free radicals in ischemia/reperfusion injury to neural cells has led us to investigate the effect of Bcl-2 in a model of delayed neural cell death. We have examined the survival of control and bcl-2 transfectants of a hypothalamic tumor cell line, GT1-7, exposed to potassium cyanide in the absence of glucose (chemical hypoxia/aglycemia). After 30 min of treatment, no loss of viability was evident in control or bcl-2 transfectants; however, Bcl-2-expressing cells were protected from delayed cell death measured following 24–72 h of reoxygenation. Under these conditions, the rate and extent of ATP depletion in response to treatment with cyanide in the absence of glucose and the rate of recovery of ATP during reenergization were similar in control and Bcl-2-expressing cells. Bcl-2-expressing cells were protected from oxidative damage resulting from this treatment, as indicated by significantly lower levels of oxidized lipids. Mitochondrial respiration in control but not Bcl-2-expressing cells was compromised immediately following hypoxic treatment. These results indicate that Bcl-2 can protect neural cells from delayed death resulting from chemical hypoxia and reenergization, and may do so by an antioxidant mechanism. The results thereby provide evidence that Bcl-2 or a Bcl-2 mimetic has potential therapeutic application in the treatment of neuropathologies involving oxidative stress, including focal and global cerebral ischemia.  相似文献   

7.
Silencing at the cryptic mating-type loci HML and HMR of Saccharomyces cerevisiae requires regulatory sites called silencers. Mutations in the Rap1 and Abf1 binding sites of the HMR-E silencer (HMRa-e**) cause the silencer to be nonfunctional, and hence, cause derepression of HMR. Here, we have isolated and characterized mutations in SAS2 as second-site suppressors of the silencing defect of HMRa-e**. Silencing conferred by the removal of SAS2 (sas2Δ) depended upon the integrity of the ARS consensus sequence of the HMR-E silencer, thus arguing for an involvement of the origin recognition complex (ORC). Restoration of silencing by sas2Δ required ORC2 and ORC5, but not SIR1 or RAP1. Furthermore, sas2Δ suppressed the temperature sensitivity, but not the silencing defect of orc2-1 and orc5-1. Moreover, sas2Δ had opposing effects on silencing of HML and HMR. The putative Sas2 protein bears similarities to known protein acetyltransferases. Several models for the role of Sas2 in silencing are discussed.  相似文献   

8.
Abstract— The objective of the present experiments was to correlate changes in cellular energy metabolism, dissipative ion fluxes, and lipolysis during the first 90 s of ischemia and, hence, to establish whether phospholipase A2or phospholipase C is responsible for the early accumulation of phospholipid hydrolysis products. Ischemia was induced for 15–90 s in rats, extracellular K+ (K+e) was recorded, and neocortex was frozen in situ for measurements of labile tissue metabolites, free fatty acids, and diacylglycerides. Ischemia of 15-and 30-s duration gave rise to a decrease in phosphocreatine concentration and a decline in the ATP/free ADP ratio. Although these changes were accompanied by an activation of K+ conductances, there were no changes in free fatty acids until after 60s, when free arachidonic acid accumulated. An increase in other free fatty acids and in total diacylglyceride content did not occur until after anoxic depolarization. The results demonstrate that the early functional changes, such as activation of K+ conductances, are unrelated to changes in lipids or lipid mediators. They furthermore suggest that the initial lipolysis occurs via both phospholipase A2 and phospholipase C, which are activated when membrane depolarization leads to influx of calcium into cells.  相似文献   

9.
Individuals with the inherited cancer predisposition syndrome neurofibromatosis 2 (NF2) develop several central nervous system (CNS) malignancies, including glial cell neoplasms (ependymomas). Recent studies have suggested that the NF2 protein, merlin (or schwannomin), may regulate receptor tyrosine kinase signaling, intracellular mitogenic growth control pathways, or adherens junction organization in non-nervous-system cell types. For this report, we used glial fibrillary acidic protein conditional knockout mice and derivative glia to determine how merlin regulates CNS glial cell proliferation. We show that the loss of merlin in glial cells results in increased proliferation in vitro and in vivo. Merlin regulation of glial cell growth reflects deregulated Src activity, such that pharmacologic or genetic inhibition of Src activation reduces Nf2−/− glial cell growth to wild-type levels. We further show that Src regulates Nf2−/− glial cell growth by sequentially regulating FAK and paxillin phosphorylation/activity. Next, we demonstrate that Src activation results from merlin regulation of ErbB2 activation and that genetic or pharmacologic ErbB2 inhibition reduces Nf2−/− glial cell Src/Src effector activation and proliferation to wild-type levels. Lastly, we show that merlin competes with Src for direct binding to ErbB2 and present a novel molecular mechanism for merlin regulation of ErbB2-dependent Src signaling and growth control.Neurofibromatosis type 2 (NF2) is an autosomal dominant inherited cancer syndrome in which affected individuals develop nervous system tumors, including peripheral nerve tumors (schwannomas), leptomeningeal tumors (meningiomas), and glial fibrillary acidic protein (GFAP)-immunoreactive glial cell tumors (spinal ependymomas). NF2 results from a germ line mutation in the NF2 tumor suppressor gene, located on chromosome 22q (46, 60). Tumors in this disorder arise following somatic inactivation of the one remaining wild-type (WT) NF2 allele in specific cell types. In this regard, NF2-associated schwannomas, meningiomas, and ependymomas all exhibit biallelic NF2 gene inactivation (33, 47, 61). In addition, NF2 gene inactivation is also observed in 50 to 78% of sporadic schwannomas, 32 to 84% of sporadic meningiomas, and 37% of sporadic ependymomas (21, 29), suggesting that this gene is also a key growth regulator in nonhereditary nervous system cancers.The NF2 gene was identified in 1993 and found to code for a 595-amino-acid protein, termed merlin or schwannomin (46, 60). Analysis of the predicted protein sequence revealed striking sequence similarity between merlin and a family of protein 4.1 family members that link the actin cytoskeleton to cell surface glycoproteins (55). In particular, merlin most closely resembles the ezrin/radixin/moesin (ERM) subfamily and has been shown to bind actin as well as to associate with several cell surface glycoproteins, including CD44 and β1-integrin (5, 32, 48). However, unlike the ERM proteins, merlin is unique in its capacity to function as a nervous system tumor suppressor gene.In order to identify the key signaling pathways regulated by the merlin tumor suppressor protein, previous studies have focused on merlin growth regulation in fibroblasts, primary Schwann cell and human schwannoma cell cultures, meningioma and schwannoma tumor cell lines, and other non-central nervous system (non-CNS) cell types. These investigations have resulted in the identification of a large number of nonintersecting growth control pathways regulated by merlin in different cell types. In this regard, merlin has been implicated in epidermal growth factor receptor (EGFR) (9), β1-integrin (15), and CD44 (1, 35, 48) function as well as in Ras (25, 59), Rac1 (34, 52), phosphatidylinositol 3-kinase (44), mitogen-activated protein kinase (MAPK) (7, 30), and STAT (51) intracellular signaling. While each of these pathways is involved in growth control in the brain, it is not known which of these intracellular signaling pathways are deregulated in NF2-deficient CNS cell types.To gain insights into the role of the NF2 gene in glial cell growth control relevant to the development of targeted therapies for NF2-associated glial cell malignancies, we studied the consequence of merlin loss on the growth of primary brain glial cells (astrocytes) in vitro and in vivo, using Nf2 conditional knockout genetically engineered mice (GEM). We demonstrate for the first time that merlin regulates brain glial cell growth by controlling the phosphorylation/activity of Src and its downstream effectors, FAK and paxillin. Furthermore, we show that merlin regulation of Src phosphorylation/activation is modulated by ErbB2 phosphorylation/activation and ErbB2-Src binding. Finally, we show that merlin competitively inhibits Src binding to ErbB2 and, in this manner, prevents ErbB2-mediated Src phosphorylation and downstream mitogenic signaling. Based on these findings, we propose a novel mechanism for merlin growth regulation in CNS glia.  相似文献   

10.
The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.  相似文献   

11.
Eukaryotic genomes are repetitively packaged into chromatin by nucleosomes, however they are regulated by the differences between nucleosomes, which establish various chromatin states. Local chromatin cues direct the inheritance and propagation of chromatin status via self-reinforcing epigenetic mechanisms. Replication-independent histone exchange could potentially perturb chromatin status if histone exchange chaperones, such as Swr1C, loaded histone variants into wrong sites. Here we show that in Schizosaccharomyces pombe, like Saccharomyces cerevisiae, Swr1C is required for loading H2A.Z into specific sites, including the promoters of lowly expressed genes. However S. pombe Swr1C has an extra subunit, Msc1, which is a JumonjiC-domain protein of the Lid/Jarid1 family. Deletion of Msc1 did not disrupt the S. pombe Swr1C or its ability to bind and load H2A.Z into euchromatin, however H2A.Z was ectopically found in the inner centromere and in subtelomeric chromatin. Normally this subtelomeric region not only lacks H2A.Z but also shows uniformly lower levels of H3K4me2, H4K5, and K12 acetylation than euchromatin and disproportionately contains the most lowly expressed genes during vegetative growth, including many meiotic-specific genes. Genes within and adjacent to subtelomeric chromatin become overexpressed in the absence of either Msc1, Swr1, or paradoxically H2A.Z itself. We also show that H2A.Z is N-terminally acetylated before, and lysine acetylated after, loading into chromatin and that it physically associates with the Nap1 histone chaperone. However, we find a negative correlation between the genomic distributions of H2A.Z and Nap1/Hrp1/Hrp3, suggesting that the Nap1 chaperones remove H2A.Z from chromatin. These data describe H2A.Z action in S. pombe and identify a new mode of chromatin surveillance and maintenance based on negative regulation of histone variant misincorporation.  相似文献   

12.
Organic anion transporter 3 (OAT3) plays a vital role in removing a broad array of anionic drugs from kidney, thereby avoiding their possibly toxic side effects in the body. We earlier demonstrated that OAT3 is subjected to a specific type of post-translational modification called SUMOylation. SUMOylation is a dynamic event, where de-SUMOylation is catalyzed by a class of SUMO-specific proteases. In the present investigation, we assessed the role of SUMO-specific protease Senp2 in OAT3 SUMOylation, expression and function. We report here that overexpression of Senp2 in COS-7 cells led to a reduced OAT3 SUMOylation, which correlated well with a decreased OAT3 expression and transport activity. Such phenomenon was not observed in cells overexpressing an inactive mutant of Senp2. Furthermore, transfection of cells with Senp2-specific siRNA to knockdown the endogenous Senp2 resulted in an increased OAT3 SUMOylation, which correlated well with an enhanced OAT3 expression and transport activity. Coimmunoprecipitation experiments showed that Senp2 directly interacted with OAT3 in the kidneys of rats. Together these results provided first demonstration that Senp2 is a significant regulator for OAT3-mediated organic anion/drug transport.  相似文献   

13.
《Journal of lipid research》2017,58(6):1036-1043
The LDL receptor (LDLR) family has long been studied for its role in cholesterol transport and metabolism; however, the identification of ApoE4, an LDLR ligand, as a genetic risk factor for late-onset Alzheimer's disease has focused attention on the role this receptor family plays in the CNS. Surprisingly, it was discovered that two LDLR family members, ApoE receptor 2 (Apoer2) and VLDL receptor (Vldlr), play key roles in brain development and adult synaptic plasticity, primarily by mediating Reelin signaling. This review focuses on Apoer2 and Vldlr signaling in the CNS and its role in human disease.  相似文献   

14.
Apoptosis is a potent immune barrier against viral infection, and many viruses, including poxviruses, encode proteins to overcome this defense. Interestingly, the avipoxviruses, which include fowlpox and canarypox virus, are the only poxviruses known to encode proteins with obvious Bcl-2 sequence homology. We previously characterized the fowlpox virus protein FPV039 as a Bcl-2-like antiapoptotic protein that inhibits apoptosis by interacting with and inactivating the proapoptotic cellular protein Bak. However, both Bak and Bax can independently trigger cell death. Thus, to effectively inhibit apoptosis, a number of viruses also inhibit Bax. Here we show that FPV039 inhibited apoptosis induced by Bax overexpression and prevented both the conformational activation of Bax and the subsequent formation of Bax oligomers at the mitochondria, two critical steps in the induction of apoptosis. Additionally, FPV039 interacted with activated Bax in the context of Bax overexpression and virus infection. Importantly, the ability of FPV039 to interact with active Bax and inhibit Bax activity was dependent on the structurally conserved BH3 domain of FPV039, even though this domain possesses little sequence homology to other BH3 domains. FPV039 also inhibited apoptosis induced by the BH3-only proteins, upstream activators of Bak and Bax, despite interacting detectably with only two: BimL and Bik. Collectively, our data suggest that FPV039 inhibits apoptosis by sequestering and inactivating multiple proapoptotic Bcl-2 proteins, including certain BH3-only proteins and both of the critical “gatekeepers” of apoptosis, Bak and Bax.Apoptosis is a highly conserved form of programmed cell death that plays an important role in the immune defense against pathogens. The controlled and deliberate destruction of virally infected cells comprises a potent innate immune barrier against rampant viral replication and infection. As such, many viruses, including poxviruses, encode numerous proteins that inhibit a variety of steps in the biochemical pathways that lead to cell death (29, 69).The mitochondria, and the Bcl-2 family of proteins that preside over them, serve as an important control point in the regulation of apoptosis (87). United by the presence of one to four highly conserved Bcl-2 homology (BH) domains, the Bcl-2 family regulates the integrity of the outer mitochondrial membrane (OMM) and controls the release of apoptogenic molecules from the mitochondrial intermembrane space. Bak and Bax, the two proapoptotic Bcl-2 proteins, possess BH domains 1 to 3 and, upon activation, commit the cell to death (53, 77). Whereas Bak resides constitutively at the OMM, Bax exists in an inactive form in the cytoplasm and, upon apoptotic insult, undergoes a conformational change that exposes its C-terminal transmembrane domain and results in its relocalization to the OMM (10, 34, 41, 56). The attendant exposure of the N termini of both Bak and Bax precedes Bak and Bax homooligomerization, which facilitates mitochondrial damage and, ultimately, the release of cytochrome c (3, 4, 36, 37, 76). Cytochrome c, in turn, triggers the activation of caspases, a group of cysteine proteases responsible for dismantling the apoptotic cell (59). Bak and Bax are therefore crucial for the induction of apoptosis and, because either Bak or Bax alone is sufficient to facilitate the release of cytochrome c, both must be inactivated to effectively inhibit apoptosis (53, 77, 90). The activation of Bak and Bax is counteracted by the antiapoptotic members of the Bcl-2 family, including Bcl-2, Bcl-XL, and Mcl-1. These three proteins, which possess all four BH domains, reside at the mitochondria and prevent apoptosis by directly interacting with and inhibiting Bak and Bax or the BH3-only proteins (87). The BH3-only proteins, which possess only the BH3 domain, act as sentinels responsive to a variety of cellular stresses, including virus infection (79). Upon receipt of an apoptotic stimulus, BH3-only proteins become activated and subsequently activate Bak and Bax or inhibit the antiapoptotic function of Bcl-2, Bcl-XL, and Mcl-1 (15). Of the eight BH3-only proteins that are directly involved in the induction of apoptosis—namely, Bim, Bid, Puma, Bik, Bmf, Bad, Noxa, and Hrk—each displays a specific and characteristic ability to bind and inhibit Bcl-2 proteins (79).Like cellular antiapoptotic Bcl-2 proteins, viral inhibitors of apoptosis have evolved especially to interfere with the activation of Bak and Bax (18, 40). For example, E1B 19K, encoded by adenovirus, and M11L, encoded by myxoma virus, bind and inactivate both Bak and Bax to inhibit apoptosis (26, 49, 65, 67, 72). Similarly, ORF125, the antiapoptotic protein encoded by the poxvirus Orf virus, also inactivates Bak and Bax, but exactly how ORF125 mediates this inactivation remains unknown (78). Although interacting with Bak and Bax is ostensibly the most direct way to prevent apoptosis, several viral antiapoptotic proteins appear to inhibit apoptosis by functioning upstream of Bak and Bax at the level of the BH3-only proteins. The vaccinia virus protein F1L, for example, interacts with Bak but not Bax, yet F1L is nonetheless capable of inactivating Bax, likely a result of F1L interacting with the BH3-only protein and Bax activator, Bim (61, 70, 74). Moreover, the Bcl-2 homolog encoded by Kaposi''s sarcoma-associated herpesvirus, and BHRF-1, encoded by Epstein-Barr virus, each interact with a specific and distinct array of BH3-only proteins, yet neither protein interacts detectably with Bak or Bax (14, 27, 44). Thus, to effectively inhibit apoptosis, it may not be necessary for viral proteins to directly target Bak and Bax but, instead, to prevent the activation of Bak and Bax by interfering with the upstream BH3-only proteins (15).Recently, our lab has shown that FPV039, encoded by fowlpox virus, localizes to the mitochondria, where it inhibits apoptosis induced by a variety of stimuli (6). Interestingly, FPV039 is the only characterized poxvirus protein that shares obvious, albeit limited, sequence homology with cellular Bcl-2 proteins (1, 6). FPV039 possesses a highly conserved BH1 and BH2 domain but lacks an obvious BH3 and BH4 domain. Importantly, however, we predicted structural homology between the Bcl-2 BH3 domain and a corresponding region in FPV039, and we validated the prediction by showing that this cryptic FPV039 BH3 domain is functionally important (6). Indeed, the ability of FPV039 to interact with the proapoptotic protein Bak is dependent on this cryptic BH3 domain (6). Thus, despite lacking sequence conservation of a highly conserved BH3 domain, FPV039 is able to interact with, and inactivate, the proapoptotic protein Bak. Nevertheless, to completely inhibit apoptosis, both Bak and Bax must be inactivated.Accordingly, we wanted to determine whether FPV039, in addition to inactivating Bak, could inactivate Bax. We report here that FPV039 inhibited Bax activity and prevented critical steps in Bax activation. FPV039 did not appear to interact with endogenous inactive Bax; however, FPV039 was able to interact with active Bax. Moreover, FPV039 inhibited apoptosis induced by the BH3-only proteins despite interacting with only BimL and Bik. Together, these data strongly suggest FPV039 inhibits apoptosis by inactivating multiple proapoptotic Bcl-2 proteins, including the critical Bak and Bax, as well as a discrete subset of BH3-only proteins.  相似文献   

15.
摘要 目的:探讨2型糖尿病(T2DM)患者血清鸢尾素(Irisin)、摄食抑制因子-1(Nesfatin-1)、3-硝基酪氨酸(3-NT)水平与糖脂代谢和阻塞性睡眠呼吸暂停低通气综合征(OSAHS)的关系。方法:选择2020年4月~2021年9月期间中国人民解放军总医院京南医疗区收治的T2DM患者80例作为研究对象,根据多导睡眠图(PSG)检查结果,合并OSAHS的51例患者列为T2DM合并OSAHS组,剩余的29例纳为T2DM未合并OSAHS组。选择同期来中国人民解放军总医院京南医疗区体检的40例健康志愿者作为对照组。对比T2DM患者、对照组的Irisin、Nesfatin-1、3-NT水平,采用Pearson相关性分析显示Irisin、Nesfatin-1、3-NT与糖脂代谢指标的相关性。T2DM患者发生OSAHS的影响因素采用多因素Logistic回归分析。结果:T2DM合并OSAHS组、T2DM未合并OSAHS组Irisin低于对照组,且T2DM合并OSAHS组低于T2DM未合并OSAHS组(P<0.05)。T2DM合并OSAHS组、T2DM未合并OSAHS组Nesfatin-1、3-NT高于对照组,且T2DM合并OSAHS组高于T2DM未合并OSAHS组(P<0.05)。T2DM合并OSAHS组、T2DM未合并OSAHS组糖化血红蛋白(HbAlc)、空腹血糖(FBG)、餐后2 h血糖(2hPG)高于对照组,且T2DM合并OSAHS组高于T2DM未合并OSAHS组(P<0.05)。T2DM合并OSAHS组、T2DM未合并OSAHS组三酰甘油(TG)、低密度脂蛋白胆固醇(LDL-C)、总胆固醇(TC)较对照组高,高密度脂蛋白胆固醇(HDL-C)低于对照组(P<0.05)。Pearson相关性分析结果显示,Irisin与HbAlc、FBG、2hPG呈负相关,Nesfatin-1、3-NT与HbAlc、FBG、2hPG呈正相关(P<0.05)。T2DM合并OSAHS组、T2DM未合并OSAHS组的年龄、合并高血压、体质量指数、AHI、空腹C肽、合并冠心病对比有差异(P<0.05)。Irisin、Nesfatin-1、3-NT、HbAlc、FBG、2hPG、年龄、合并高血压是T2DM患者发生OSAHS的影响因素(P<0.05)。结论:T2DM合并OSAHS患者的Irisin、Nesfatin-1、3-NT水平表达异常,参与着机体的糖脂代谢过程及OSAHS发生,且OSAHS发生同时还受到HbAlc、FBG、2hPG、年龄、合并高血压的影响,可考虑对上述因素进行早期监测,以进行相关干预。  相似文献   

16.
The pmr gene is predicted to encode a Ca2+-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmrRIP, in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl2 (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca2+-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca2+-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmrRIP Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.  相似文献   

17.

Objective

A consensus has not been reached regarding the association of several different gene polymorphisms and susceptibility to obstructive sleep apnea syndrome (OSAS). We performed a meta-analysis to better evaluate the associations between 5-HT2A, 5-HTT, and LEPR polymorphisms, and OSAS.

Method

5-HT2A, 5-HTT, and LEPR polymorphisms and OSAS were identified in PubMed and EMBASE. The pooled odd rates (ORs) with 95%CIs were estimated using a fixed-effect or random-effect models. The associations between these polymorphisms and OSAS risk were assessed using dominant, recessive and additive models.

Results

Twelve publications were included in this study. The -1438 “A” allele of 5-HT2A was identified as a candidate genetic risk factor for OSAS (OR: 2.33, 95%CI 1.49–3.66). Individuals carrying the -1438 “G” allele had a nearly 70% reduced risk of OSAS when compared with AA homozygotes (OR: 0.30, 95%CI 0.23–0.40). There was no significant association between 5-HT2A 102C/T and OSAS risk, using any model. The “S” allele of 5-HTTLPR conferred protection against OSAS (OR: 0.80, 95%CI 0.67–0.95), while the “10” allele of 5-HTTVNTR contributed to the risk of OSAS (OR: 2.08, 95%CI: 1.58–2.73). The “GG” genotype of LEPR was associated with a reduced risk of OSAS (OR: 0.39, 95%CI 0.17–0.88).

Conclusion

The meta-analysis demonstrated that 5-HTR-1438 “A” and 5-HTTVNTR “10” alleles were significantly associated with OSAS. The “S” allele of 5-HTTLPR and the “GG” genotype of LEPR conferred protection against OSAS. Further studies, such as Genome-Wide Association study (GWAS), should be conducted in a large cohort of OSAS patients to confirm our findings.  相似文献   

18.
19.
20.
Probiotics and Antimicrobial Proteins - The purpose of this systematic review and meta-analysis of randomized controlled trials (RCTs) is to determine the effectiveness of probiotic supplementation...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号