首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inclusive fitness theory provides the conceptual framework for our current understanding of social evolution, and empirical studies suggest that kin selection is a critical process in the evolution of animal sociality. A key prediction of inclusive fitness theory is that altruistic behaviour evolves when the costs incurred by an altruist (c) are outweighed by the benefit to the recipient (b), weighted by the relatedness of altruist to recipient (r), i.e. Hamilton''s rule rb > c. Despite its central importance in social evolution theory, there have been relatively few empirical tests of Hamilton''s rule, and hardly any among cooperatively breeding vertebrates, leading some authors to question its utility. Here, we use data from a long-term study of cooperatively breeding long-tailed tits Aegithalos caudatus to examine whether helping behaviour satisfies Hamilton''s condition for the evolution of altruism. We show that helpers are altruistic because they incur survival costs through the provision of alloparental care for offspring. However, they also accrue substantial benefits through increased survival of related breeders and offspring, and despite the low average relatedness of helpers to recipients, these benefits of helping outweigh the costs incurred. We conclude that Hamilton''s rule for the evolution of altruistic helping behaviour is satisfied in this species.  相似文献   

3.
The social environment in which an animal lives can profoundly impact its physiology, including glucocorticoid (GC) responses to external stressors. In social, group-living species, individuals may face stressors arising from regular interactions with conspecifics as well as those associated with basic life history needs such as acquiring food or shelter. To explore the relative contributions of these two types of stressors on glucocorticoid physiology in a communally breeding mammal, we characterized baseline GC levels in female colonial tuco-tucos (Ctenomys sociabilis), which are subterranean rodents endemic to southwestern Argentina. Long-term field studies have revealed that while about half of all yearling female C. sociabilis live and breed alone, the remainder live and breed within their natal group. We assessed the effects of this intraspecific variation in social environment on GC physiology by comparing concentrations of baseline fecal corticosterone metabolite (fCM) for (1) lone and group-living yearling females in a free-living population of C. sociabilis and (2) captive yearling female C. sociabilis that had been experimentally assigned to live alone or with conspecifics. In both cases, lone females displayed significantly higher mean baseline fCM concentrations. Data from free-living animals indicated that this outcome arose from differences in circadian patterns of GC production. fCM concentrations for group-living animals declined in the afternoon while fCM in lone individuals did not. These findings suggest that for C. sociabilis, stressors associated with basic life history functions present greater challenges than those arising from interactions with conspecifics. Our study is one of the first to examine GC levels in a plural-breeding mammal in which the effects of group-living are not confounded by differences in reproductive or dominance status, thereby generating important insights into the endocrine consequences of group-living.  相似文献   

4.
Members of animal groups face a trade-off between the benefits of remaining with a familiar group and the potential benefits of dispersing into a new group. Here, we examined the group membership decisions of Neolamprologus pulcher, a group-living cichlid. We found that subordinate helpers showed a preference for joining familiar groups, but when choosing between two unfamiliar groups, helpers did not preferentially join groups that maximized their social rank. Rather, helpers preferred groups containing larger, more dominant individuals, despite receiving significantly more aggression within these groups, possibly owing to increased protection from predation in such groups. These results suggest a complex decision process in N. pulcher when choosing among groups, dependent not only on familiarity but also on the social and life-history consequences of joining new groups.  相似文献   

5.
Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls.  相似文献   

6.
Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger.  相似文献   

7.
The evolution of host resistance to parasites, shaped by associated fitness costs, is crucial for epidemiology and maintenance of genetic diversity. Selection imposed by multiple parasites could be a particularly strong constraint, as hosts either accumulate costs of multiple specific resistances or evolve a more costly general resistance mechanism. We used experimental evolution to test how parasite heterogeneity influences the evolution of host resistance. We show that bacterial host populations evolved specific resistance to local bacteriophage parasites, regardless of whether they were in single or multiple-phage environments, and that hosts evolving with multiple phages were no more resistant to novel phages than those evolving with single phages. However, hosts from multiple-phage environments paid a higher cost, in terms of population growth in the absence of phage, for their evolved specific resistances than those from single-phage environments. Given that in nature host populations face selection pressures from multiple parasite strains and species, our results suggest that costs may be even more critical in shaping the evolution of resistance than previously thought. Furthermore, our results highlight that a better understanding of resistance costs under combined control strategies could lead to a more 'evolution-resistant' treatment of disease.  相似文献   

8.
B Raymond  D J Wright  M B Bonsall 《Heredity》2011,106(2):281-288
Novel resistance to pathogens and pesticides is commonly associated with a fitness cost. However, measurements of the fitness costs of insecticide resistance have used diverse methods to control for genetic background and rarely assess the effects of environmental variation. Here, we explored how genetic background interacts with resource quality to affect the expression of the fitness costs associated with resistance. We used a serially backcrossed line of the diamondback moth, Plutella xylostella, resistant to the biopesticide Bacillus thuringiensis, to estimate the costs of resistance for insects feeding on two Brassica species. We found that fitness costs increased on the better-defended Brassica oleracea cultivars. These data were included in two meta-analyses of fitness cost experiments that used standardized protocols (and a common resistant insect stock) but which varied in the methodology used to control for the effects of genetic background. The meta-analysis confirmed that fitness costs were higher on the low-quality host (B. oleracea); and experimental methodology did not influence estimates of fitness costs on that plant species. In contrast, fitness costs were heterogeneous in the Brassica pekinensis studies: fitness costs in genetically homogenized lines were significantly higher than in studies using revertant insects. We hypothesize that fitness modifiers can moderate fitness costs on high-quality plants but may not affect fitness when resource quality is low.  相似文献   

9.
Organisms partition their resources among growth, maintenance, and reproduction and, when resources become limiting, the allocation to one process necessitates reduced allocation to others. When starved, Caenorhabditis elegans adults retain progeny internally which then consume the parent body contents, and some of those larvae use the resources to reach the resistant, long-lived dauer stage. If starved under similarly extreme conditions, larvae from eggs laid outside of the body are unable to develop into dauers. We interpret this switch from ovipary, or laying eggs, to bearing live young as facultative vivipary. This switch is induced by starvation of late fourth-stage larvae, young adults, or gravid adults. In C. elegans, vivipary is the altruistic allocation of all available parental energy and nutrients to progeny, with the associated costs to adult hermaphrodites of truncated life span and fecundity. As a life-history trait, facultative vivipary is a survival-enhancing response to stress that may provide insights into the evolution of reproduction and longevity.  相似文献   

10.
A major goal of modern evolutionary biology is to understand the causes and consequences of phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes in response to variable environments. While ecological and quantitative genetic studies have evaluated models of the evolution of adaptive plasticity, some long-standing questions about plasticity require more mechanistic approaches. Here, we address two of those questions: does plasticity facilitate adaptive evolution? And do physiological costs place limits on plasticity? We examine these questions by comparing genetically and plastically regulated behavioural variation in sailfin mollies (Poecilia latipinna), which exhibit striking variation in plasticity for male mating behaviour. In this species, some genotypes respond plastically to a change in the social environment by switching between primarily courting and primarily sneaking behaviour. In contrast, other genotypes have fixed mating strategies (either courting or sneaking) and do not display plasticity. We found that genetic and plastic variation in behaviour were accompanied by partially, but not completely overlapping changes in brain gene expression, in partial support of models that predict that plasticity can facilitate adaptive evolution. We also found that behavioural plasticity was accompanied by broader and more robust changes in brain gene expression, suggesting a substantial physiological cost to plasticity. We also observed that sneaking behaviour, but not courting, was associated with upregulation of genes involved in learning and memory, suggesting that sneaking is more cognitively demanding than courtship.  相似文献   

11.
Defences against parasites are typically associated with costs to the host that contribute to the maintenance of variation in resistance. This also applies to the defence provided by the facultative bacterial endosymbiont Hamiltonella defensa, which protects its aphid hosts against parasitoid wasps while imposing life-history costs. To investigate the cost–benefit relationship within protected hosts, we introduced multiple isolates of H. defensa to the same genetic backgrounds of black bean aphids, Aphis fabae, and we quantified the protection against their parasitoid Lysiphlebus fabarum as well as the costs to the host (reduced lifespan and reproduction) in the absence of parasitoids. Surprisingly, we observed the opposite of a trade-off. Strongly protective isolates of H. defensa reduced lifespan and lifetime reproduction of unparasitized aphids to a lesser extent than weakly protective isolates. This finding has important implications for the evolution of defensive symbiosis and highlights the need for a better understanding of how strain variation in protective symbionts is maintained.  相似文献   

12.
A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance.  相似文献   

13.
A fundamental question concerning group-living species is what factors influence the evolution of sociality. Although several studies link adult social bonds to fitness, social patterns and relationships are often formed early in life and are also likely to have fitness consequences, particularly in species with lengthy developmental periods, extensive social learning, and early social bond-formation. In a longitudinal study of bottlenose dolphins (Tursiops sp.), calf social network structure, specifically the metric eigenvector centrality, predicted juvenile survival in males. Additionally, male calves that died post-weaning had stronger ties to juvenile males than surviving male calves, suggesting that juvenile males impose fitness costs on their younger counterparts. Our study indicates that selection is acting on social traits early in life and highlights the need to examine the costs and benefits of social bonds during formative life history stages.  相似文献   

14.
Rickettsia are endosymbionts of arthropods, some of which are vectored to vertebrates where they cause disease. Recently, it has been found that some Rickettsia strains harbour conjugative plasmids and others encode some conjugative machinery within the bacterial genome. We investigated the distribution of these conjugation genes in a phylogenetically diverse collection of Rickettsia isolated from arthropods. We found that these genes are common throughout the genus and, in stark contrast to other genes in the genome, conjugation genes are frequently horizontally transmitted between strains. There is no evidence to suggest that these genes are preferentially transferred between phylogenetically related strains, which is surprising given that closely related strains infect similar host species. In addition to detecting patterns of horizontal transmission between diverse Rickettsia species, these findings have implications for the evolution of pathogenicity, the evolution of Rickettsia genomes and the genetic manipulation of intracellular bacteria.  相似文献   

15.
16.

Background and Aims

Heterostyly is a floral polymorphism characterized by the reciprocal position of stamens and stigmas in different flower morphs in a population. This reciprocal herkogamy is usually associated with an incompatibility system that prevents selfing and intra-morph fertilization, termed a heteromorphic incompatibility system. In different evolutionary models explaining heterostyly, it has been alternately argued that heteromorphic incompatibility either preceded or followed the evolution of reciprocal herkogamy. In some models, reciprocal herkogamy and incompatibility have been hypothesized to be linked together during the evolution of the heterostylous system.

Methods

We examine the incompatibility systems in species with different stylar polymorphisms from the genera Lithodora and Glandora (Boraginaceae). We then test whether evolution towards reciprocal herkogamy is associated with the acquisition of incompatibility. To this end, a phylogeny of these genera and related species is reconstructed and the morphological and reproductive changes that occurred during the course of evolution are assessed.

Key Results

Both self-compatibility and self-incompatibility are found within the studied genera, along with different degrees of intra-morph compatibility. We report for the first time extensive variability among members of the genus Glandora and related species in terms of the presence or absence of intraspecies polymorphism and heteromorphic incompatibility. Overall, our results do not support a tight link between floral polymorphism and incompatibility systems.

Conclusions

The independent evolution of stylar polymorphism and incompatibility appears to have occurred in this group of plants. This refutes the canonical view that there is strong linkage between these reproductive traits.  相似文献   

17.
In this paper, we provide a historical account of the contribution of a single line of research to our current understanding of the structure of cis-regulatory regions and the genetic basis for morphological evolution. We revisit the experiments that shed light on the evolution of larval cuticular patterns within the genus Drosophila and the evolution and structure of the shavenbaby gene. We describe the experiments that led to the discovery that multiple genetic changes in the cis-regulatory region of shavenbaby caused the loss of dorsal cuticular hairs (quaternary trichomes) in first instar larvae of Drosophila sechellia. We also discuss the experiments that showed that the convergent loss of quaternary trichomes in D. sechellia and Drosophila ezoana was generated by parallel genetic changes in orthologous enhancers of shavenbaby. We discuss the observation that multiple shavenbaby enhancers drive overlapping patterns of expression in the embryo and that these apparently redundant enhancers ensure robust shavenbaby expression and trichome morphogenesis under stressful conditions. All together, these data, collected over 13 years, provide a fundamental case study in the fields of gene regulation and morphological evolution, and highlight the importance of prolonged, detailed studies of single genes.  相似文献   

18.
Background The cost–benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants.Scope This review summarizes results from the classical interpretation of the cost–benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost–benefit model.Conclusions Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.  相似文献   

19.
20.
The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1–3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号