首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chimpanzees (Pan troglodytes) and bonobos (P. paniscus) are our closest living relatives, with the human lineage diverging from the Pan lineage only around five to seven Mya, but possibly as early as eight Mya.1–2 Chimpanzees and bonobos even share genetic similarities with humans that they do not share with each other.2 Given their close genetic relationship to humans, both Pan species represent crucial living models for reconstructing our last common ancestor (LCA) and identifying uniquely human features. Comparing the similarities and differences of the two Pan is thus essential for constructing balanced models of human evolution.3  相似文献   

3.
Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5′ promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼360 bp in this region (+/− DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees.  相似文献   

4.
5.
Chimpanzees, bonobos, and human foragers share a fission-fusion social system and a mating system of joint male resource defense polygyny. Within-community skew in male strength varies among and within species. In this study, we extend a mathematical model of within-group male coalition formation among primates to derive the conditions for between-community conflicts in the form of raids. We show that the main factor affecting the presence of successful raiding is the likelihood of major discrepancies in party strength, which are set by party size distributions (and thus community size) and the skew in strength. This study confirms the functional similarities between the raiding of chimpanzees and human foragers, and it supports the “imbalance of power” hypothesis for raiding. However, it also proposes two amendments to this model. First, the absence of raiding in bonobos may be attributable more to potential female involvement in defense against raids, which increases the size of defensive coalitions. Second, the model attributes some of the raiding in humans to major contrasts in instantaneous fighting ability created by surprise raids on unarmed victims; it also draws attention to the distinction between minor raids and major raids that involve multiple bands of the same community.  相似文献   

6.
Humans’ two closest primate living relatives, bonobos and chimpanzees, differ behaviorally, cognitively, and emotionally in several ways despite their general similarities. While bonobos show more affiliative behaviors towards conspecifics, chimpanzees display more overt and severe aggression against conspecifics. From a cognitive standpoint, bonobos perform better in social coordination, gaze-following and food-related cooperation, while chimpanzees excel in tasks requiring extractive foraging skills. We hypothesized that attention and motivation play an important role in shaping the species differences in behavior, cognition, and emotion. Thus, we predicted that bonobos would pay more attention to the other individuals’ face and eyes, as those are related to social affiliation and social coordination, while chimpanzees would pay more attention to the action target objects, as they are related to foraging. Using eye-tracking we examined the bonobos’ and chimpanzees’ spontaneous scanning of pictures that included eyes, mouth, face, genitals, and action target objects of conspecifics. Although bonobos and chimpanzees viewed those elements overall similarly, bonobos viewed the face and eyes longer than chimpanzees, whereas chimpanzees viewed the other elements, the mouth, action target objects and genitals, longer than bonobos. In a discriminant analysis, the individual variation in viewing patterns robustly predicted the species of individuals, thus clearly demonstrating species-specific viewing patterns. We suggest that such attentional and motivational differences between bonobos and chimpanzees could have partly contributed to shaping the species-specific behaviors, cognition, and emotion of these species, even in a relatively short period of evolutionary time.  相似文献   

7.
Studies comparing phenotypic variation with neutral genetic variation in modern humans have shown that genetic drift is a main factor of evolutionary diversification among populations. The genetic population history of our closest living relatives, the chimpanzees and bonobos, is now equally well documented, but phenotypic variation among these taxa remains relatively unexplored, and phenotype-genotype correlations are not yet documented. Also, while the adult phenotype is typically used as a reference, it remains to be investigated how phenotype-genotye correlations change during development. Here we address these questions by analyzing phenotypic evolutionary and developmental diversification in the species and subspecies of the genus Pan. Our analyses focus on the morphology of the femoral diaphysis, which represents a functionally constrained element of the locomotor system. Results show that during infancy phenotypic distances between taxa are largely congruent with non-coding (neutral) genotypic distances. Later during ontogeny, however, phenotypic distances deviate from genotypic distances, mainly as an effect of heterochronic shifts between taxon-specific developmental programs. Early phenotypic differences between Pan taxa are thus likely brought about by genetic drift while late differences reflect taxon-specific adaptations.  相似文献   

8.
For some traits, the human genome is more closely related to either the bonobo or the chimpanzee genome than they are to each other. Therefore, it becomes crucial to understand whether and how morphostructural differences between humans, chimpanzees and bonobos reflect the well known phylogeny. Here we comparatively investigated intra and extra labyrinthine semicircular canals orientation using 260 computed tomography scans of extant humans (Homo sapiens), bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Humans and bonobos proved more similarities between themselves than with chimpanzees. This finding did not fit with the well established chimpanzee – bonobo monophyly. One hypothesis was convergent evolution in which bonobos and humans produce independently similar phenotypes possibly in response to similar selective pressures that may be associated with postural adaptations. Another possibility was convergence following a “random walk” (Brownian motion) evolutionary model. A more parsimonious explanation was that the bonobo-human labyrinthine shared morphology more closely retained the ancestral condition with chimpanzees being subsequently derived. Finally, these results might be a consequence of genetic diversity and incomplete lineage sorting. The remarkable symmetry of the Semicircular Canals was the second major finding of this article with possible applications in taphonomy. It has the potential to investigate altered fossils, inferring the probability of post-mortem deformation which can lead to difficulties in understanding taxonomic variation, phylogenetic relationships, and functional morphology.  相似文献   

9.
10.
11.
The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100) performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3) to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven''s scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.  相似文献   

12.
Foraging gorillas and chimpanzees employ skilful bimanual techniques to process food plants, and there are wild populations in which 10–20% of individuals have severe hand injuries. We examined the feeding skills of one injured gorilla and two injured chimpanzees, while they dealt with plants for which intact peers employ complex techniques. Feeding efficiency was only slightly compromised in the disabled subjects, and none of them had acquired novel techniques specific to their remaining capacity. Instead, all three subjects used techniques like those of able-bodied individuals, though when several optional methods were available, their balance of preference was different. They adapted the techniques to their disabilities by the flexible substitution of a range of alternative means to achieve each step of the process, including unusual grips, use of one hand instead of two or vice versa, and use of the mouth or a foot. Compensation was at the level of detailed execution rather than overall technique and depended on transferring motor organization to novel effector organs. Our findings have implications for theories of the acquisition of complex manual skills in great apes and for the flexibility of great ape mental skills.  相似文献   

13.
The postnatal ontogenetic patterns and processes that underlie species differences in African ape adult mandibular morphology are not well understood and there is ongoing debate about whether African ape faces and mandibles develop via divergent or parallel trajectories of shape change. Using three-dimensional (3D) morphometric data, we first tested when in postnatal development differences in mandibular shape are initially evident between sister species Pan troglodytes and P. paniscus. Next, we tested whether each species has a distinct and non-parallel trajectory of mandibular development. Mandibles sampled across a broad developmental range of wildshot bonobos (n = 44) and chimpanzees (n = 59) were radiographed and aged from their dental development. We then collected 3D landmark surface data from all the mandibles. A geometric morphometric analysis of size-corrected 3D data found that bonobos and chimpanzees had parallel and linear ontogenetic trajectories of mandibular shape change. In contrast, mandibular shape was statistically different between P. paniscus and P. troglodytes as early as infancy, suggesting that species shape differences are already established near or before birth. A linear and stable trajectory of shape change suggests that mandibular ontogeny in these apes is unimpacted by non-linear variation in tooth developmental timing.  相似文献   

14.
Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and cross-species transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens.  相似文献   

15.
16.
In several primate species, peer-group rearing conditions affect the development of social behavior. We compared the social behavior of adolescent chimpanzees reared in peer groups and in a family group to see whether chimpanzees raised under different regimes show differences in sexual behavior, teasing behavior, and grooming behavior and in their ability to cope with support strategies. Surprisingly, the lack of opportunity to practice or to watch in peer groups had no measurable effect on the development of normal sexual behavior in adolescence and adulthood. Peer-group individuals groomed each other as much as peers did in the zoo. Sex differentiation in reaction to teasing and in conflict initiatives may indicate only an earlier sex differentiation in the zoo than in the peer group. This result may be attributed to the difference in demographic composition of the groups instead of some inherent difference in skill. Peer-group chimpanzees simply cannot find adult partners with which they may preferably test their position. However, there was a lack of sex differentiation in the reaction to teasing and in the number of conflicts started; both are indications of lesser sex-role development in the peer-group adolescents. Furthermore, the frequency of giving support to peers in conflicts differed, which suggests a greater ability in zoo adolescents to cope with support strategies. Accordingly, providing more natural conditions than is usual in laboratories may still add considerably to chimpanzee well-being.  相似文献   

17.
18.
The manual processing of eight species of leaf was investigated in the M‐group chimpanzees of Mahale Mountains National Park, Tanzania. Leaf species varied in the extent to which physical defences made consumption difficult. In all, 96 distinct techniques for leaf processing were identified, but two species with defended leaves (Ficus asperifolia and F. exasperata) required 2.5 as many techniques as did any of the six undefended species. Moreover, chimpanzees made more multiple leaf detachments, and made more subsequent modifications of the leaves, when dealing with the leaves of these two Ficus species, compared with the undefended leaf species. This greater complexity was associated with evidence of flexible, hierarchical organization of the process: iteration of modules consisting of several processing elements, facultative omission of modules, or substitutions of alternative modules. Comparison with data from mountain gorillas is made, and is consistent with similar cognitive architecture in the two species. We consider that, not only is hierarchical organization currently associated with mechanical difficulty in food processing, but that over evolutionary time‐scales difficulties in food processing may have selected for cognitive advance.  相似文献   

19.
Sexual behavior by infecundable females, and by same-sex and adult-immature dyads, occurs in wild and captive bonobos (Pan paniscus). Proposed functions of these behaviors, in social primates generally, include practice, paternity confusion, exchange, and communication as well as appeasement. We used this framework to interpret and to compare observations of sexual behavior in a captive bonobo group and a wild white-faced capuchin (Cebus capucinus) group. In both species, (a) sexual behavior was no more frequent in cycling females than in pregnant or lactating females and (b) same-sex and adult-immature dyads engaged in as much mounting or genitogenital contact as adult heterosexual dyads did. The species differed in that (a) bonobos engaged in sexual behavior 65 times as frequently as capuchins, (b) only bonobos engaged in sexual contact other than ventrodorsal mounting during focal observation, and (c) bonobo sexual contact was concentrated most heavily in socially tense situations in adult female–female dyads, whereas capuchin sexual contact was concentrated most heavily in socially tense situations in adult male–male dyads. These data and published literature indicate that (a) practice sex occurs in both species, (b) paternity confusion may be a current function of C. capucinus nonconceptive sex, (c) exchange sex remains undemonstrated in capuchins, and (d) communication sex is more important to members of the transferring sex—female bonobos and male capuchins—than to members of the philopatric sex.  相似文献   

20.
People sometimes fail to notice salient unexpected objects when their attention is otherwise occupied, a phenomenon known as inattentional blindness. To explore individual differences in inattentional blindness, we employed both static and dynamic tasks that either presented the unexpected object away from the focus of attention (spatial) or near the focus of attention (central). We hypothesized that noticing in central tasks might be driven by the availability of cognitive resources like working memory, and that noticing in spatial tasks might be driven by the limits on spatial attention like attention breadth. However, none of the cognitive measures predicted noticing in the dynamic central task or in either the static or dynamic spatial task. Only in the central static task did working memory capacity predict noticing, and that relationship was fairly weak. Furthermore, whether or not participants noticed an unexpected object in a static task was only weakly associated with their odds of noticing an unexpected object in a dynamic task. Taken together, our results are largely consistent with the notion that noticing unexpected objects is driven more by stochastic processes common to all people than by stable individual differences in cognitive abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号