首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus anthracis is the causative agent of anthrax and is acquired by three routes of infection: inhalational, gastrointestinal and cutaneous. Gastrointestinal (GI) anthrax is rare, but can rapidly result in severe, systemic disease that is fatal in 25%–60% of cases. Disease mechanisms of GI anthrax remain unclear due to limited numbers of clinical cases and the lack of experimental animal models. Here, we developed an in vivo murine model of GI anthrax where spore survival was maximized through the neutralization of stomach acid followed by an intragastric administration of a thiabendazole paste spore formulation. Infected mice showed a dose-dependent mortality rate and pathological features closely mimicking human GI anthrax. Since Peyer's patches in the murine intestine are the primary sites of B. anthracis growth, we developed a human M (microfold)-like-cell model using a Caco-2/Raji B-cell co-culturing system to study invasive mechanisms of GI anthrax across the intestinal epithelium. Translocation of B. anthracis spores was higher in M-like cells than Caco-2 monolayers, suggesting that M-like cells may serve as an initial entry site for spores. Here, we developed an in vivo murine model of GI anthrax and an in vitro M-like cell model that could be used to further our knowledge of GI anthrax pathogenesis.  相似文献   

2.
Bacillus anthracis is a Gram-positive, spore-forming bacterium representing the etiological agent of acute infectious disease anthrax, a lethal but rare disease of animals and humans in nature. With recent use of anthrax as a bioweapon, a number of techniques have been recently developed and evaluated to facilitate its rapid detection of B. anthracis in the environment as well as in point-of-care settings for humans suspected of exposure to the pathogen. Complex laboratory methods for B. anthracis identification are required since B. anthracis has similarities with other Bacillus species and its existence in both spore and vegetative forms. This review discusses current challenges and various improvements associated with anthrax agent detection.  相似文献   

3.
Environmental reservoirs are essential in the maintenance and transmission of anthrax but are poorly characterized. The anthrax agent, Bacillus anthracis was long considered an obligate pathogen that is dormant and passively transmitted in the environment. However, a growing number of laboratory studies indicate that, like some of its close relatives, B. anthracis has some activity outside of its vertebrate hosts. Here we show in the field that B. anthracis has significant interactions with a grass that could promote anthrax spore transmission to grazing hosts. Using a local, virulent strain of B. anthracis, we performed a field experiment in an enclosure within a grassland savanna. We found that B. anthracis increased the rate of establishment of a native grass (Enneapogon desvauxii) by 50% and that grass seeds exposed to blood reached heights that were 45% taller than controls. Further we detected significant effects of E. desvauxii, B. anthracis, and their interaction on soil bacterial taxa richness and community composition. We did not find any evidence for multiplication or increased longevity of B. anthracis in bulk soil associated with grass compared to controls. Instead interactions between B. anthracis and plants may result in increased host grazing and subsequently increased transmission to hosts.  相似文献   

4.
Bacillus anthracis is a member of the Bacillus cereus group species (also known as the “group 1 bacilli”), a collection of Gram-positive spore-forming soil bacteria that are non-fastidious facultative anaerobes with very similar growth characteristics and natural genetic exchange systems. Despite their close physiology and genetics, the B. cereus group species exhibit certain species-specific phenotypes, some of which are related to pathogenicity. B. anthracis is the etiologic agent of anthrax. Vegetative cells of B. anthracis produce anthrax toxin proteins and a poly-d-glutamic acid capsule during infection of mammalian hosts and when cultured in conditions considered to mimic the host environment. The genes associated with toxin and capsule synthesis are located on the B. anthracis plasmids, pXO1 and pXO2, respectively. Although plasmid content is considered a defining feature of the species, pXO1- and pXO2-like plasmids have been identified in strains that more closely resemble other members of the B. cereus group. The developmental nature of B. anthracis and its pathogenic (mammalian host) and environmental (soil) lifestyles of make it an interesting model for study of niche-specific bacterial gene expression and physiology.  相似文献   

5.
We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis.  相似文献   

6.
7.
To initiate and sustain an infection in mammals, bacterial pathogens must acquire host iron. However, the host''s compartmentalization of large amounts of iron in heme, which is bound primarily by hemoglobin in red blood cells, acts as a barrier to bacterial iron assimilation. Bacillus anthracis, the causative agent of the disease anthrax, secretes two NEAT (near iron transporter) proteins, IsdX1 and IsdX2, which scavenge heme from host hemoglobin and promote growth under low iron conditions. The mechanism of heme transfer from these hemophores to the bacterial cell is not known. We present evidence that the heme-bound form of IsdX1 rapidly and directionally transfers heme to IsdC, a NEAT protein covalently attached to the cell wall, as well as to IsdX2. In both cases, the transfer of heme is mediated by a physical association between the donor and recipient. Unlike Staphylococcus aureus, whose NEAT proteins acquire heme from hemoglobin directly at the bacterial surface, B. anthracis secretes IsdX1 to capture heme in the extracellular milieu and relies on NEAT-NEAT interactions to deliver the bound heme to the envelope via IsdC. Understanding the mechanism of NEAT-mediated iron transport into pathogenic Gram-positive bacteria may provide an avenue for the development of therapeutics to combat infection.  相似文献   

8.
Pulmonary exposure to Bacillus anthracis spores initiates inhalational anthrax, a life-threatening infection. It is known that dormant spores can be recovered from the lungs of infected animals months after the initial spore exposure. Consequently, a 60-day course antibiotic treatment is recommended for exposed individuals. However, there has been little information regarding details or mechanisms of spore persistence in vivo. In this study, we investigated spore persistence in a mouse model. The results indicated that weeks after intranasal inoculation with B. anthracis spores, substantial amounts of spores could be recovered from the mouse lung. Moreover, spores of B. anthracis were significantly better at persisting in the lung than spores of a non-pathogenic Bacillus subtilis strain. The majority of B. anthracis spores in the lung were tightly associated with the lung tissue, as they could not be readily removed by lavage. Immunofluorescence staining of lung sections showed that spores associated with the alveolar and airway epithelium. Confocal analysis indicated that some of the spores were inside epithelial cells. This was further confirmed by differential immunofluorescence staining of lung cells harvested from the infected lungs, suggesting that association with lung epithelial cells may provide an advantage to spore persistence in the lung. There was no or very mild inflammation in the infected lungs. Furthermore, spores were present in the lung tissue as single spores rather than in clusters. We also showed that the anthrax toxins did not play a role in persistence. Together, the results suggest that B. anthracis spores have special properties that promote their persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence.  相似文献   

9.
While anthrax is typically associated with bioterrorism, in many parts of the world the anthrax bacillus (Bacillus anthracis) is endemic in soils, where it causes sporadic disease in livestock. These soils are typically rich in organic matter and calcium that promote survival of resilient B. anthracis spores. Outbreaks of anthrax tend to occur in warm weather following rains that are believed to concentrate spores in low-lying areas where runoff collects. It has been concluded that elevated spore concentrations are not the result of vegetative growth as B. anthracis competes poorly against indigenous bacteria. Here, we test an alternative hypothesis in which amoebas, common in moist soils and pools of standing water, serve as amplifiers of B. anthracis spores by enabling germination and intracellular multiplication. Under simulated environmental conditions, we show that B. anthracis germinates and multiplies within Acanthamoeba castellanii. The growth kinetics of a fully virulent B. anthracis Ames strain (containing both the pX01 and pX02 virulence plasmids) and vaccine strain Sterne (containing only pX01) inoculated as spores in coculture with A. castellanii showed a nearly 50-fold increase in spore numbers after 72 h. In contrast, the plasmidless strain 9131 showed little growth, demonstrating that plasmid pX01 is essential for growth within A. castellanii. Electron and time-lapse fluorescence microscopy revealed that spores germinate within amoebal phagosomes, vegetative bacilli undergo multiplication, and, following demise of the amoebas, bacilli sporulate in the extracellular milieu. This analysis supports our hypothesis that amoebas contribute to the persistence and amplification of B. anthracis in natural environments.  相似文献   

10.
To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 310-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 310-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands.  相似文献   

11.
12.

Background

The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, protects bacilli from immune surveillance and allows its unimpeded growth in the host. Recently, the importance of the PGA in the pathogenesis of anthrax infection has been reported. The PGA capsule is associated with lethal toxin (LT) in the blood of experimentally infected animals and enhances the cytotoxicity of LT.

Methods

To investigate the role of anti-PGA Abs on progression of anthrax infection, two mouse anti-PGA mAbs with Kd values of 0.8 μM and 2.6 μM respectively were produced and in silico three dimensional (3D) models of mAbs with their cognitive PGA antigen complex were analyzed.

Results

Anti-PGA mAbs specifically bound encapsulated B. anthracis H9401 and showed opsonophagocytosis activity against the bacteria with complement. The enhancement effect of PGA on LT-mediated cytotoxicity was confirmed ex vivo using mouse bone marrow-derived macrophages and was effectively inhibited by anti-PGA mAb. Passive immunization of mAb completely protected mice from PGA-enhanced LT toxicity and partially rescued mice from anthrax spore challenges. 3D structure models of these mAbs and PGA complex support specific interactions between CDR and cognitive PGA. These results indicate that mouse mAb against PGA capsule prevents the progress of anthrax disease not only by eliminating the vegetative form of encapsulated B. anthracis but also by inhibiting the enhanced cytotoxic activity of LT by PGA through specific binding with PGA capsule antigen.

General significance

Our results suggest a potential role for PGA antibodies in preventing and treating anthrax infection.  相似文献   

13.
Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron‐depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic exchange. The ΔfatB strain was capable of wild‐type levels of growth in iron‐depleted conditions, indicating that FatB does not play an essential role in petrobactin uptake. In contrast, ΔfpuA bacteria exhibited a significant decrease in growth under low‐iron conditions when compared with wild‐type bacteria. This mutant could not be rescued by the addition of exogenous purified petrobactin. Further examination of this strain demonstrated increased levels of petrobactin accumulation in the culture supernatants, suggesting no defect in siderophore synthesis or export but, instead, an inability of ΔfpuA to import this siderophore. ΔfpuA spores were also significantly attenuated in a murine model of inhalational anthrax. These results provide the first genetic evidence demonstrating the role of FpuA in petrobactin uptake.  相似文献   

14.
Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.  相似文献   

15.
The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophoresis of proteins present in culture supernatants from a parent strain and an isogenic inhA1-null mutant revealed multiple differences. Of the 1,340 protein spots observed, approximately one-third were less abundant and one-third were more abundant in the inhA1 secretome than in the parent strain secretome. Proteases were strongly represented among those proteins exhibiting a 9-fold or greater change. InhA1 purified from a B. anthracis culture supernatant directly cleaved each of the anthrax toxin proteins as well as an additional secreted protease, Npr599. The conserved zinc binding motif HEXXH of InhA1 (HEYGH) was critical for its proteolytic activity. Our data reveal that InhA1 directly and indirectly modulates the form and/or abundance of over half of all the secreted proteins of B. anthracis. The proteolytic activity of InhA1 on established secreted virulence factors, additional proteases, and other secreted proteins suggests that this major protease plays an important role in virulence not only by cleaving mammalian substrates but also by modulating the B. anthracis secretome itself.  相似文献   

16.
Bacillus anthracis is a Gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 Å) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 Å2) increase in buried surface area at the tetramerization interface of the pyruvate-bound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an “Achilles heel” that can be exploited in structure-based drug design.  相似文献   

17.
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as “B. cereus variety (var.) anthracis”.  相似文献   

18.
Bacillus anthracis, the causative agent of anthrax is one of the most important biological warfare agents. In this study, surface plasmon resonance (SPR) technology was used for indirect detection of B. anthracis by detecting protective antigen (PA), a common toxin produced by all live B. anthracis bacteria. For development of biosensor, a monoclonal antibody raised against B. anthracis PA was immobilized on carboxymethyldextran modified gold chip and its interaction with PA was characterized in situ by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) were found to be 20 fM and 18.74, respectively. The change in Gibb’s free energy (∆G = −78.04 kJ/mol) confirmed the spontaneous interaction between antigen and antibody. The assay could detect 12 fM purified PA. When anthrax spores spiked soil samples were enriched, PA produced in the sample containing even a single spore of B. anthracis could be detected by SPR. PA being produced only by the vegetative cells of B. anthracis, confirms indirectly the presence of B. anthracis in the samples. The proposed method can be a very useful tool for screening and confirmation of anthrax suspected environmental samples during a bio-warfare like situation.  相似文献   

19.
Scavenging of anthrax carcasses has long been hypothesized to play a critical role in the production of the infectious spore stage of Bacillus anthracis after host death, though empirical studies assessing this are lacking. We compared B. anthracis spore production, distribution, and survival at naturally occurring anthrax herbivore carcasses that were either experimentally caged to exclude vertebrate scavengers or left unmanipulated. We found no significant effect of scavengers on soil spore density (P > 0.05). Soil stained with terminally hemorrhaged blood and with nonhemorrhagic fluids exhibited high levels of B. anthracis spore contamination (ranging from 103 to 108 spores/g), even in the absence of vertebrate scavengers. At most of the carcass sites, we also found that spore density in samples taken from hemorrhagic-fluid-stained soil continued to increase for >4 days after host death. We conclude that scavenging by vertebrates is not a critical factor in the life cycle of B. anthracis and that anthrax control measures relying on deterrence or exclusion of vertebrate scavengers to prevent sporulation are unlikely to be effective.  相似文献   

20.
Bacillus anthracis, the causative agent of anthrax, requires surface (S)-layer proteins for the pathogenesis of infection. Previous work characterized S-layer protein binding via the surface layer homology domain to a pyruvylated carbohydrate in the envelope of vegetative forms. The molecular identity of this carbohydrate and the mechanism of its display in the bacterial envelope are still unknown. Analyzing acid-solubilized, purified carbohydrates by mass spectrometry and NMR spectroscopy, we identify secondary cell wall polysaccharide (SCWP) as the ligand of S-layer proteins. In agreement with the model that surface layer homology domains bind to pyruvylated carbohydrate, SCWP was observed to be linked to pyruvate in a manner requiring csaB, the only structural gene known to be required for S-layer assembly. B. anthracis does not elaborate wall teichoic acids; however, its genome harbors tagO and tagA, genes responsible for the synthesis of the linkage unit that tethers teichoic acids to the peptidoglycan layer. The tagO gene appears essential for B. anthracis growth and complements the tagO mutant phenotypes of staphylococci. Tunicamycin-mediated inhibition of TagO resulted in deformed, S-layer-deficient bacilli. Together, these results suggest that tagO-mediated assembly of linkage units tethers pyruvylated SCWP to the B. anthracis envelope, thereby enabling S-layer assembly and providing for the pathogenesis of anthrax infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号