首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling.  相似文献   

2.
3.
Cell signaling is achieved predominantly by reversible phosphorylation-dephosphorylation reaction cascades. Up until now, circuits conferring adaptation have all required the presence of a cascade with some type of closed topology: negative-feedback loop with a buffering node, or incoherent feed-forward loop with a proportioner node. In this paper--using Goldbeter and Koshland-type expressions--we propose a differential equation model to describe a generic, open signaling cascade that elicits an adaptation response. This is accomplished by coupling N phosphorylation-dephosphorylation cycles unidirectionally, without any explicit feedback loops. Using this model, we show that as the length of the cascade grows, the steady states of the downstream cycles reach a limiting value. In other words, our model indicates that there are a minimum number of cycles required to achieve a maximum in sensitivity and amplitude in the response of a signaling cascade. We also describe for the first time that the phenomenon of ultrasensitivity can be further subdivided into three sub-regimes, separated by sharp stimulus threshold values: OFF, OFF-ON-OFF, and ON. In the OFF-ON-OFF regime, an interesting property emerges. In the presence of a basal amount of activity, the temporal evolution of early cycles yields damped peak responses. On the other hand, the downstream cycles switch rapidly to a higher activity state for an extended period of time, prior to settling to an OFF state (OFF-ON-OFF). This response arises from the changing dynamics between a feed-forward activation module and dephosphorylation reactions. In conclusion, our model gives the new perspective that open signaling cascades embedded in complex biochemical circuits may possess the ability to show a switch-like adaptation response, without the need for any explicit feedback circuitry.  相似文献   

4.
It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.  相似文献   

5.
Rodrigo G  Elena SF 《PloS one》2011,6(2):e16904
Signaling pathways are interconnected to regulatory circuits for sensing the environment and expressing the appropriate genetic profile. In particular, gradients of diffusing molecules (morphogens) determine cell fate at a given position, dictating development and spatial organization. The feedforward loop (FFL) circuit is among the simplest genetic architectures able to generate one-stripe patterns by operating as an amplitude detection device, where high output levels are achieved at intermediate input ones. Here, using a heuristic optimization-based approach, we dissected the design space containing all possible topologies and parameter values of the FFL circuits. We explored the ability of being sensitive or adaptive to variations in the critical morphogen level where cell fate is switched. We found four different solutions for precision, corresponding to the four incoherent architectures, but remarkably only one mode for adaptiveness, the incoherent type 4 (I4-FFL). We further carried out a theoretical study to unveil the design principle for such structural discrimination, finding that the synergistic action and cooperative binding on the downstream promoter are instrumental to achieve absolute adaptive responses. Subsequently, we analyzed the robustness of these optimal circuits against perturbations in the kinetic parameters and molecular noise, which has allowed us to depict a scenario where adaptiveness, parameter sensitivity and noise tolerance are different, correlated facets of the robustness of the I4-FFL circuit. Strikingly, we showed a strong correlation between the input (environment-related) and the intrinsic (mutation-related) susceptibilities. Finally, we discussed the evolution of incoherent regulations in terms of multifunctionality and robustness.  相似文献   

6.
We have previously demonstrated that a weak, extremely-low-frequency magnetic field must be coherent for some minimum length of time (≈? 10 s) in order to affect the specific activity of ornithine decarboxylase (ODC) in L929 mouse cells. In this study we explore whether or not the superposition of an incoherent (noise) magnetic field can block the bioeffect of a coherent 60 Hz magnetic field, since the sum of the two fields is incoherent. An experimental test of this idea was conducted using as a biological marker the twofold enhancement of ODC activity found in L929 murine cells after exposure to a 60 Hz, 10 μTrms magnetic field. We superimposed an incoherent magnetic noise field, containing frequencies from 30 to 90 Hz, whose rms amplitude was comparable to that of the 60 Hz field. Under these conditions the ODC activity observed after exposure was equal to control levels. It is concluded that the superposition of incoherent magnetic fields can block the enhancement of ODC activity by a coherent magnetic field if the strength of the incoherent field is equal to or greater than that of the coherent field. When the superimposed, incoherent noise field was reduced in strength, the enhancement of ODC activity by the coherent field increased. Full ODC enhancement was obtained when the rms value of the applied EM noise was less than one-tenth that of the coherent field. These results are discussed in relation to the question of cellular detection of weak EM fields in the presence of endogenous thermal noise fields. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Cellular circuits have positive and negative feedback loops that allow them to respond properly to noisy external stimuli. It is intriguing that such feedback loops exist in many cases in a particular form of coupled positive and negative feedback loops with different time delays. As a result of our mathematical simulations and investigations into various experimental evidences, we found that such coupled feedback circuits can rapidly turn on a reaction to a proper stimulus, robustly maintain its status, and immediately turn off the reaction when the stimulus disappears. In other words, coupled feedback loops enable cellular systems to produce perfect responses to noisy stimuli with respect to signal duration and amplitude. This suggests that coupled positive and negative feedback loops form essential signal transduction motifs in cellular signaling systems.  相似文献   

8.
9.
Quorum sensing is a chemical signaling mechanism used by bacteria to communicate and orchestrate group behaviors. Multiple feedback loops exist in the quorum‐sensing circuit of the model bacterium Vibrio harveyi. Using fluorescence microscopy of individual cells, we assayed the activity of the quorum‐sensing circuit, with a focus on defining the functions of the feedback loops. We quantitatively investigated the signaling input–output relation both in cells with all feedback loops present as well as in mutants with specific feedback loops disrupted. We found that one of the feedback loops regulates receptor ratios to control the integration of multiple signals. Together, the feedback loops affect the input–output dynamic range of signal transmission and the noise in the output. We conclude that V. harveyi employs multiple feedback loops to simultaneously control quorum‐sensing signal integration and to ensure signal transmission fidelity.  相似文献   

10.
Tan C  Reza F  You L 《Biophysical journal》2007,93(11):3753-3761
To maintain normal physiology, cells must properly process diverse signals arising from changes in temperature, pH, nutrient concentrations, and other factors. Many physiological processes are controlled by temporal aspects of oscillating signals; that is, these signals can encode information in the frequency domain. By modeling simple gene circuits, we analyze the impact of cellular noise on the fidelity and speed of frequency-signal transmission. We find that transmission of frequency signals is "all-or-none", limited by a critical frequency (f(c)). Signals with frequencies f(c) are severely corrupted or completely lost in transmission. We argue that f(c) is an intrinsic property of a gene circuit and it varies with circuit parameters and additional feedback or feedforward regulation. Our results may have implications for understanding signal processing in natural biological networks and for engineering synthetic gene circuits.  相似文献   

11.
Kim JR  Yoon Y  Cho KH 《Biophysical journal》2008,94(2):359-365
Cellular networks are composed of complicated interconnections among components, and some subnetworks of particular functioning are often identified as network motifs. Among such network motifs, feedback loops are thought to play important dynamical roles. Intriguingly, such feedback loops are very often found as a coupled structure in cellular circuits. Therefore, we integrated all the scattered information regarding the coupled feedbacks in various cellular circuits and investigated the dynamical role of each coupled structure. Finally, we discovered that coupled positive feedbacks enhance signal amplification and bistable characteristics; coupled negative feedbacks realize enhanced homeostasis; coupled positive and negative feedbacks enable reliable decision-making by properly modulating signal responses and effectively dealing with noise.  相似文献   

12.
ABSTRACT: BACKGROUND: Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs. RESULTS: We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case. CONCLUSION: The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and robustness of the oscillations in presence or absence of nuclear compartmentalization were differentially determined by two designs of coupled positive and negative feedback loops. A positive feedback from an oscillating MAPK cascade was shown to induce oscillations in an external signal processing module, uncovering a novel regulatory aspect of MAPK signal processing.  相似文献   

13.
The brain can learn and detect mixed input signals masked by various types of noise, and spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Because sensory inputs typically have spike correlation, and local circuits have dense feedback connections, input spikes cause the propagation of spike correlation in lateral circuits; however, it is largely unknown how this secondary correlation generated by lateral circuits influences learning processes through STDP, or whether it is beneficial to achieve efficient spike-based learning from uncertain stimuli. To explore the answers to these questions, we construct models of feedforward networks with lateral inhibitory circuits and study how propagated correlation influences STDP learning, and what kind of learning algorithm such circuits achieve. We derive analytical conditions at which neurons detect minor signals with STDP, and show that depending on the origin of the noise, different correlation timescales are useful for learning. In particular, we show that non-precise spike correlation is beneficial for learning in the presence of cross-talk noise. We also show that by considering excitatory and inhibitory STDP at lateral connections, the circuit can acquire a lateral structure optimal for signal detection. In addition, we demonstrate that the model performs blind source separation in a manner similar to the sequential sampling approximation of the Bayesian independent component analysis algorithm. Our results provide a basic understanding of STDP learning in feedback circuits by integrating analyses from both dynamical systems and information theory.  相似文献   

14.
15.
Understanding the relationship between genotype and phenotype is a challenge in systems biology. An interesting yet related issue is why a particular circuit topology is present in a cell when the same function can supposedly be obtained from an alternative architecture. Here we analyzed two topologically equivalent genetic circuits of coupled positive and negative feedback loops, named NAT and ALT circuits, respectively. The computational search for the oscillation volume of the entire biologically reasonable parameter region through large-scale random samplings shows that the NAT circuit exhibits a distinctly larger fraction of the oscillatory region than the ALT circuit. Such a global robustness difference between two circuits is supplemented by analyzing local robustness, including robustness to parameter perturbations and to molecular noise. In addition, detailed dynamical analysis shows that the molecular noise of both circuits can induce transient switching of the different mechanism between a stable steady state and a stable limit cycle. Our investigation on robustness and dynamics through examples provides insights into the relationship between network architecture and its function.  相似文献   

16.
P53脉冲是指细胞内p53蛋白水平周期性或重复性的涨落.该脉冲产生的途径是调节p53的各种正负反馈环,其核心的两个负反馈环是p53-Mdm2环和Wip1-ATM-p53环.这些负反馈环能产生极限环振荡,在极限环振荡区,P53水平成脉冲型变化.随着P53脉冲的增多,不同形式的p53蛋白和促凋亡蛋白逐渐积累并到达一定阈值水平,可打开凋亡"开关",引发不可逆的细胞命运.除了P53脉冲的数目,其频率、振幅、波形等物理学参数也与细胞命运存在密切关系.这一研究进展对阐明诸多疾病发生机理和防治研究有重要意义.  相似文献   

17.
Feedback modules, which appear ubiquitously in biological regulations, are often subject to disturbances from the input, leading to fluctuations in the output. Thus, the question becomes how a feedback system can produce a faithful response with a noisy input. We employed multiple time scale analysis, Fluctuation Dissipation Theorem, linear stability, and numerical simulations to investigate a module with one positive feedback loop driven by an external stimulus, and we obtained a critical quantity in noise attenuation, termed as “signed activation time”. We then studied the signed activation time for a system of two positive feedback loops, a system of one positive feedback loop and one negative feedback loop, and six other existing biological models consisting of multiple components along with positive and negative feedback loops. An inverse relationship is found between the noise amplification rate and the signed activation time, defined as the difference between the deactivation and activation time scales of the noise-free system, normalized by the frequency of noises presented in the input. Thus, the combination of fast activation and slow deactivation provides the best noise attenuation, and it can be attained in a single positive feedback loop system. An additional positive feedback loop often leads to a marked decrease in activation time, decrease or slight increase of deactivation time and allows larger kinetic rate variations for slow deactivation and fast activation. On the other hand, a negative feedback loop may increase the activation and deactivation times. The negative relationship between the noise amplification rate and the signed activation time also holds for the six other biological models with multiple components and feedback loops. This principle may be applicable to other feedback systems.  相似文献   

18.
Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs), provide feed-forward inhibition onto Kenyon cells (KCs) to maintain their sparse firing—a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN), is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB) loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.  相似文献   

19.
20.
‘Phase amplitude coupling’ (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity – also referred to as ‘cross-frequency coupling’ or ‘nested rhythms’ – has been shown to occur in a number of brain regions and at behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity, importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号