首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast exosome is a complex of 3' --> 5' exoribonucleases. Sequence analysis identified putative human homologues for exosome components, although several were found only as expressed sequence tags. Here we report the cloning of full-length cDNAs, which encode putative human homologues of the Rrp40p, Rrp41p, and Rrp46p components of the exosome. Recombinant proteins were expressed and used to raise rabbit antisera. In Western blotting experiments, these decorated HeLa cell proteins of the predicted sizes. All three human proteins were enriched in the HeLa cells nucleus and nucleolus, but were also clearly detected in the cytoplasm. Size exclusion chromatography revealed that hRrp40p, hRrp41p, and hRrp46p were present in a large complex. This cofractionated with the human homologues of other exosome components, hRrp4p and PM/Scl-100. Anti-PM/Scl-positive patient sera coimmunoprecipitated hRrp40p, hRrp41p, and hRrp46p demonstrating their physical association. The immunoprecipitated complex exhibited 3' --> 5' exoribonuclease activity in vitro. hRrp41p was expressed in yeast and shown to suppress the lethality of genetic depletion of yeast Rrp41p. We conclude that hRrp40p, hRrp41p, and hRrp46p represent novel components of the human exosome complex.  相似文献   

2.
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. We demonstrate that the two human proteins hCsl4p and hRrp42p, which have been identified on the basis of their sequence homology with Saccharomyces cerevisiae proteins, are associated with the human exosome. By mammalian two-hybrid and GST pull-down assays, we show that the hCsl4p protein interacts directly with two other exosome proteins, hRrp42p and hRrp46p. Mutants of hCsl4p that fail to interact with either hRrp42p or hRrp46p are also not able to associate with exosome complexes in vivo. These results indicate that the association of hCsl4p with the exosome is mediated by protein-protein interactions with hRrp42p and hRrp46p.  相似文献   

3.
In eukaryotes, the exosome plays a central role in RNA maturation, turnover, and quality control. In Saccharomyces cerevisiae, the core exosome is composed of nine catalytically inactive subunits constituting a ring structure and the active nuclease Rrp44, also known as Dis3. Rrp44 is a member of the ribonuclease II superfamily of exoribonucleases which include RNase R, Dis3L1 and Dis3L2. In this work we have functionally characterized three residues located in the highly conserved RNB catalytic domain of Rrp44: Y595, Q892 and G895. To address their precise role in Rrp44 activity, we have constructed Rrp44 mutants and compared their activity to the wild-type Rrp44. When we mutated residue Q892 and tested its activity in vitro, the enzyme became slightly more active. We also showed that when we mutated Y595, the final degradation product of Rrp44 changed from 4 to 5 nucleotides. This result confirms that this residue is responsible for the stacking of the RNA substrate in the catalytic cavity, as was predicted from the structure of Rrp44. Furthermore, we also show that a strain with a mutation in this residue has a growth defect and affects RNA processing and degradation. These results lead us to hypothesize that this residue has an important biological role. Molecular dynamics modeling of these Rrp44 mutants and the wild-type enzyme showed changes that extended beyond the mutated residues and helped to explain these results.  相似文献   

4.
DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary role, and crn-7 plays a negligible role in resolving 3′ OH DNA breaks generated in apoptotic cells. Promoter swapping experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of NUC-1 secretion signal eliminates NUC-1''s ability to mediate DNA degradation across its expression border. Furthermore, blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts in apoptotic cells rather than in phagocytes to resolve 3′ OH DNA breaks. Our study illustrates how multiple DNase II nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase II action in mediating DNA degradation.  相似文献   

5.
Cell death related nuclease 4 (CRN-4) is one of the apoptotic nucleases involved in DNA degradation in Caenorhabditis elegans. To understand how CRN-4 is involved in apoptotic DNA fragmentation, we analyzed CRN-4's biochemical properties, in vivo cell functions, and the crystal structures of CRN-4 in apo-form, Mn(2+)-bound active form, and Er(3+)-bound inactive form. CRN-4 is a dimeric nuclease with the optimal enzyme activity in cleaving double-stranded DNA in apoptotic salt conditions. Both mutational studies and the structures of the Mn(2+)-bound CRN-4 revealed the geometry of the functional nuclease active site in the N-terminal DEDDh domain. The C-terminal domain, termed the Zn-domain, contains basic surface residues ideal for nucleic acid recognition and is involved in DNA binding, as confirmed by deletion assays. Cell death analysis in C. elegans further demonstrated that both the nuclease active site and the Zn-domain are required for crn-4's function in apoptosis. Combining all of the data, we suggest a structural model where chromosomal DNA is bound at the Zn-domain and cleaved at the DEDDh nuclease domain in CRN-4 when the cell is undergoing apoptosis.  相似文献   

6.
The exosome is a complex of eleven subunits in yeast, involved in RNA processing and degradation. Despite the extensive in vivo functional studies of the exosome, little information is yet available on the structure of the complex and on the RNase and RNA binding activities of the individual subunits. The current model for the exosome structure predicts the formation of a heterohexameric RNase PH ring, bound on one side by RNA binding subunits, and on the opposite side by hydrolytic RNase subunits. Here, we report protein-protein interactions within the exosome, confirming the predictions of constituents of the RNase PH ring, and show some possible interaction interfaces between the other subunits. We also show evidence that Rrp40p can bind RNA in vitro, as predicted by sequence analysis.  相似文献   

7.
The eukaryotic exosome is a protein complex with essential functions in processing and degradation of RNA. Exosome-like complexes were recently found in Archaea. Here we characterize the exosome of Sulfolobus solfataricus. Two exosome fractions can be discriminated by density gradient centrifugation. We show that the Cdc48 protein is associated with the exosome from the 30S-50S fraction but not with the exosome of the 11.3S fraction. While only some complexes contain Cdc48, the archaeal DnaG-like protein was found to be a core exosome subunit in addition to Rrp4, Rrp41, Rrp42 and Csl4. Assays with depleted extracts revealed that the exosome is responsible for major ribonucleolytic activity in S. solfataricus. Various complexes consisting of the Rrp41-Rrp42 hexameric ring and Rrp4, Csl4 and DnaG were reconstituted. Dependent on their composition, different complexes showed variations in RNase activity indicating functional interdependence of the subunits. The catalytic activity of these complexes and of the native exosome can be ascribed to the Rrp41-Rrp42 ring, which degrades RNA phosphorolytically. Rrp4 and Csl4 do not exhibit any hydrolytic RNase activity, either when assayed alone or in context of the complex, but influence the activity of the archaeal exosome.  相似文献   

8.
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. Here we present a model for the assembly of the six human RNase PH-like exosome subunits into a hexameric ring structure. In part, this structure is on the basis of the evolutionarily related bacterial degradosome, the core of which consists of three copies of the PNPase protein, each containing two RNase PH domains. In our model three additional exosome subunits, which contain S1 RNA-binding domains, are positioned on the outer surface of this ring. Evidence for this model was obtained by the identification of protein-protein interactions between individual exosome subunits in a mammalian two-hybrid system. In addition, the results of co-immunoprecipitation assays indicate that at least two copies of hRrp4p and hRrp41p are associated with a single exosome, suggesting that at least two of these ring structures are present in this complex. Finally, the identification of a human gene encoding the putative human counterpart of the bacterial PNPase protein is described, which suggests that the exosome is not the eukaryotic equivalent of the bacterial degradosome, although they do share similar functional activities.  相似文献   

9.
The Saccharomyces cerevisiae protein Rrp43p co-purifies with four other 3'-->5' exoribonucleases in a complex that has been termed the exosome. Rrp43p itself is similar to prokaryotic RNase PH. Individual exosome subunits have been implicated in the 3' maturation of the 5.8S rRNA found in 60S ribosomes and the 3' degradation of mRNAs. However, instead of being deficient in 60S ribosomes, Rrp43p-depleted cells were deficient in 40S ribosomes. Pulse-chase and steady-state northern analyses of pre-RNA and rRNA levels revealed a significant delay in the synthesis of both 25S and 18S rRNAs, accompanied by the stable accumulation of 35S and 27S pre-rRNAs and the under-accumulation of 20S pre-rRNA. In addition, Rrp43p-depleted cells accumulated a 23S aberrant pre-rRNA and a fragment excised from the 5' ETS. Therefore, in addition to the maturation of 5.8S rRNA, Rrp43p is required for the maturation 18S and 25S rRNA.  相似文献   

10.
The eukaryotic RNA exosome is a ribonucleolytic complex involved in RNA processing and turnover. It consists of a nine‐subunit catalytically inert core that serves a structural function and participates in substrate recognition. Best defined in Saccharomyces cerevisiae, enzymatic activity comes from the associated subunits Dis3p (Rrp44p) and Rrp6p. The former is a nuclear and cytoplasmic RNase II/R‐like enzyme, which possesses both processive exo‐ and endonuclease activities, whereas the latter is a distributive RNase D‐like nuclear exonuclease. Although the exosome core is highly conserved, identity and arrangements of its catalytic subunits in different vertebrates remain elusive. Here, we demonstrate the association of two different Dis3p homologs—hDIS3 and hDIS3L—with the human exosome core. Interestingly, these factors display markedly different intracellular localizations: hDIS3 is mainly nuclear, whereas hDIS3L is strictly cytoplasmic. This compartmental distribution reflects the substrate preferences of the complex in vivo. Both hDIS3 and hDIS3L are active exonucleases; however, only hDIS3 has retained endonucleolytic activity. Our data suggest that three different ribonucleases can serve as catalytic subunits for the exosome in human cells.  相似文献   

11.
Nuclear and cytoplasmic forms of the yeast exosome share 10 components, of which only Rrp44/Dis3 is believed to possess 3′ exonuclease activity. We report that expression only of Rrp44 lacking 3′-exonuclease activity (Rrp44-exo) supports growth in S288c-related strains (BY4741). In BY4741, rrp44-exo was synthetic-lethal with loss of the cytoplasmic 5′-exonuclease Xrn1, indicating block of mRNA turnover, but not with loss of the nuclear 3′-exonuclease Rrp6. The RNA processing phenotype of rrp44-exo was milder than that seen on Rrp44 depletion, indicating that Rrp44-exo retains important functions. Recombinant Rrp44 was shown to possess manganese-dependent endonuclease activity in vitro that was abolished by four point mutations in the putative metal binding residues of its N-terminal PIN domain. Rrp44 lacking both exonuclease and endonuclease activity failed to support growth in strains depleted of endogenous Rrp44. Strains expressing Rrp44-exo and Rrp44-endo–exo exhibited different RNA processing patterns in vivo suggesting Rrp44-dependent endonucleolytic cleavages in the 5′-ETS and ITS2 regions of the pre-rRNA. Finally, the N-terminal PIN domain was shown to be necessary and sufficient for association with the core exosome, indicating its dual function as a nuclease and structural element.  相似文献   

12.
The exosome is a complex of 3' --> 5' exoribonucleases that functions in a variety of cellular processes, all concerning the processing or degradation of RNA. Paradoxically, the previously described cDNA for the human autoantigenic exosome subunit PM/Scl-75 (Alderuccio, F., Chan, E. K., and Tan, E. M. (1991) J. Exp. Med. 173, 941-952) encodes a polypeptide that failed to interact with the exosome complex. Here, we describe the cloning of a more complete cDNA for PM/Scl-75 encoding 84 additional amino acids at its N terminus. We show that only the longer polypeptide is able to associate with the exosome complex. This interaction is most likely mediated by protein-protein interactions with two other exosome subunits, hRrp46p and hRrp41p, one of which was confirmed in a mammalian two-hybrid system. In addition we show that the putative nuclear localization signal present in the C-terminal region of PM/Scl-75 is sufficient, although not essential for nuclear localization of the protein. Moreover, the deletion of this element abrogated the nucleolar accumulation of PM/Scl-75, although its association with the exosome was not disturbed. This suggests that this basic element of PM/Scl-75 plays a role in targeting the exosome to the nucleolus.  相似文献   

13.
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.  相似文献   

14.
Verena Roppelt 《FEBS letters》2010,584(13):2931-2936
We studied the substrate specificity of the exosome of Sulfolobus solfataricus using the catalytically active Rrp41-Rrp42-hexamer and complexes containing the RNA-binding subunits Rrp4 or Csl4. The conservation of both Rrp4 and Csl4 in archaeal and eukaryotic exosomes suggests specific functions for each of them. We found that they confer different specificities to the exosome: RNA with an A-poor 3′-end is degraded with higher efficiency by the Csl4-exosome, while the Rrp4-exosome strongly prefers poly(A)-RNA. High C-content and polyuridylation negatively influence RNA processing by all complexes, and, in contrast to the hexamer, the Rrp4-exosome prefers longer substrates.  相似文献   

15.
The drug 5-fluorouracil (5-FU) is a widely used chemotherapeutic in the treatment of solid tumors. Recently, the essential 3'-5' exonucleolytic multisubunit RNA exosome was implicated as a target for 5-FU in yeast. Here, we show that this is also the case in human cells. HeLa cells depleted of the inessential exosome component hRrp6, also called PM/Scl100, are significantly growth impaired relative to control cells after 5-FU administration. The selective stabilization of bona fide hRrp6 RNA substrates on 5-FU treatment suggests that this exosome component is specifically targeted. Consistently, levels of hRrp6 substrates are increased in two 5-FU-sensitive cell lines. Interestingly, whereas down-regulation of all tested core exosome components results in decreased hRrp6 levels, depletion of hRrp6 leaves levels of other exosome components unchanged. Taken together, our data position hRrp6 as a promising target for antiproliferative intervention.  相似文献   

16.
Endonuclease G (EndoG) is a mitochondrial enzyme that becomes an apoptotic nuclease when released from the mitochondrial intermembrane space. EndoG will digest either DNA or RNA, but at physiological ionic strength, RNA is a much more favorable substrate as compared to chromatin. This indicates that EndoG’s major in vivo function(s) may be: (i) an apoptotic RNase, and/or (ii) an apoptotic DNase in the presence of additional co-activators. In the present study we have searched for factors that modulate the activity of human EndoG on DNA substrates. We demonstrate that EndoG forms complexes with AIF and FEN-1 but not with PCNA. Interestingly, heat shock proteins 70 interact with EndoG and are involved in the regulation of its activity. Purified Hsp70 prevented stimulation of EndoG DNase activity by other nuclear factors in the ATP-dependent manner.  相似文献   

17.
18.
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5′ leader sequence of precursor tRNA (pre-tRNA). Ribonucleoprotein RNase P and protein-only RNase P (PRORP) in eukaryotes have been extensively studied, but the mechanism by which a prokaryotic nuclease recognizes and cleaves pre-tRNA is unclear. To gain insights into this mechanism, we studied homologs of Aquifex RNase P (HARPs), thought to be enzymes of approximately 23 kDa comprising only this nuclease domain. We determined the cryo-EM structure of Aq880, the first identified HARP enzyme. The structure unexpectedly revealed that Aq880 consists of both the nuclease and protruding helical (PrH) domains. Aq880 monomers assemble into a dimer via the PrH domain. Six dimers form a dodecamer with a left-handed one-turn superhelical structure. The structure also revealed that the active site of Aq880 is analogous to that of eukaryotic PRORPs. The pre-tRNA docking model demonstrated that 5′ processing of pre-tRNAs is achieved by two adjacent dimers within the dodecamer. One dimer is responsible for catalysis, and the PrH domains of the other dimer are responsible for pre-tRNA elbow recognition. Our study suggests that HARPs measure an invariant distance from the pre-tRNA elbow to cleave the 5′ leader sequence, which is analogous to the mechanism of eukaryotic PRORPs and the ribonucleoprotein RNase P. Collectively, these findings shed light on how different types of RNase P enzymes utilize the same pre-tRNA processing.  相似文献   

19.
20.
The 3'-5' riboexonuclease Rrp6p, a nuclear component of the exosome, functions with other exosome components to produce the mature 3' ends of 5.8S rRNA, sno- and snRNAs, and to destroy improperly processed precursor (pre)-rRNAs and pre-mRNAs. Rrp6p is a member of the RNase D family of riboexonucleases and displays a high degree of homology with the active site of the deoxyriboexonuclease domain of Escherichia coli DNA polymerase I, the crystal structure of which indicates a two-metal ion mechanism for phosphodiester bond hydrolysis. Mutation of each of the conserved residues predicted to coordinate metal ions in the active site of Rrp6p abolished activity of the enzyme in vitro and in vivo. Complete loss of Rrp6p activity caused by the Y361F and Y361A mutations supports the critical role proposed for the phenolic hydroxyl of Tyr361 in the reaction mechanism. Rrp6p also contains an helicase RNase D C-terminal (HRDC) domain of unknown function that is similar to domains in the Werner's and Bloom's Syndrome proteins. A point mutation in this domain results in Rrp6p that localizes to the nucleus, but fails to efficiently process the 3' ends of 5.8S pre-rRNA and some pre-snoRNAs. In contrast, this mutant retains the ability to degrade rRNA processing intermediates and 3'-extended, poly(A)+ snoRNAs. These findings indicate the potential for independent control of the processing and degradation functions of Rrp6p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号