首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.

Background

In a previous study in the Fleckvieh dual purpose cattle breed, we mapped a quantitative trait locus (QTL) affecting milk yield (MY1), milk protein yield (PY1) and milk fat yield (FY1) during first lactation to the distal part of bovine chromosome 5 (BTA5), but the confidence interval was too large for positional cloning of the causal gene. Our objective here was to refine the position of this QTL and to define the candidate region for high-throughput sequencing.

Methods

In addition to those previously studied, new Fleckvieh families were genotyped, in order to increase the number of recombination events. Twelve new microsatellites and 240 SNP markers covering the most likely QTL region on BTA5 were analysed. Based on haplotype analysis performed in this complex pedigree, families segregating for the low frequency allele of this QTL (minor allele) were selected. Single- and multiple-QTL analyses using combined linkage and linkage disequilibrium methods were performed.

Results

Single nucleotide polymorphism haplotype analyses on representative family sires and their ancestors revealed that the haplotype carrying the minor QTL allele is rare and most probably originates from a unique ancestor in the mapping population. Analyses of different subsets of families, created according to the results of haplotype analysis and availability of SNP and microsatellite data, refined the previously detected QTL affecting MY1 and PY1 to a region ranging from 117.962 Mb to 119.018 Mb (1.056 Mb) on BTA5. However, the possibility of a second QTL affecting only PY1 at 122.115 Mb was not ruled out.

Conclusion

This study demonstrates that targeting families segregating for a less frequent QTL allele is a useful method. It improves the mapping resolution of the QTL, which is due to the division of the mapping population based on the results of the haplotype analysis and to the increased frequency of the minor allele in the families. Consequently, we succeeded in refining the region containing the previously detected QTL to 1 Mb on BTA5. This candidate region contains 27 genes with unknown or partially known function(s) and is small enough for high-throughput sequencing, which will allow future detailed analyses of candidate genes.  相似文献   

2.
Wang X  Li X  Zhang YB  Zhang F  Sun L  Lin J  Wang DM  Wang LY 《PloS one》2011,6(10):e24838

Background

Familial hypercholesterolemia (FH) is a heritable disorder that can increase the risk of premature coronary heart disease. Studies suggest there are substantial genetic heterogeneities for different populations. Here we tried to identify novel susceptibility loci for FH in a Chinese pedigree.

Methodology/Principal Findings

We performed a SNP-based genome-wide linkage scan with the Chinese FH pedigree. Two suggestive linkage loci not previously reported were identified on chromosomes 3q25.1-26.1 (NPL = 9.01, nominal P<0.00001, and simulated occurrence per genome scan = 1.08) and 21q22.3 (NPL = 8.95, nominal P<0.00001, and simulated occurrence per genome scan = 1.26). In the interaction analysis with a trimmed version of the pedigree, we obtained a significantly increased joint LOD score (2.70) compared with that obtained when assuming the two loci uncorrelated, suggesting that more than one locus was involved in this pedigree. Exon screening of two candidate genes ABCG1 and LSS from one of the suggestive region 21q22 didn''t report any causative mutations.

Conclusions/Significances

These results confirm complex etiologies and suggest new genetic casual factors for the FH disorder. Further study of the two candidate regions is advocated.  相似文献   

3.

Background

Female fertility is important for the maintenance of the production in a dairy cattle herd. Two QTL regions on BTA04 and on BTA13 previously detected in Nordic Holstein (NH) and validated in the Danish Jersey (DJ) and Nordic Red (NR) were investigated further in the present study to further refine the QTL locations. Refined QTL regions were imputed to the full sequence data. The genes in the regions were then studied to ascertain their possible effect on fertility traits.

Results

BTA04 was screened for number of inseminations (AIS), 56-day non-return rate (NRR), days from first to last insemination (IFL), and the interval from calving to first insemination (ICF) in the range of 38,257,758 to 40,890,784 bp, whereas BTA13 was screened for ICF only in the range from 21,236,959 to 46,150,079 with the HD bovine SNP array for NH, DJ and NR. No markers in the DJ and NR breeds reached significance. By analyzing imputed sequence data the QTL position on BTA04 was narrowed down to two regions in the NH. In these two regions a total of 9 genes were identified. BTA13 was analyzed using sequence data for the NH breed. The highest –log10(P-value) was 19.41 at 33,903,159 bp. Two regions were identified: Region 1: 33,900,143-33,908,994 bp and Region 2: 34,051,815-34,056,728 bp. SNPs within and between these two regions were annotated as intergenic.

Conclusion

Screening BTA04 and BTA13 for female fertility traits in NH, NR and DJ suggested that the QTL for female fertility were specific for NH. A missense mutation in CD36 showed the strongest association with fertility traits on BTA04. The annotated SNPs on BTA13 were all intergenic variants. It is possible that BTA13 at this stage is poorly annotated such that the associated polymorphisms are located in as-yet undiscovered genes. Fertility traits are complex traits as many different biological and physiological factors determine whether a cow is fertile. Therefore it is not expected that there is a simple explanation with an obvious candidate gene but it is more likely a network of genes and intragenic variants that explain the variation of these traits.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-790) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection.

Methods

Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture.

Results

Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele ''Q'' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele ''q''. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways ''dendritic cell maturation'' and ''acute phase response signaling'', whereas cell culture affected biological processes involved in ''cellular development''.

Conclusions

The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.  相似文献   

5.

Background and Aims

Hybridizing species such as oaks may provide a model to study the role of selection in speciation with gene flow. Discrete species'' identities and different adaptations are maintained among closely related oak species despite recurrent gene flow. This is probably due to ecologically mediated selection at a few key genes or genomic regions. Neutrality tests can be applied to identify so-called outlier loci, which demonstrate locus-specific signatures of divergent selection and are candidate genes for further study.

Methods

Thirty-six genic microsatellite markers, some with putative functions in flowering time and drought tolerance, and eight non-genic microsatellite markers were screened in two population pairs (n = 160) of the interfertile species Quercus rubra and Q. ellipsoidalis, which are characterized by contrasting adaptations to drought. Putative outliers were then tested in additional population pairs from two different geographic regions (n = 159) to support further their potential role in adaptive divergence.

Key Results

A marker located in the coding sequence of a putative CONSTANS-like (COL) gene was repeatedly identified as under strong divergent selection across all three geographically disjunct population pairs. COL genes are involved in the photoperiodic control of growth and development and are implicated in the regulation of flowering time.

Conclusions

The location of the polymorphism in the Quercus COL gene and given the potential role of COL genes in adaptive divergence and reproductive isolation makes this a promising candidate speciation gene. Further investigation of the phenological characteristics of both species and flowering time pathway genes is suggested in order to elucidate the importance of phenology genes for the maintenance of species integrity. Next-generation sequencing in multiple population pairs in combination with high-density genetic linkage maps could reveal the genome-wide distribution of outlier genes and their potential role in reproductive isolation between these species.  相似文献   

6.
He F  Wu DD  Kong QP  Zhang YP 《PloS one》2008,3(8):e2948

Background

The intron 5 of gene LMBR1 is the cis-acting regulatory module for the sonic hedgehog (SHH) gene. Mutation in this non-coding region is associated with preaxial polydactyly, and may play crucial roles in the evolution of limb and skeletal system.

Methodology/Principal Findings

We sequenced a region of the LMBR1 gene intron 5 in East Asian human population, and found a significant deviation of Tajima''s D statistics from neutrality taking human population growth into account. Data from HapMap also demonstrated extended linkage disequilibrium in the region in East Asian and European population, and significantly low degree of genetic differentiation among human populations.

Conclusion/Significance

We proposed that the intron 5 of LMBR1 was presumably subject to balancing selection during the evolution of modern human.  相似文献   

7.

Background

The accumulation of deleterious mutations can drastically reduce population mean fitness. Self-fertilization is thought to be an effective means of purging deleterious mutations. However, widespread linkage disequilibrium generated and maintained by self-fertilization is predicted to reduce the efficacy of purging when mutations are present at multiple loci.

Methodology/Principal Findings

We tested the ability of self-fertilizing populations to purge deleterious mutations at multiple loci by exposing obligately self-fertilizing populations of Caenorhabditis elegans to a range of elevated mutation rates and found that mutations accumulated, as evidenced by a reduction in mean fitness, in each population. Therefore, purging in obligate selfing populations is overwhelmed by an increase in mutation rate. Surprisingly, we also found that obligate and predominantly self-fertilizing populations exposed to very high mutation rates exhibited consistently greater fitness than those subject to lesser increases in mutation rate, which contradicts the assumption that increases in mutation rate are negatively correlated with fitness. The high levels of genetic linkage inherent in self-fertilization could drive this fitness increase.

Conclusions

Compensatory mutations can be more frequent under high mutation rates and may alleviate a portion of the fitness lost due to the accumulation of deleterious mutations through epistatic interactions with deleterious mutations. The prolonged maintenance of tightly linked compensatory and deleterious mutations facilitated by self-fertilization may be responsible for the fitness increase as linkage disequilibrium between the compensatory and deleterious mutations preserves their epistatic interaction.  相似文献   

8.

Background

Soybean (Glycine max) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. A genome-wide association study (GWAS) was conducted using a mixed linear model that involves both relative kinship and population structure.

Results

The linkage disequilibrium (LD) decayed slowly in soybean, and a substantial difference in LD pattern was observed between euchromatic and heterochromatic regions. A total of 27, 6, 18 and 27 loci for DTF, DTM, DFTM and PH were detected via GWAS, respectively. The Dt1 gene was identified in the locus strongly associated with both DTM and PH. Ten candidate genes homologous to Arabidopsis flowering genes were identified near the peak single nucleotide polymorphisms (SNPs) associated with DTF. Four of them encode MADS-domain containing proteins. Additionally, a pectin lyase-like gene was also identified in a major-effect locus for PH where LD decayed rapidly.

Conclusions

This study identified multiple new loci and refined chromosomal regions of known loci associated with DTF, DTM, DFTM and/or PH in soybean. It demonstrates that GWAS is powerful in dissecting complex traits and identifying candidate genes although LD decayed slowly in soybean. The loci and trait-associated SNPs identified in this study can be used for soybean genetic improvement, especially the major-effect loci associated with PH could be used to improve soybean yield potential. The candidate genes may serve as promising targets for studies of molecular mechanisms underlying the related traits in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1441-4) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

It is commonly assumed that prediction of genome-wide breeding values in genomic selection is achieved by capitalizing on linkage disequilibrium between markers and QTL but also on genetic relationships. Here, we investigated the reliability of predicting genome-wide breeding values based on population-wide linkage disequilibrium information, based on identity-by-descent relationships within the known pedigree, and to what extent linkage disequilibrium information improves predictions based on identity-by-descent genomic relationship information.

Methods

The study was performed on milk, fat, and protein yield, using genotype data on 35 706 SNP and deregressed proofs of 1086 Italian Brown Swiss bulls. Genome-wide breeding values were predicted using a genomic identity-by-state relationship matrix and a genomic identity-by-descent relationship matrix (averaged over all marker loci). The identity-by-descent matrix was calculated by linkage analysis using one to five generations of pedigree data.

Results

We showed that genome-wide breeding values prediction based only on identity-by-descent genomic relationships within the known pedigree was as or more reliable than that based on identity-by-state, which implicitly also accounts for genomic relationships that occurred before the known pedigree. Furthermore, combining the two matrices did not improve the prediction compared to using identity-by-descent alone. Including different numbers of generations in the pedigree showed that most of the information in genome-wide breeding values prediction comes from animals with known common ancestors less than four generations back in the pedigree.

Conclusions

Our results show that, in pedigreed breeding populations, the accuracy of genome-wide breeding values obtained by identity-by-descent relationships was not improved by identity-by-state information. Although, in principle, genomic selection based on identity-by-state does not require pedigree data, it does use the available pedigree structure. Our findings may explain why the prediction equations derived for one breed may not predict accurate genome-wide breeding values when applied to other breeds, since family structures differ among breeds.  相似文献   

10.

Background

Natural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds.

Results

Each cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of domestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candidate genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types. The bottom 1% of the smoothed FST values, potentially associated to balancing selection, included 24 regions across 13 chromosomes. These regions often overlap with copy number variants, including the highly variable region at BTA23:~24 Mb that harbors a large number of MHC genes. Under these regions, 318 unique Ensembl genes are annotated with a significant overrepresentation of immune related pathways.

Conclusions

Genomic regions that are potentially linked to purifying or balancing selection processes in domestic cattle were identified. These regions are of particular interest to understand the natural and human selective pressures to which these subspecies were exposed to and how the genetic background of these populations evolved in response to environmental challenges and human manipulation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-876) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

The main goal of our study was to investigate the implementation, prospects, and limits of marker imputation for quantitative genetic studies contrasting map-independent and map-dependent algorithms. We used a diversity panel consisting of 372 European elite wheat (Triticum aestivum L.) varieties, which had been genotyped with SNP arrays, and performed intensive simulation studies.

Results

Our results clearly showed that imputation accuracy was substantially higher for map-dependent compared to map-independent methods. The accuracy of marker imputation depended strongly on the linkage disequilibrium between the markers in the reference panel and the markers to be imputed. For the decay of linkage disequilibrium present in European wheat, we concluded that around 45,000 markers are needed for low cost, low-density marker profiling. This will facilitate high imputation accuracy, also for rare alleles. Genomic selection and diversity studies profited only marginally from imputing missing values. In contrast, the power of association mapping increased substantially when missing values were imputed.

Conclusions

Imputing missing values is especially of interest for an economic implementation of association mapping in breeding populations.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1366-y) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Both genome-wide association (GWA) studies and genomic selection depend on the level of non-random association of alleles at different loci, i.e. linkage disequilibrium (LD), across the genome. Therefore, characterizing LD is of fundamental importance to implement both approaches. In this study, using a 60K single nucleotide polymorphism (SNP) panel, we estimated LD and haplotype structure in crossbred broiler chickens and their component pure lines (one male and two female lines) and calculated the consistency of LD between these populations.

Results

The average level of LD (measured by r2) between adjacent SNPs across the chicken autosomes studied here ranged from 0.34 to 0.40 in the pure lines but was only 0.24 in the crossbred populations, with 28.4% of adjacent SNP pairs having an r2 higher than 0.3. Compared with the pure lines, the crossbred populations consistently showed a lower level of LD, smaller haploblock sizes and lower haplotype homozygosity on macro-, intermediate and micro-chromosomes. Furthermore, correlations of LD between markers at short distances (0 to 10 kb) were high between crossbred and pure lines (0.83 to 0.94).

Conclusions

Our results suggest that using crossbred populations instead of pure lines can be advantageous for high-resolution QTL (quantitative trait loci) mapping in GWA studies and to achieve good persistence of accuracy of genomic breeding values over generations in genomic selection. These results also provide useful information for the design and implementation of GWA studies and genomic selection using crossbred populations.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0098-4) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Signatures of selection are regions in the genome that have been preferentially increased in frequency and fixed in a population because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium (LD) patterns.

Methods

By comparing the differences in regional LD variation between dairy and beef cattle types, and between indicine and taurine subspecies, we aim at finding signatures of selection for production and adaptation in cattle breeds. The VarLD method was applied to compare the LD variation in the autosomal genome between breeds, including Angus and Brown Swiss, representing taurine breeds, and Nelore and Gir, representing indicine breeds. Genomic regions containing the top 0.01 and 0.1 percentile of signals were characterized using the UMD3.1 Bos taurus genome assembly to identify genes in those regions and compared with previously reported selection signatures and regions with copy number variation.

Results

For all comparisons, the top 0.01 and 0.1 percentile included 26 and 165 signals and 17 and 125 genes, respectively, including TECRL, BT.23182 or FPPS, CAST, MYOM1, UVRAG and DNAJA1.

Conclusions

The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance.  相似文献   

14.
15.

Background

Kelp (Saccharina japonica) has been intensively cultured in China for almost a century. Its genetic improvement is comparable with that of rice. However, the development of its molecular tools is extremely limited, thus its genes, genetics and genomics. Kelp performs an alternative life cycle during which sporophyte generation alternates with gametophyte generation. The gametophytes of kelp can be cloned and crossed. Due to these characteristics, kelp may serve as a reference for the biological and genetic studies of Volvox, mosses and ferns.

Results

We constructed a high density single nucleotide polymorphism (SNP) linkage map for kelp by restriction site associated DNA (RAD) sequencing. In total, 4,994 SNP-containing physical (tag-defined) RAD loci were mapped on 31 linkage groups. The map expanded a total genetic distance of 1,782.75 cM, covering 98.66% of the expected (1,806.94 cM). The length of RAD tags (85 bp) was extended to 400–500 bp with Miseq method, offering us an easiness of developing SNP chips and shifting SNP genotyping to a high throughput track. The number of linkage groups was in accordance with the documented with cytological methods. In addition, we identified a set of microsatellites (99 in total) from the extended RAD tags. A gametophyte sex determining locus was mapped on linkage group 2 in a window about 9.0 cM in width, which was 2.66 cM up to marker_40567 and 6.42 cM down to marker_23595.

Conclusions

A high density SNP linkage map was constructed for kelp, an intensively cultured brown alga in China. The RAD tags were also extended so that a SNP chip could be developed. In addition, a set of microsatellites were identified among mapped loci, and a gametophyte sex determining locus was mapped. This map will facilitate the genetic studies of kelp including for example the evaluation of germplasm and the decipherment of the genetic bases of economic traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1371-1) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   

17.

Background

Population differentiation has proved to be effective for identifying loci under geographically localized positive selection, and has the potential to identify loci subject to balancing selection. We have previously investigated the pattern of genetic differentiation among human populations at 36.8 million genomic variants to identify sites in the genome showing high frequency differences. Here, we extend this dataset to include additional variants, survey sites with low levels of differentiation, and evaluate the extent to which highly differentiated sites are likely to result from selective or other processes.

Results

We demonstrate that while sites with low differentiation represent sampling effects rather than balancing selection, sites showing extremely high population differentiation are enriched for positive selection events and that one half may be the result of classic selective sweeps. Among these, we rediscover known examples, where we actually identify the established functional SNP, and discover novel examples including the genes ABCA12, CALD1 and ZNF804, which we speculate may be linked to adaptations in skin, calcium metabolism and defense, respectively.

Conclusions

We identify known and many novel candidate regions for geographically restricted positive selection, and suggest several directions for further research.  相似文献   

18.

Background

Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure.

Results

We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission) average of the substitution effects of founders'' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component) model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided.

Conclusion

The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.  相似文献   

19.

Background

With dense genotyping, many choices exist for methods to detect quantitative trait loci (QTL) in livestock populations. However, no across-species study has been conducted on the performance of different methods using real data. We compared three methods that correct for relatedness either implicitly or explicitly: linkage and linkage disequilibrium haplotype-based analysis (LDLA), efficient mixed-model association (EMMA) analysis, and Bayesian whole-genome regression (BayesC). We analyzed one chromosome in each of five datasets (dairy cattle, beef cattle, sheep, horses, and pigs) using real genotypes based on dense single nucleotide polymorphisms and phenotypes. The P values corrected for multiple testing or Bayes factors greater than 150 were considered to be significant. To complete the real data study, we also simulated quantitative trait loci (QTL) for the same datasets based on the real genotypes. Several scenarios were chosen, with different QTL effects and linkage disequilibrium patterns. A pseudo-null statistical distribution was chosen to make the significance thresholds comparable across methods.

Results

For the real data, the three methods generally agreed within 1 or 2 cM for the locations of QTL regions and disagreed when no signals were significant (e.g. in pigs). For certain datasets, LDLA had more significant signals than EMMA or BayesC, but they were concentrated around the same peaks. Therefore, the three methods detected approximately the same number of QTL regions. For the simulated data, LDLA was slightly less powerful and accurate than either EMMA or BayesC but this depended strongly on how thresholds were set in the simulations.

Conclusions

All three methods performed similarly for real and simulated data. No method was clearly superior across all datasets or for any particular dataset. For computational efficiency and ease of interpretation, EMMA is recommended, but using more than one method is suggested.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0087-7) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients.

Methodology/Principal Findings

We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations.

Conclusions/Significance

We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号