首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To understand the prevalence of Cryptosporidium infection in rodents in China and to assess the potential role of rodents as a source for human cryptosporidiosis, 723 specimens from 18 rodent species were collected from four provinces of China and examined between August 2007 and December 2008 by microscopy after using Sheather''s sugar flotation and modified acid-fast staining. Cryptosporidium oocysts were detected in 83 specimens, with an overall prevalence of 11.5%. Phodopus sungorus, Phodopus campbelli, and Rattus tanezumi were new reported hosts of Cryptosporidium. The genotypes and subtypes of Cryptosporidium strains in microscopy-positive specimens were further identified by PCR and sequence analysis of the small subunit rRNA and the 60-kDa glycoprotein (gp60) genes. In addition to Cryptosporidium parvum, C. muris, C. andersoni, C. wrairi, ferret genotype, and mouse genotype I, four new Cryptosporidium genotypes were identified, including the hamster genotype, chipmunk genotype III, and rat genotypes II and III. Mixed Cryptosporidium species/genotypes were found in 10.8% of Cryptosporidium-positive specimens. Sequence analysis of the gp60 gene showed that C. parvum strains in pet Siberian chipmunks and hamsters were all of the subtype IIdA15G1, which was found previously in a human isolate in The Netherlands and lambs in Spain. The gp60 sequences of C. wrairi and the Cryptosporidium ferret genotype and mouse genotype I were also obtained. These findings suggest that pet rodents may be potential reservoirs of zoonotic Cryptosporidium species and subtypes.Cryptosporidium spp. are protozoan parasites that infect a wide range of vertebrates, including humans. Cryptosporidiosis is acute and self-limiting in immunocompetent hosts but life threatening in immunocompromised individuals (48). Humans and animals can acquire Cryptosporidium infection through direct contact with infected individuals or contaminated fomites or by consumption of contaminated food or water (16, 47). Rodents, which are abundant and widespread, have been considered reservoirs of cryptosporidiosis in humans and farm animals. Previous studies based on oocyst morphology showed that many wild rodents might serve as hosts of Cryptosporidium parvum-like and C. muris-like parasites (4, 8, 42). The reported prevalence rates of Cryptosporidium in rodents ranged from 5.0% to 39.2% (11-13). Nearly 40 rodent species belonging to 11 families (Sciuridae, Muridae, Cricetidae, Castoridae, Geomyidae, Hystricidae, Erethizontidae, Myocastoridae, Caviidae, Hydrochoeridae, and Chinchillidae) have been reported as hosts of Cryptosporidium spp. (10, 12, 30, 53).Recently, PCR-based genotyping and subtyping tools have been used in assessing the human-infective potential of Cryptosporidium spp. in animals and the extent of cross-species transmission of cryptosporidiosis in animals (47, 49, 51). Five Cryptosporidium species and nearly 20 Cryptosporidium genotypes of uncertain species status have been identified in rodents worldwide in recent studies (3, 6, 12, 13, 18-20, 23, 26, 30, 31, 36, 39, 52, 53). Among them, C. parvum, C. meleagridis, cervine genotype, C. muris, C. andersoni, chipmunk genotype I, and skunk genotype have been associated with cryptosporidiosis in humans although the last four species and genotypes are each responsible for only one or a few cases (47). Subtyping based on sequence analysis of the 60-kDa glycoprotein (gp60) gene has been used in tracking the transmission of six Cryptosporidium species and genotypes, including C. hominis, C. parvum, C. meleagridis, C. fayeri, and the rabbit and horse genotypes (7, 37). There are at least 10 gp60 subtype families of C. parvum, two (IIa and IId) of which are involved in zoonotic transmission. In rodents, natural C. parvum infection is rare (11), and only one C. parvum subtype (IIaA15G2R1) has been reported in capybaras (Hydrochoerus hydrochaeris) in Brazil (30).Until recently there has been no genetic characterization of Cryptosporidium spp. in rodents in China. Worldwide, there are also hardly any genetic data on Cryptosporidium spp. from pet rodents. The purpose of this study was to determine the prevalence of Cryptosporidium in some wild, laboratory, and pet rodents in China and to assess the zoonotic potential of Cryptosporidium spp. from rodents.  相似文献   

3.
A two-color fluorescence in situ hybridization assay that allows for the simultaneous identification of Cryptosporidium parvum and C. hominis was developed. The assay is a simple, rapid, and cost-effective tool for the detection of the major Cryptosporidium species of concern to public health.Cryptosporidium (Apicomplexa) is a genus of protozoan parasites with species and genotypes that infect humans, domesticated livestock, companion animals, and wildlife worldwide (5, 6, 14, 15, 20, 23). The majority of cases of cryptosporidiosis in humans are caused by Cryptosporidium parvum or C. hominis (8, 10, 19, 24), although rare cases due to species such as C. meleagridis, C. felis, or C. canis have been reported (8, 9, 11-13, 17, 18, 22). The specific identification and characterization of Cryptosporidium species are central to the control of this disease in humans and a wide range of animals.One of the most widely adopted techniques for the identification of microorganisms in complex microbial communities is fluorescence in situ hybridization (FISH) using rRNA-targeted oligonucleotide probes (2-4). This method relies on the hybridization of synthetic oligonucleotide probes to specific regions within the rRNA of the organism. While FISH has been applied for the detection of Cryptosporidium oocysts in water samples (21), no FISH probes that successfully differentiate C. hominis from C. parvum have been reported.We have reported previously on the design of a species-specific probe, Cpar677, that detects C. parvum (1). In this study, we report on the design and validation of a C. hominis species-specific probe, Chom253. Together, the two probes were used here for the development of a two-color, microscopy-based FISH assay for the simultaneous detection of C. parvum and C. hominis.  相似文献   

4.
Waste lagoons of swine operations are a source of Cryptosporidium oocysts. Few studies, however, have reported on oocyst concentrations in swine waste lagoons; none have reported on oocyst viability status, nor has there been a systematic assessment of species/genotype distributions across different types of swine facilities. Ten swine waste lagoons associated with farrowing, nursery, finishing, and gestation operations were each sampled once a month for a year. Oocysts were extracted from triplicate 900-ml effluent samples, enumerated by microscopy, and assessed for viability by dye exclusion/vital stain assay. DNA was extracted from processed samples, and 18S ribosomal DNA (rDNA) genes were amplified by PCR and sequenced for species and genotype identification. Oocysts were observed at each sampling time at each lagoon. Annual mean concentrations of total oocysts and viable oocysts ranged between 24 and 51 and between 0.6 and 12 oocysts ml−1 effluent, respectively. The species and genotype distributions were dominated (95 to 100%) by Cryptosporidium suis and Cryptosporidium pig genotype II, the latter of which was found at eight of the lagoons. The lagoon at the gestation facility was dominated by Cryptosporidium muris (90%), and one farrowing facility showed a mix of pig genotypes, Cryptosporidium muris, and various genotypes of C. parvum. The zoonotic C. parvum bovine genotype was observed five times out of 407 18S rDNA sequences analyzed. Our results indicate that pigs can have mixed Cryptosporidium infections, but infection with C. suis is likely to be dominant.Over the last few decades, pork production in North America has undergone significant growth and centralization into large concentrated swine (Sus scrofa) operations with more animals on fewer farms (18). A consequence of the increase in numbers of swine per facility is a concomitant increased concentration of swine waste. Present housing facilities for swine are designed to collect feces and urine in wastewater lagoons, in which the waste undergoes anaerobic transformations. One of several public health concerns over swine lagoons is the potential presence of infectious bacteria, viruses, and protozoa (4). Because of the notoriety given to swine waste lagoon spills in the coastal flood plain of North Carolina that were associated with a series of hurricanes in 1998 and 1999 (21), large-scale swine operations have become a focus of environmental and public health concerns.The cause of the massive outbreak of cryptosporidiosis in Milwaukee, WI, in 1993 was afterwards determined to be Cryptosporidium hominis, the human genotype of C. parvum and an obligate parasite of humans (33, 44). At the time, however, it was thought to be caused by C. parvum (22). Because of this initial misidentification of the cryptosporidial source of the outbreak, the connection between C. parvum and large-scale confined livestock operations has become a focused area of research. Although manure-associated outbreaks of C. parvum have implicated bovine sources, a Canadian study found that the prevalence of Cryptosporidium in swine lagoons was greater than that in dairy liquid manure (9). Olson et al. (24) also reported the presence of Cryptosporidium oocysts of undetermined genotype at four of six hog operations in Canada. Atwill et al. (2) observed C. parvum oocysts in feces of feral pigs. Hutchison et al. (13) observed C. parvum oocysts of undetermined genotype in 5 and 13% of fresh and stored fecal samples, respectively, from pigs of undeclared age. Guselle et al. (10) followed the course of a naturally occurring C. parvum infection in 33 weaned pigs. Following the protocol of the genetic analysis of Morgan et al. (23), Guselle et al. (10) identified this C. parvum genotype as being adapted to pigs. At the time, the zoonotic potential of this C. parvum pig-adapted genotype was considered uncertain (23).Recently, two genotypes of Cryptosporidium have been recognized as host adapted to swine: Cryptosporidium suis (formerly Cryptosporidium pig genotype I) and Cryptosporidium pig genotype II (28, 29). Xiao et al. (37) reported on an immunocompromised person who was infected with a Cryptosporidium pig genotype and thus implicated Cryptosporidium from swine as potentially zoonotic and a public health concern. Before molecular methods were developed to differentiate pig genotypes of Cryptosporidium from other species, C. parvum was thought to infect 152 species of mammals and consist of several cryptic species (6). An extensive survey of swine effluent from swine finishing operations in Ireland indicated a prevalence of both C. suis and Cryptosporidium pig genotype II (39). Hamnes et al. (11) reported prevalence of both C. suis and Cryptosporidium pig genotype II in feces of suckling pigs across Norway and thus implicated farrowing operations as sources of this parasite.Other than the prevalence of Cryptosporidium in feces of young pigs and effluent lagoons of older pigs in finishing operations, little comprehensive data on oocyst concentrations, viability of oocysts, and distributions of Cryptosporidium species and genotypes have been reported. No systematic study of swine lagoon effluents from large-scale facilities has been reported for the four separate stages of swine development, (i) breeding and gestation, (ii) farrowing (parturition), (iii) nursery (in which weaned piglets are kept until 8 to 9 weeks of age), and (iv) finishing (in which 8- to 9-week-old pigs are kept to market weight). The objective of this investigation was to determine for 1 year the frequencies, concentrations, viability statuses, and distributions of Cryptosporidium species and genotypes in lagoons associated with the four types of swine operations in the Southern Piedmont and in coastal plain watersheds of Georgia.  相似文献   

5.
6.
Recently, methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) have been increasingly isolated from veterinarians and companion animals. With a view to preventing the spread of MRSA and MRSP, we evaluated the occurrence and molecular characteristics of each in a veterinary college. MRSA and MRSP were isolated from nasal samples from veterinarians, staff members, and veterinary students affiliated with a veterinary hospital. Using stepwise logistic regression, we identified two factors associated with MRSA carriage: (i) contact with an identified animal MRSA case (odds ratio [OR], 6.9; 95% confidence interval [95% CI], 2.2 to 21.6) and (ii) being an employee (OR, 6.2; 95% CI, 2.0 to 19.4). The majority of MRSA isolates obtained from individuals affiliated with the veterinary hospital and dog patients harbored spa type t002 and a type II staphylococcal cassette chromosome mec (SCCmec), similar to the hospital-acquired MRSA isolates in Japan. MRSA isolates harboring spa type t008 and a type IV SCCmec were obtained from one veterinarian on three different sampling occasions and also from dog patients. MRSA carriers can also be a source of MRSA infection in animals. The majority of MRSP isolates (85.2%) carried hybrid SCCmec type II-III, and almost all the remaining MRSP isolates (11.1%) carried SCCmec type V. MRSA and MRSP were also isolated from environmental samples collected from the veterinary hospital (5.1% and 6.4%, respectively). The application of certain disinfection procedures is important for the prevention of nosocomial infection, and MRSA and MRSP infection control strategies should be adopted in veterinary medical practice.Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections in human hospitals. The prevalence of hospital-acquired MRSA (HA-MRSA) infection among inpatients in intensive care units (ICUs) continues to increase steadily in Japan. Recently, cases of community-acquired MRSA (CA-MRSA) have been documented in persons without an established risk factor for HA-MRSA infection (14, 32, 36, 49).There has also been an increase in the number of reports of the isolation of MRSA from veterinarians and companion animals (5, 21, 23-26, 28, 31, 34, 38, 44, 50, 51, 53). Values reported for the prevalence of MRSA among veterinary staff include 17.9% in the United Kingdom (21), 10% in Japan (38), 3.9% in Scotland (13), and 3.0% in Denmark (28). Loeffler et al. reported that the prevalence of MRSA among dog patients and healthy dogs owned by veterinary staff members was 8.9% (21). In Japan, an MRSA isolate was detected in only one inpatient dog (3.8%) and could not be detected in any of 31 outpatient dogs (38). In the United States, MRSA isolates were detected in both dog (0.1%) and cat (0.1%) patients (31). The prevalence of MRSA among healthy dogs has been reported to be 0.7% (5). Hanselman et al. suggested that MRSA colonization may be an occupational risk for large-animal veterinarians (12). Recently, Burstiner et al. reported that the frequency of MRSA colonization among companion-animal veterinary personnel was equal to the frequency among large-animal veterinary personnel (6).In addition, other methicillin-resistant coagulase-positive staphylococci (MRCPS), such as methicillin-resistant Staphylococcus pseudintermedius (MRSP) and methicillin-resistant Staphylococcus schleiferi (MRSS), isolated from dogs, cats, and a veterinarian have been reported (11, 31, 38, 40, 52). MRSP isolates have also been detected among inpatient dogs (46.2%) and outpatient dogs (19.4%) in a Japanese veterinary teaching hospital (38). In Canada, however, MRSP and MRSS isolates were detected in only 2.1% and 0.5% of dog patients, respectively (11).Methicillin-resistant staphylococci produce penicillin-binding protein 2′, which reduces their affinity for β-lactam antibiotics. This protein is encoded by the mecA gene (48), which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is a mobile genetic element characterized by the combination of the mec and ccr complexes (16), and it is classified into subtypes according to differences in the junkyard regions (43). SCCmec typing can be used as a molecular tool (22, 27, 30, 33, 36, 55) for examining the molecular epidemiology of methicillin-resistant staphylococci.In this study, we investigated the occurrence and characteristics of MRCPS isolates in a veterinary hospital in order to establish the transmission route of MRCPS in a veterinary hospital and with a view to preventing the spread of MRCPS infection. In addition, we evaluated the factors associated with MRCPS. Further, as Heller et al. have reported the distribution of MRSA within veterinary hospital environments and suggested the necessity to review cleaning protocols of hospital environments (13), we also attempted to isolate MRCPS from environmental samples collected in a veterinary hospital for an evaluation of MRSA transmission cycle though environmental surfaces in the veterinary hospital.  相似文献   

7.
A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered through a cellulase cell surface display system in Escherichia coli. The presence of cell surface anchoring, a cellulose binding module, or a His tag greatly influenced the activities of wild-type and mutant enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase engineering. The best mutant had 92%, 36%, and 46% longer half-lives at 60°C on carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively.The production of biofuels from nonfood cellulosic biomass would benefit the economy, the environment, and national energy security (17, 32). The largest technological and economical obstacle is the release of soluble fermentable sugars at prices competitive with those from sugarcane or corn kernels (17, 31). One of the approaches is discovering new cellulases from cellulolytic microorganisms, followed by cellulase engineering for enhanced performance on pretreated solid substrates. However, cellulase engineering remains challenging because enzymatic cellulose hydrolysis is complicated, involving heterogeneous substrates (33, 37), different action mode cellulase components (18), synergy and/or competition among cellulase components (36, 37), and declining substrate reactivity over the course of conversion (11, 26). Directed enzyme evolution, independent of knowledge of the protein structure and the enzyme-substrate interactions (6, 34), has been conducted to generate endoglucanase mutants, such as enhanced activities on soluble substrates (14, 16, 22), prolonged thermostability (20), changed optimum pH (24, 28), or improved expression levels (21). Here, we cloned and characterized a family 5 glycoside hydrolase (Cel5A) from a cellulolytic bacterium, Clostridium phytofermentans ISDg (ATCC 700394) (29, 30), and engineered it for enhanced thermostability.  相似文献   

8.
Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this is the first report of C. meleagridis from Ireland.Demand for high-quality drinking and recreational waters rises exponentially due to global demographic growth in the human population, reinforcing an urgent need for microbiologically safe reclaimed waters (12). Wastewater discharges are worldwide risk factors for the introduction of human pathogens into surface waters used as drinking and recreational resources. Cryptosporidium parvum, C. hominis, Giardia duodenalis, and human-virulent microsporidia (i.e., Encephalitozoon intestinalis, E. hellem, E. cuniculi, and Enterocytozoon bieneusi) are waterborne enteropathogens inflicting considerable morbidity in healthy people and mortality (e.g., Cryptosporidium and microspora) in immunodeficient individuals (34, 44). Their transmissive stages, i.e., oocysts, cysts, and spores, are resistant to environmental stressors and are therefore long-lasting and relatively ubiquitous in the environment (13, 27, 45). These pathogens are category B biodefense agents on the U.S. National Institutes of Health list, and microsporidian spores are on the Contaminant Candidate List of the U.S. Environmental Protection Agency (29) because spore identification, removal, and inactivation in drinking water are technologically challenging. Surface water is not routinely monitored for these pathogens, despite evidence demonstrating environmental contamination derived from wastewater discharges (12). Environmentally, all aforementioned pathogens (except C. hominis) have a broad zoonotic reservoir (13, 27, 34).Constructed wetlands of either vertical or horizontal flow are increasingly used worldwide for secondary or tertiary treatment of municipal wastewater due to minimum electric requirements and low maintenance costs (6, 32). The wetland concept has become an attractive wastewater treatment alternative to conventional tertiary treatment processes for (i) municipal wastewater, (ii) on-site domestic wastewater treatment, and (iii) concentrated animal feeding operations (24). In wetlands, human-pathogenic microorganisms are physically removed and biodegraded by sedimentation (2, 23), filtration and evapotranspiration-driven attachment to plant roots (10, 43), natural die-off (28), UV radiation, straining and sorption by biofilm (31), and protozoan predation (37). It is thought that the performance of subsurface flow (SSF) wetlands in removing human pathogens is superior to that of secondary wastewater treatment, i.e., conventional sewage sludge activation (40). Horizontal wetlands usually discharge to surface waters that are frequently used for recreation or drinking water production (6). It is commonly assumed that human pathogens identified in wetland effluents originate from the wastewater (39). However, this was never proven because studies of human pathogens in wetlands (10, 23, 28, 31, 32, 39, 40) did not utilize molecular epidemiology techniques to differentiate pathogen species or assess their viability.In general, wastewater can be injected under the wetland surface for plug flow hydraulics, i.e., SSF (43), or be delivered to the wetland surface for free-surface flow (FSF). Because the wastewater resides in wetlands, these areas can act as endemic sites supporting both propagation and transmission of human zoonotic pathogens (15). Sizing reed-bed systems for a residence time of 5 days has become a standard practice (6, 31, 39), leaving plenty of time for the propagation and spreading of wastewater-derived pathogens in wetland habitats via a wide variety of wildlife (12, 15). Any temporal or permanent malfunctioning caused by clogged inlet pipes can cause (i) hydraulic short circuits that bypass part of the filtration area in FSF wetlands or (ii) chance SSF wetland filtration dynamics to FSF dynamics (31, 40). This can additionally increase wastewater retention time in wetlands.The purposes of the present study were to (i) determine species of human protozoan and fungal enteropathogens entering, residing, and leaving constructed horizontal wetlands used for tertiary treatment of municipal wastewater; (ii) determine the efficacy for removal of Cryptosporidium oocysts, G. duodenalis cysts, and human-virulent microsporidian spore species by wetlands from wastewater subjected to secondary treatment; and (iii) compare pathogen removal efficacies between SSF and FSF wetlands. We used a multiplexed fluorescence in situ hybridization (FISH) assay with immunofluorescence antibody (IFA) to identify C. parvum and C. hominis oocysts and microsporidian spores and to assess their viability in a quantitative manner. Since multiplexed FISH specifically identifies C. parvum and C. hominis oocysts but does not differentiate between these species (36), we used PCR-restriction fragment length polymorphism (RFLP) to identify other potential oocyst species. In addition, we used PCR to confirm species of microsporidian spores identified by FISH.  相似文献   

9.
10.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

11.
Cryptosporidium is a genus of waterborne protozoan parasites that causes significant gastrointestinal disease in humans. These parasites can accumulate in environmental biofilms and be subsequently released to contaminate water supplies. Natural microbial assemblages were collected each season from an eastern Pennsylvania stream and used to grow biofilms in laboratory microcosms in which influx, efflux, and biofilm retention were determined from daily oocyst counts. For each seasonal biofilm, oocysts attached to the biofilm quickly during oocyst dosing. Upon termination of oocyst dosing, the percentage of oocysts retained within the biofilm decreased to a new steady state within 5 days. Seasonal differences in biofilm retention of oocysts were observed. The spring biofilm retained the greatest percentage of oocysts, followed (in decreasing order) by the winter, summer, and fall biofilms. There was no statistically significant correlation between the percentage of oocysts attached to the biofilm and (i) any measured stream water quality parameter (including temperature, pH, conductivity, and dissolved organic carbon concentration) or (ii) experimental temperature. Seasonal differences in oocyst retention persisted when biofilms were tested with stream water from a different season. These data suggest that seasonal variation in the microbial community and resulting biofilm architecture may be more important to oocyst transport in this stream site than water quality. The biofilm attachment and detachment dynamics of C. parvum oocysts have implications for public health, and the drinking water industry should recognize that the potential exists for pathogen-free water to become contaminated during the distribution process as a result of biofilm dynamics.Cryptosporidium is a genus of waterborne protozoan parasites that cause a gastrointestinal disease in humans (cryptosporidiosis) that can be prolonged and life-threatening for people with compromised immune systems. Recent advances in medical treatment for cryptosporidiosis exist but are not entirely effective for immunocompromised patients (1). In addition, conventional water treatment does not effectively target Cryptosporidium oocysts because the oocysts'' small size (4 to 8 μm) limits the ability of filters to remove them and, more importantly, oocysts are resistant to chlorine (25). Therefore, environmental control of Cryptosporidium is important to protect public health. To determine the risk of human exposure and infection, the fate and transport of Cryptosporidium oocysts in the environment, including biofilms, should be examined.Within the past two decades, biofilms have been recognized as ubiquitous habitats found on most surfaces exposed to water (20, 24). Environmental biofilms can rapidly accumulate pathogens at densities much higher than water column densities, and the potential for gradual or sudden pathogen loss from the biofilm exists long after entrapment (8, 22). Biofilm sloughing events are commonplace, occurring when a biofilm detaches from the substrate to be resuspended as large particles in the water column, and may result in the release of pathogen reservoirs from the biofilm into the water column (8).Biofilms have been identified as a possible contamination source for drinking water supplies, which may lead to infections for which the source cannot be identified (7, 9). An example of the impact of biofilm sloughing events on human health is seen in the cryptosporidiosis outbreak that occurred in Lancashire County, England, in March 2000 (10). After the outbreak, the oocyst source was identified as cattle feces from adjacent farmland that contaminated the drinking water after abnormally heavy rainfall. The water source was subsequently changed to two upland impounding reservoirs containing filtered surface water. However, oocysts persisted in the water distribution system for 19 days, with large peaks associated with major water main disturbance events, including the initial flushing of the system and a burst in the main supply pipe. This persistence of oocysts in the water supply was attributed to the release of oocysts trapped in biofilms on the interior surface of the distribution pipes and may have contributed to additional infections.Several studies have examined pathogen transport dynamics in biofilms using glass or latex beads of various sizes as surrogates for pathogens (5, 8, 16, 17). A few studies examined the attachment of C. parvum oocysts to biofilms but did not use natural microbial assemblages to make the biofilms (3, 23) or quantify how many oocysts attached or sloughed (9, 22). Rogers and Keevil (22) showed that oocysts attached to a biofilm composed of a natural microbial assemblage collected from a reservoir at a concentration of 1,400 oocysts/cm2 after the addition of 108 oocysts in 10 ml of sterile water. Dai and Hozalski (3) and Searcy et al. (23) used pure culture biofilms to demonstrate oocyst attachment; however, only Searcy et al. (23) accounted for sloughing, although no oocyst release from the biofilm was seen during the course of their experiments. Helmi et al. (9) noted attachment and detachment of oocysts from a natural biofilm but did not include a quantitative analysis to account for all oocysts in the flow system over time. None of these studies examined pathogen attachment seasonally over the course of a year. Seasonal changes in temperature, precipitation, and water quality (including nutrient availability) may have significant impacts on the microbial composition and functional structure of a biofilm (14). These changes include structural changes in the biofilm thickness and morphology, as well as changes in the water composition and suspended matter. In addition, seasonal changes in stream flow dynamics may alter biofilm composition and morphology, as well as oocyst attachment and release patterns.This study provides novel information about C. parvum oocyst attachment to biofilms grown in the laboratory from natural microbial assemblages collected seasonally (i.e., in January, April, July, and October) from Monocacy Creek in Bethlehem, PA. Previous work (26) showed that (i) a significant fraction of C. parvum oocysts adhered to the surface of experimental biofilms during a 3-day oocyst dosing period, (ii) a portion of the adhered oocysts immediately released from the biofilm, and (iii) a portion of the oocysts remained attached to the biofilm for a period of days after termination of oocyst dosing. Here, we test the hypotheses that (i) oocyst retention by biofilms varies seasonally and (ii) seasonal changes in water quality influence oocyst retention.  相似文献   

12.
Source attribution using molecular subtypes has implicated cattle and sheep as sources of human Campylobacter infection. Whether the Campylobacter subtypes associated with cattle and sheep vary spatiotemporally remains poorly known, especially at national levels. Here we describe spatiotemporal patterns of prevalence, bacterial enumeration, and subtype composition in Campylobacter isolates from cattle and sheep feces from northeastern (63 farms, 414 samples) and southwestern (71 farms, 449 samples) Scotland during 2005 to 2006. Isolates (201) were categorized as sequence type (ST), as clonal complex (CC), and as Campylobacter jejuni or Campylobacter coli using multilocus sequence typing (MLST). No significant difference in average prevalence (cattle, 22%; sheep, 25%) or average enumeration (cattle, 2.7 × 104 CFU/g; sheep, 2.0 × 105 CFU/g) was found between hosts or regions. The four most common STs (C. jejuni ST-19, ST-42, and ST-61 and C. coli ST-827) occurred in both hosts, whereas STs of the C. coli ST-828 clonal complex were more common in sheep. Neither host yielded evidence for regional differences in ST, CC, or MLST allele composition. Isolates from the two hosts combined, categorized as ST or CC, were more similar within than between farms but showed no further spatiotemporal trends up to 330 km and 50 weeks between farm samples. In contrast, both regions yielded evidence for significant differences in ST, CC, and allele composition between hosts, such that 65% of isolates could be attributed to a known host. These results suggest that cattle and sheep within the spatiotemporal scales analyzed are each capable of contributing homogeneous Campylobacter strains to human infections.Campylobacter species are the largest cause of bacterial intestinal infection in the developed and developing world (3). Almost all reported human Campylobacter infections in the United Kingdom are caused by Campylobacter jejuni, which accounts for approximately 92% of cases, and Campylobacter coli, which accounts for most of the rest (8). Campylobacter species are carried asymptomatically in a wide range of host animals and excreted into the environment in feces (23). Humans can be infected by several routes including consumption of contaminated water (14) or food (23); indeed, case control studies indicate that consumption of poultry meat is a risk factor (11, 12, 28), but other foods including unpasteurized milk (33) and meat from cattle and sheep contaminated at the abattoir might be important (30).Cattle and sheep on farms are major hosts of Campylobacter, with up to 89% of cattle herds (31) and up to 55% of sheep flocks (26) being infected. The prevalence of C. jejuni and C. coli combined, estimated at the level of individual animals from fecal specimens, is 23 to 54% in cattle (22, 25) and up to 20% in sheep (37). Campylobacter enumeration in feces shed from individual animals ranges from <102 to 107 CFU/g in both hosts (31), and the concentration shed varies with time. Meat products of cattle and sheep, by contrast, have generally lower levels of Campylobacter contamination. Prevalence values are 0.5 to 4.9% in surveys of retail beef (11a, 17, 36) and 6.9 to 12.6% in surveys of retail lamb and mutton (17, 35).Clinical Campylobacter strains can be attributed to infection sources in animals by comparing subtype frequencies in clinical cases with those in different candidate sources, including cattle, sheep, pigs, and the physical environment. Campylobacter subtype data sets are most transferable when subtypes are defined as sequence type (ST) using multilocus sequence typing (MLST). Three recent MLST-based studies based in northwestern England (34), mainland Scotland (29), northeastern Scotland (32), and New Zealand (24) have used source attribution models to infer the source of human clinical infection. The results suggest that retail chicken is the source with the highest (55 to 80%) attribution while cattle and sheep combined are ranked second (20 to 40%). These attribution models require further empirical validation but appear to be showing broadly similar results.Attribution of human Campylobacter infections to cattle and sheep raises the question of whether Campylobacter subtypes infecting farm cattle and sheep are generally homogeneous or tend to have spatiotemporal structure. Regarding spatial differences, isolates of C. jejuni from a 100-km2 study of farmland area with dairy cattle and sheep in northwestern England displayed increased genetic similarity up to 1 km apart but no further trend over distances of 1 to 14 km apart (7), and isolates from three dairy cattle farms 2 or 5 km apart in the same area demonstrated differences in the frequencies of strains of clonal complexes (CCs) ST-42 and ST-61 (15). Regarding temporal differences, isolates of C. jejuni from five dairy cattle farms in the same area demonstrated differences in the frequency of strains of CC ST-61 between the spring and summer of 2003 (15). Lastly, regarding host-associated strains, STs of CCs ST-21, ST-42, and ST-61 are associated with cattle, and the more limited data for STs from sheep also show the presence of ST-21 and ST-61 (7, 15).The larger-scale spatiotemporal structure of Campylobacter strains from cattle and sheep is poorly known. The main aims of the present study were (i) to characterize C. jejuni and C. coli from cattle and sheep from two distinct geographical Scottish regions in terms of Campylobacter prevalence and enumeration and C. jejuni and C. coli ST composition and (ii) to estimate the extent of host association of C. jejuni and C. coli STs from cattle versus sheep.  相似文献   

13.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

14.
Campylobacter infections have been reported at prevalences ranging from 2 to 50% in a range of wild bird species, although there have been few studies that have investigated the molecular epidemiology of Campylobacter spp. Consequently, whether wild birds are a source of infection in humans or domestic livestock or are mainly recipients of domestic animal strains and whether separate cycles of infection occur remain unknown. To address these questions, serial cross-sectional surveys of wild bird populations in northern England were carried out over a 2-year period. Fecal samples were collected from 2,084 wild bird individuals and screened for the presence of Campylobacter spp. A total of 56 isolates were recovered from 29 birds sampled at 15 of 167 diverse locales. Campylobacter jejuni, Campylobacter lari, and Campylobacter coli were detected by PCR, and the prevalences of different Campylobacter spp. in different avian families ranged from 0% to 33%. Characterization of 36 C. jejuni isolates by multilocus sequence typing revealed that wild birds carry both livestock-associated and unique strains of C. jejuni. However, the apparent absence of unique wild bird strains of C. jejuni in livestock suggests that the direction of infection is predominantly from livestock to wild birds. C. lari was detected mainly in wild birds sampled in an estuarine or coastal habitat. Fifteen C. lari isolates were analyzed by macrorestriction pulsed-field gel electrophoresis, which revealed genetically diverse populations of C. lari in Eurasian oystercatchers (Haematopus ostralegus) and clonal populations in magpies (Pica pica).Infection with Campylobacter spp. continues to be the leading cause of human infectious intestinal disease in the United Kingdom and has a significant economic impact (39). Consequently, there is a continuing effort to identify effective control methods. The majority of human infections (∼90%) are caused by Campylobacter jejuni subsp. jejuni (46). Other Campylobacter species, including Campylobacter coli and Campylobacter lari, can also cause enteritis in humans, but their prevalence is lower. Most C. jejuni infections are believed to result from consumption of contaminated food, including poultry meat (27, 40), red meat (52), and milk (13), which is thought to be contaminated primarily by feces. It is well established that most livestock species, including poultry, ruminants, and pigs, carry C. jejuni asymptomatically (27), making control at the farm level difficult. However, the epidemiology of C. jejuni cannot be explained solely by food-borne exposure; C. jejuni has also been isolated from a range of environmental samples, including samples of soil, water, sand, and the feces of a number of wildlife species, including wild birds (1-3). However, the role that non-food-borne exposure plays in the epidemiology of C. jejuni is currently not well defined.High prevalences of Campylobacter species infections have been found in a wide range of wild bird species, although there is great variation between taxa (2, 4, 7, 16, 35, 47, 48). Given their ability to fly long distances and their ubiquity, wild birds have the potential to play an important role in the epidemiology and evolution of Campylobacter spp. However, whether wild birds are a source of infection for humans or domestic livestock or are mainly recipients of domestic animal strains or, indeed, whether separate cycles of infection occur remain unknown. These questions remain unanswered in part because investigations of the epidemiology of Campylobacter spp. have been complicated by their high inter- and intraspecies genetic diversity (6).The methods that have been routinely used to characterize Campylobacter isolates are restricted due to genomic instability in Campylobacter populations (10, 38, 45). Multilocus sequence typing (MLST) is a method that has the advantage of being objective since it is sequence based, which allows comparison of isolates from different laboratories and accurate determination of relationships between isolates from diverse sources (11). MLST studies of C. jejuni in farm animals and the environment, including wildlife, suggest that some strains may be associated with particular host groups (6, 10, 15, 30). However, in the same studies other strains were found to occur in several host species or habitats. Few studies have investigated the molecular epidemiology of Campylobacter infection in wild bird populations using MLST, and because only a relatively small number of isolates from wild birds have been characterized by MLST, conclusions have not been drawn yet about how wild bird isolates fit into the overall phylogenetic scheme or whether wild birds act as reservoirs, amplifiers, or merely indicators of infection of domestic animals with zoonotic genotypes.In the current study a large cross-sectional survey of wild bird populations in northern England was undertaken to investigate the epidemiology of Campylobacter infection. Previous studies that have focused on the epidemiology of Campylobacter spp. solely in wild birds have investigated either a narrow range of taxonomic groups (2, 5, 17, 23, 29, 33, 43, 50) or wild birds from a limited range of habitats (18, 25, 48). Studies that have investigated a broad range of wild bird species have used Campylobacter characterization techniques that do not allow conclusions about possible host associations to be drawn or comparison of the genetic diversity of isolates between studies (21, 25, 34, 47, 53). Therefore, the aims of this study were (i) to determine the host range and prevalence of Campylobacter spp. in a wild bird population and (ii) through molecular characterization of isolates to determine whether wild birds were a likely source of infection in humans or domestic livestock and whether separate cycles of infection with host-adapted strains of Campylobacter spp. were maintained in the wild bird population.  相似文献   

15.
Porcine circovirus type 1 (PCV1), originally isolated as a contaminant of PK-15 cells, is nonpathogenic, whereas porcine circovirus type 2 (PCV2) causes an economically important disease in pigs. To determine the factors affecting virus replication, we constructed chimeric viruses by swapping open reading frame 1 (ORF1) (rep) or the origin of replication (Ori) between PCV1 and PCV2 and compared the replication efficiencies of the chimeric viruses in PK-15 cells. The results showed that the replication factors of PCV1 and PCV2 are fully exchangeable and, most importantly, that both the Ori and rep of PCV1 enhance the virus replication efficiencies of the chimeric viruses with the PCV2 backbone.Porcine circovirus (PCV) is a single-stranded DNA virus in the family Circoviridae (34). Type 1 PCV (PCV1) was discovered in 1974 as a contaminant of porcine kidney cell line PK-15 and is nonpathogenic in pigs (31-33). Type 2 PCV (PCV2) was discovered in piglets with postweaning multisystemic wasting syndrome (PMWS) in the mid-1990s and causes porcine circovirus-associated disease (PCVAD) (1, 9, 10, 25). PCV1 and PCV2 have similar genomic organizations, with two major ambisense open reading frames (ORFs) (16). ORF1 (rep) encodes two viral replication-associated proteins, Rep and Rep′, by differential splicing (4, 6, 21, 22). The Rep and Rep′ proteins bind to specific sequences within the origin of replication (Ori) located in the intergenic region, and both are responsible for viral replication (5, 7, 8, 21, 23, 28, 29). ORF2 (cap) encodes the immunogenic capsid protein (Cap) (26). PCV1 and PCV2 share approximately 80%, 82%, and 62% nucleotide sequence identity in the Ori, rep, and cap, respectively (19).In vitro studies using a reporter gene-based assay system showed that the replication factors of PCV1 and PCV2 are functionally interchangeable (2-6, 22), although this finding has not yet been validated in a live infectious-virus system. We have previously shown that chimeras of PCV in which cap has been exchanged between PCV1 and PCV2 are infectious both in vitro and in vivo (15), and an inactivated vaccine based on the PCV1-PCV2 cap (PCV1-cap2) chimera is used in the vaccination program against PCVAD (13, 15, 18, 27).PCV1 replicates more efficiently than PCV2 in PK-15 cells (14, 15); thus, we hypothesized that the Ori or rep is directly responsible for the differences in replication efficiencies. The objectives of this study were to demonstrate that the Ori and rep are interchangeable between PCV1 and PCV2 in a live-virus system and to determine the effects of swapped heterologous replication factors on virus replication efficiency in vitro.  相似文献   

16.
17.
18.
Ninety percent of cultured bacterial nitrate reducers with a 16S rRNA gene similarity of ≥97% had a narG or nosZ similarity of ≥67% or ≥80%, respectively, suggesting that 67% and 80% could be used as standardized, conservative threshold similarity values for narG and nosZ, respectively (i.e., any two sequences that are less similar than the threshold similarity value have a very high probability of belonging to different species), for estimating species-level operational taxonomic units. Genus-level tree topologies of narG and nosZ were generally similar to those of the corresponding 16S rRNA genes. Although some genomes contained multiple copies of narG, recent horizontal gene transfer of narG was not apparent.Nitrate reducers (i.e., both dissimilatory nitrate reducers and denitrifiers) reduce nitrate to nitrite, which can then be reduced to ammonium by dissimilatory nitrate reducers or sequentially reduced to nitric oxide, nitrous oxide, and dinitrogen by denitrifiers (29). narG codes for the alpha subunit of the dissimilatory nitrate reductase, which reduces nitrate to nitrite and is thus common to both dissimilatory nitrate reducers and denitrifiers (29). nosZ codes for nitrous oxide reductase, which reduces nitrous oxide to dinitrogen and is common to denitrifiers but not dissimilatory nitrate reducers (29). Both narG and nosZ are commonly used as gene markers for community level analysis of nitrate reducers (2, 8, 9, 16, 18, 19, 20, 25). However, standardized criteria for assigning environmental narG and nosZ sequences to operational taxonomic units (OTUs) are required so that diverse data sets on nitrate-reducing communities can be normalized. The widespread ability of bacteria and archaea to denitrify (29) complicates the development of such criteria for genes involved in denitrification. Some closely related narG and closely related nosZ genes occur in distantly related taxa, and narG or nosZ phylogenies do not always reflect 16S rRNA phylogenies (17). However, nosZ-based phylogenies in general have a high degree of congruency with 16S rRNA gene-based phylogenies (3, 10, 30), and recent horizontal gene transfer of nosZ seems unlikely (10), indicating that denitrifier structural genes might be used for estimating the species-level novelty, as well as species-level diversity, of denitrifiers in environmental samples. The limited amount of data on horizontal gene transfer of narG (4, 24) identifies a need to extend such an approach to this gene. The limited number of studies that have compared 16S rRNA with narG or nosZ phylogenies accentuates the need for a more thorough analysis of the phylogenetic relatedness of these three genes (3, 4, 7). Thus, the main objectives of this study were to (i) resolve criteria for standardizing OTU assignment of environmental narG and nosZ sequences, (ii) determine whether those criteria can be used as indicators of novel species, and (iii) investigate the impact of horizontal gene transfer on narG.  相似文献   

19.
A substantial sampling among domestic human campylobacter cases, chicken process lots, and cattle at slaughter was performed during the seasonal peak of human infections. Campylobacter jejuni isolates (n = 419) were subtyped using pulsed-field gel electrophoresis with SmaI, and isolates representing overlapping types (n = 212) were further subtyped using KpnI for restriction. The SmaI/KpnI profiles of 55.4% (97/175) of the human isolates were indistinguishable from those of the chicken or cattle isolates. The overlapping SmaI/KpnI subtypes accounted for 69.8% (30/43) and 15.9% (32/201) of the chicken and cattle isolates, respectively. The occurrence of identical SmaI/KpnI subtypes with human C. jejuni isolates was significantly associated with animal host species (P < 0.001). A temporal association of isolates from chickens and patients was possible in 31.4% (55/175) of the human infections. Besides chickens as sources of C. jejuni in the sporadic infections, the role of cattle appears notable. New approaches to restrict the occurrence of campylobacters in other farm animals may be needed in addition to hygienic measures in chicken production. However, only about half of the human infections were attributable to these sources.The incidence of human enteric infections caused by campylobacters is highest in the summer months, showing a consistent peak at the end of July in Finland (www.ktl.fi/attachments/suomi/julkaisut/julkaisusarja_b/2008/2008b09.pdf), as well as in other Nordic countries (16, 33). Almost 70% of campylobacter infections detected in July and August in Finland are domestically acquired, whereas the annual average proportion of domestic cases is about 30%, and most of them are caused by Campylobacter jejuni (30). The prevalence of campylobacters in Finnish broiler flocks peaks simultaneously with the human cases (7), and similar sero- and genotypes have been reported among human and poultry strains isolated in Finland and in other countries (5, 8, 21-23). Several epidemiological studies have identified the handling and consumption of raw or undercooked poultry meat as a major risk factor for campylobacter enteritis (for example, see references 18, 20, and 41), whereas opposite conclusions about the significance of the consumption of chicken meat were drawn from the Swedish case-control study among young children (2) and an extensive Danish register-based study (6).Data derived from the genotyping studies of C. jejuni isolates from human infections and animals support the current suggestion that poultry is the most important single source of sporadic campylobacteriosis (12, 22, 29). However, several reports on genotype comparisons suggest that poultry may be a less significant source of campylobacters than generally thought, and other animal reservoirs should also be considered notable sources of campylobacters pathogenic to humans (3, 8, 17, 27, 31). Studies of the temporal occurrence of campylobacters in human infections and poultry flocks have revealed that the peak in prevalence, as well as some of the overlapping sero- and genotypes, is detected in humans prior to being detected in poultry (21, 28).Although cattle are well-known carriers of campylobacters, the survival of these fragile organisms in beef is poor (39, 42). In recent years, some authors (1, 4, 10) have raised the question of an indirect association between cattle and human cases. In a Finnish study combining data from the multilocus sequence typing of campylobacters isolated from production animals and from epidemiological studies of human cases, significant associations emerged between certain sequence-type complexes from human infections and contact with cattle, the consumption of unpasteurized milk, or the tasting or consumption of raw minced meat (23).The aim of this study was to investigate the contributions of poultry and cattle as sources of human C. jejuni infections in Finland by comparing over a limited time frame the macrorestriction profiles obtained from pulsed-field gel electrophoresis (PFGE) analysis of a geographically representative collection of C. jejuni isolates from domestically acquired sporadic human infections, chicken process lots, and cattle.  相似文献   

20.
Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes.Botulinum neurotoxins (BoNTs) are the most toxic agents known, and as little as 30 ng neurotoxin is potentially lethal to humans (36). These toxins are responsible for botulism, a disease characterized by flaccid paralysis. Seven antigenically distinct BoNTs are known (types A to G), and BoNT types A, B, E, and F are the principal types associated with human botulism (37). Significant sequence diversity and antigenically variable subtypes have recently been reported for the type A, B, and E neurotoxin genes (14, 22, 23, 42).Apart from the species Clostridium botulinum, which itself consists of four phylogenetically distinct groups of organisms, some strains of other clostridia, namely Clostridium butyricum and Clostridium baratii, are also known to produce BoNTs (2, 4, 7, 13, 20, 26, 34, 44). Also, strains that produce two toxins and strains carrying silent toxin genes have been reported (8, 22, 24, 39). Due to the great physiological variation of the BoNT-producing clostridia, their isolation and identification cannot depend solely on biochemical characteristics (32). Indeed, the standard culture methods take into consideration only C. botulinum and not C. baratii and C. butyricum, and identification and confirmation require detection of BoNT by a standard mouse bioassay (SMB) (12). The SMB is highly sensitive and specific but also expensive, time-consuming, and undesirable because of the use of experimental animals. Detection of neurotoxin gene fragments by PCR is a rapid alternative method for detection and typing of BoNT-producing clostridia (3). Different PCR methods have been described for detecting neurotoxin type A-, B-, E-, and F-producing clostridia (9, 15-18, 21, 40, 41).A previously described multiplex PCR method able to simultaneously detect type A, B, E, and F neurotoxin genes is a useful tool for rapid detection of the BoNT-producing clostridia (31). While this method generally has a high level of inclusivity for detection of type B, E, and F neurotoxin genes, limitations for detection of the recently described subtype A2, A3, and A4 strains have been identified (6, 28). To increase the efficiency of this multiplex PCR method, new primers were designed to detect genes for all identified type A neurotoxin subtypes (19). Additionally, an internal amplification control (IAC) was added according to ISO 22174/2005. The specificity and selectivity of this multiplex PCR method were evaluated in comparison with an SMB (12) using target and nontarget strains, and the robustness was assessed using clinical, food, and environmental samples. Moreover, to evaluate the applicability of this multiplex PCR method, a survey with food and environmental samples was performed in a German food control laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号