共查询到20条相似文献,搜索用时 15 毫秒
1.
R.M.M. Crawford 《Plant Ecology & Diversity》2013,6(2):77-105
Summary The ecological dangers of global climatic change are frequently discussed in relation to their threat to biodiversity. Oceanic Scotland, however, differs in many respects from else- where, both in the nature of the current climatic change and the biodiversity of the flora on which it reacts. Scottish habitats, such as those in the more peripheral regions, are rarely rich in species and biodiversity may not be a relevant concept for assessing the impact of environmental change. In species-poor habitats ecosystem health may be a more useful measure of potential survival capacity than species wealth. Examination of the homeo-static properties of plant communities, and their ability to withstand environmental change, could provide a more practical method of predicting which sections of the Scottish flora are at risk from climatic change as well as indicating possible remedial action. Case histories from coastal, wetland, forest and mountain sites are discussed in terms of their present ecological robustness and future potential for surviving expected changes in the Scottish environment. 相似文献
2.
SANDRA DÍAZ SANDRA LAVOREL† SUE McINTYRE ‡ VALERIA FALCZUK FERNANDO CASANOVES§ DANIEL G. MILCHUNAS¶ CHRISTINA SKARPE GRACIELA RUSCH MARCELO STERNBERG IMANUEL NOY-MEIR†† JILL LANDSBERG‡ WEI ZHANG‡‡ HARRY CLARK§§ BRUCE D. CAMPBELL¶¶ 《Global Change Biology》2007,13(2):313-341
Herbivory by domestic and wild ungulates is a major driver of global vegetation dynamics. However, grazing is not considered in dynamic global vegetation models, or more generally in studies of the effects of environmental change on ecosystems at regional to global scale. An obstacle to this is a lack of empirical tests of several hypotheses linking plant traits with grazing. We, therefore, set out to test whether some widely recognized trait responses to grazing are consistent at the global level. We conducted a meta‐analysis of plant trait responses to grazing, based on 197 studies from all major regions of the world, and using six major conceptual models of trait response to grazing as a framework. Data were available for seven plant traits: life history, canopy height, habit, architecture, growth form (forb, graminoid, herbaceous legume, woody), palatability, and geographic origin. Covariates were precipitation and evolutionary history of herbivory. Overall, grazing favoured annual over perennial plants, short plants over tall plants, prostrate over erect plants, and stoloniferous and rosette architecture over tussock architecture. There was no consistent effect of grazing on growth form. Some response patterns were modified by particular combinations of precipitation and history of herbivory. Climatic and historical contexts are therefore essential for understanding plant trait responses to grazing. Our study identifies some key traits to be incorporated into plant functional classifications for the explicit consideration of grazing into global vegetation models used in global change research. Importantly, our results suggest that plant functional type classifications and response rules need to be specific to regions with different climate and herbivory history. 相似文献
3.
4.
Sonia E Sultan 《Current opinion in plant biology》2010,13(1):96-101
5.
Contrasting effects of plant inter‐ and intraspecific variation on community trait responses to restoration of a sandy grassland ecosystem 下载免费PDF全文
Xiaoan Zuo Xiyuan Yue Peng Lv Qiang Yu Min Chen Jing Zhang Yongqing Luo Shaokun Wang Jing Zhang 《Ecology and evolution》2017,7(4):1125-1134
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems. 相似文献
6.
Abstract. Many grasslands and arable fields have been abandoned in Europe in the last decades. So far, however, ecologists have not been able to establish one general, unifying theory for successionally induced changes in species composition following abandonment. In fact, the course of succession seems to be unique for each site and year. Here we focused on the analysis of plant functional traits in order to detect general trends in trait responses to succession which would prove independent of site characteristics. We studied permanent plot series of 14 grassland sites in SW Germany that had been abandoned for 25 yr. Species composition as well as the course of succession varied significantly among the grasslands. Response to succession was analysed for the following traits: ‘plant height’, ‘canopy structure’, ‘specific leaf area’ (SLA), ‘storage organ’, ‘vegetative spread’, ‘plant persistence’, ‘seed bank longevity’, ‘start of flowering’, ‘duration of flowering’ and ‘seed mass’. We compared a univariate with a multivariate approach. In the univariate approach, attributes of each trait were analysed separately employing GLM whereas in the multivariate approach all traits were handled together in NMS. Both analyses indicated similar trait responses to succession. There was a significant increase in the proportion of species characterized by the following attributes: plant height > 0.6 m, leaves distributed regularly along the stem, vegetative spread > 100 mm, start of flowering later than May, duration of flowering 1–2 months and seeds of either low or high mass. 相似文献
7.
Ecological communities and their response to environmental gradients are increasingly being described by various measures of trait composition. Aggregated trait averages (i.e. averages of trait values of constituent species, weighted by species proportions) are popular indices reflecting the functional characteristics of locally dominant species. Because the variation of these indices along environmental gradients can be caused by both species turnover and intraspecific trait variability, it is necessary to disentangle the role of both components to community variability. For quantitative traits, trait averages can be calculated from ‘fixed’ trait values (i.e. a single mean trait value for individual species used for all habitats where the species is found) or trait values for individual species specific to each plot, or habitat, where the species is found. Changes in fixed averages across environments reflect species turnover, while changes in specific traits reflect both species turnover and within‐species variability in traits. Here we suggest a practical method (accompanied by a set of R functions) that, by combining ‘fixed’ and ‘specific averages’, disentangles the effect of species turnover, intraspecific trait variability, and their covariation. These effects can be further decomposed into parts ascribed to individual explanatory variables (i.e. treatments or environmental gradients considered). The method is illustrated with a case study from a factorial mowing and fertilization experiment in a meadow in South Bohemia. Results show that the variability decomposition differs markedly among traits studied (height, Specific Leaf Area, Leaf N, P, C concentrations, leaf and stem dry matter content), both according to the relative importance of species turnover and intraspecific variability, and also according to their response to experimental factors. Both the effect of intraspecific trait variability and species turnover must be taken into account when assessing the functional role of community trait structure. Neglecting intraspecific trait variability across habitats often results in underestimating the response of communities to environmental changes. 相似文献
8.
9.
10.
11.
Bulling MT Solan M Dyson KE Hernandez-Milian G Luque P Pierce GJ Raffaelli D Paterson DM White PC 《Oecologia》2008,158(3):511-520
Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations. 相似文献
12.
Godbold JA Bulling MT Solan M 《Proceedings. Biological sciences / The Royal Society》2011,278(1717):2510-2518
Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. 相似文献
13.
14.
Á. Miklósi Zs. Gonda D. Osorio A. Farzin 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2002,188(2):135-140
It is well known that development of vision is affected by experience, but there are few studies of environmental effects on colour vision. Natural scenes contain predominantly a restricted range of reflectance spectra, so such effects might be important, perhaps biasing visual mechanisms towards common colours. We investigated how the visual environment affects colour preferences of domestic chicks ( Gallus gallus), by training week-old birds to select small food containers distinguished from an achromatic alternative either by an orange or by a greenish-blue colour. Chicks that had been raised in control conditions, with long-wavelength-dominated reflectance spectra, responded more readily to orange than to blue. This was not due to avoidance of blue, as increasing saturation enhanced the chicks' preference for the same hue. The advantage of orange was, however, reduced or abolished for chicks raised in an environment dominated by blue objects. This indicates that responses to coloured food are affected by experience of non-food objects. If colours of ordinary objects in the environment do influence responses to specialised visual signals this might help explain why biological signals directed at birds are often coloured yellow, orange or red; long-wavelength-dominated spectra being more prevalent than short-wavelength-dominated spectra. 相似文献
15.
Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient 总被引:1,自引:0,他引:1
Aims
In the long term absence of catastrophic disturbance ecosystem retrogression occurs, and this is characterized by reduced soil fertility, and impairment of plant biomass and productivity. The response of plant traits to retrogression remains little explored. We investigated how changes plant traits and litter decomposability shift during retrogression for dominant trees and understory shrubs.Methods
We characterized changes in intraspecific, interspecific and community-averaged values of plant traits and litter decomposability, for six abundant species across thirty lake islands in boreal forest that undergo retrogression with increasing time since fire.Results
For understory shrubs, trait values and litter decomposability often changed as soil fertility declined in a manner reflective of greater conservation (versus acquisition) of nutrients, particularly at the interspecific and whole community levels. Such responses were seldom observed for trees, meaning that trees and shrubs show a decoupled response to declining soil fertility during retrogression.Conclusions
Our results only partially agree with previous studies on temperate and subtropical retrogressive chronosequences. Because traits of only shrubs were responsive, they also highlight that impairment of belowground ecosystem processes during retrogression is primarily driven by changes in the trait spectra of understory vegetation rather than that of the trees. 相似文献16.
Variation in the expression of reproductive traits provides the raw material upon which sexual selection can act. It is therefore important to understand how key factors such as environmental variation influence the expression of reproductive traits, as these will have a fundamental effect on the evolution of mating systems. It is also important to consider the effects of environmental variation upon reproductive traits in both sexes and to make comparisons with the environment to which the organism is adapted. In this study, we addressed these issues in a systematic study of the effect of a key environmental factor, variation in larval density, on reproductive trait expression in male and female Drosophila melanogaster. To do this, we compared reproductive trait expression when flies were reared under controlled conditions at eight different larval densities that covered a 20-fold range. Then, to place these results in a relevant context, we compared the results to those from flies sourced directly from stock cages. Many reproductive traits were surprisingly insensitive to variation in larval density. A notable exception was nonlinear variation in female fecundity. In contrast, we found much bigger differences in comparisons with flies from stock cages-including differences in body size, latency to mate, copulation duration, fecundity, and male share of paternity in a competitive environment. For a number of traits, even densities of 1000 larvae per vial (125 larvae per mL of food) did not phenocopy stock cage individuals. This study reveals novel patterns of sex-specific sensitivity to environmental variation that will influence the strength of sexual selection. It also illustrates the importance of comparisons with the environment to which individuals are adapted. 相似文献
17.
18.
Higher plants exhibit cellular responsiveness to the exogenous application of purine nucleotides in a manner consistent with a cell–cell signaling function for these molecules. Like animals, plants respond to extracellular ATP, ADP, and stable analogues (e.g., ATPγS and ADPβS) by increasing the cytoplasmic concentration of calcium. Agonist substrate specificity and concentration dependency suggest receptor mediation of these events, and, although the identity of the plant receptor is currently unknown, pharmacological analysis points to the involvement of a plasma membrane-localized calcium channel. Extracellular ATP can also induce the production of reactive oxygen species and stimulate an increase in the mRNA levels of a number of stress- and calcium-regulated genes, suggesting a role for nucleotide-based signaling in plant wound and defense responses. Furthermore, the growth and development of plants can also be altered by the application of external ATP. Recent studies are only beginning to uncover the complexities of plant signaling networks activated in response to extracellular ATP and how these might interact to affect plant physiological processes. 相似文献
19.
20.
Biodiversity-ecosystem function experiments test how species diversity influences fundamental ecosystem processes. Historically, arthropod driven functions, such as herbivory and pest-control, have been thought to be influenced by direct and indirect associations among species. Although a number of studies have evaluated how plant diversity affects arthropod communities and arthropod-mediated ecosystem processes, it remains unclear whether diversity effects on arthropods are sufficiently consistent over time such that observed responses can be adequately predicted by classical hypotheses based on associational effects. By combining existing results from a long-term grassland biodiversity experiment (Jena Experiment) with new analyses, we evaluate the consistency of consumer responses within and across taxonomic, trophic, and trait-based (i.e. vertical stratification) groupings, and we consider which changes in arthropod community composition are associated with changes in consumer-mediated ecosystem functions.Overall, higher plant species richness supported more diverse and complex arthropod communities and this pattern was consistent across multiple years. Vegetation-associated arthropods responded more strongly to changes in plant species richness than ground-dwelling arthropods. Additionally, increases in plant species richness were associated with shifts in the species-abundance distributions for many, but not all taxa. For example, highly specialized consumers showed a decrease in dominance and an increase in the number of rare species with increasing plant species richness. Most ecosystem processes investigated responded to increases in plant species richness in the same way as the trophic group mediating the process, e.g. both herbivory and herbivore diversity increase with increasing plant species richness. In the Jena Experiment and other studies, inconsistencies between predictions based on classic hypotheses of associational effects and observed relationships between plant species richness and arthropod diversity likely reflect the influence of multi-trophic community dynamics and species functional trait distributions. Future research should focus on testing a broader array of mechanisms to unravel the biological processes underlying the biodiversity-ecosystem functioning relationships. 相似文献