首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported.  相似文献   

2.
The cytochrome P450 OxyD from the balhimycin glycopeptide antibiotic biosynthetic operon of Amycolatopsis mediterranei is involved in the biosynthesis of the modified amino acid β-R-hydroxytyrosine, an essential precursor for biosynthesis of the vancomycin-type aglycone. OxyD binds the substrate tyrosine not free in solution, but rather covalently linked to the carrier protein (CP) domain of the non-ribosomal peptide synthase BpsD, exhibiting micromolar binding affinity to a tyrosine-loaded carrier protein construct. The crystal structure of OxyD was determined to 2.1-Å resolution, revealing a potential binding site for the carrier protein-bound substrate in a different orientation to that seen with the acyl carrier protein-bound P450BioI (Cryle, M. J., and Schlichting, I. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 15696–15701). A series of residues were identified across known aminoacyl-CP-oxidizing P450s that are highly conserved and cluster in the active site or potential CP binding site of OxyD. These residues appear to be characteristic for aminoacyl-CP-oxidizing P450s, allowing sequence based identification of P450 function for this subgroup of P450s that play vital roles in the biosyntheses of many important natural products in addition to the vancomycin-type antibiotics. The ability to analyze such P450 function based upon sequence data alone should prove an important tool in the analysis and identification of new medicinally relevant biomolecules.  相似文献   

3.
The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp(147) and Arg(514) in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP(+) revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ~20° compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP(+) shows movement of the Gly(631)-Asn(635) loop. In the NADP(+)-free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP(+) shows movement of the Gly(631)-Asn(635) loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly(631)-Asn(635) loop movement controls NADPH binding and NADP(+) release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners.  相似文献   

4.
Cytochrome P450 reductase (CPR) is a diflavin enzyme that transfers electrons to many protein partners. Electron transfer from CPR to cyt c has been extensively used as a model reaction to assess the redox activity of CPR. CPR is composed of multiple domains, among which the FMN binding domain (FBD) is the direct electron donor to cyt c. Here, electron transfer and complex formation between FBD and cyt c are investigated. Electron transfer from FBD to cyt c occurs at distinct rates that are dependent on the redox states of FBD. When compared with full-length CPR, FBD reduces cyt c at a higher rate in both the semiquinone and hydroquinone states. The NMR titration experiments reveal the formation of dynamic complexes between FBD and cyt c on a fast exchange time scale. Chemical shift mapping identified residues of FBD involved in the binding interface with cyt c, most of which are located in proximity to the solvent-exposed edge of the FMN cofactor along with other residues distributed around the surface of FBD. The structural model of the FBD-cyt c complex indicates two possible orientations of complex formation. The major complex structure shows a salt bridge formation between Glu-213/Glu-214 of FBD and Lys-87 of cyt c, which may be essential for the formation of the complex, and a predicted electron transfer pathway mediated by Lys-13 of cyt c. The findings provide insights into the function of CPR and CPR-cyt c interaction on a structural basis.  相似文献   

5.
Cytochrome b(5), a 17-kDa hemeprotein associated primarily with the endoplasmic reticulum of eukaryotic cells, has long been known to augment some cytochrome P450 monooxygenase reactions, but the mechanism of stimulation has remained controversial. Studies in recent years have clarified this issue by delineating three pathways by which cytochrome b(5) augments P450 reactions: direct electron transfer of both required electrons from NADH-cytochrome b(5) reductase to P450, in a pathway separate and independent of NADPH-cytochrome P450 reductase; transfer of the second electron to oxyferrous P450 from either cytochrome b(5) reductase or cytochrome P450 reductase; and allosteric stimulation of P450 without electron transfer. Evidence now indicates that each of these pathways is likely to operate in vivo.  相似文献   

6.
Mouri T  Kamiya N  Goto M 《Biotechnology letters》2006,28(18):1509-1513
Catalytic activity of a recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system from Pseudomonas putida coupled with enzymatic co-factor regeneration was investigated. About 0.7 μmol camphor was hydroxylated per mg dry cells at 4°C in 50 mM Tris/HCl buffer (pH 7.4) when utilizing a stable putidaredoxin (Pdx) mutant, C73S/C85S-Pdx (Cys73Ser, Cys85Ser double mutant), instead of wild-type Pdx, which was about two-fold improvement in the substrate conversion. Ten-micromole camphor was completely hydroxylated at 20°C in 6 h by 15 mg dry cell weight of whole cell biocatalyst including C73S/C85S-Pdx. Thus, modulation of protein-protein interaction in multicomponent enzymatic catalysis in whole cells is important.  相似文献   

7.
The cytochrome P450 protein-bound porphyrin complex with the iron-coordinated active oxygen atom as Fe(IV)O is called Compound I (Cpd I). Cpd I is the intermediate species proposed to hydroxylate directly the inert carbon–hydrogen bonds of P450 substrates. In the natural reaction cycle of cytochrome P450 Cpd I has not yet been detected, presumably because it is very short-lived. A great variety of experimental approaches has been applied to produce Cpd I artificially aiming to characterize its electronic structure with spectroscopic techniques. In spite of these attempts, none of the spectroscopic studies of the last decades proved capable of univocally identifying the electronic state of P450 Cpd I. Very recently, however, Rittle and Green [9] have shown that Cpd I of CYP119, the thermophillic P450 from Sulfolobus acidocaldarius, is univocally a Fe(IV)O–porphyrin radical with the ferryl iron spin (S = 1) antiferromagnetically coupled to the porphyrin radical spin (S′ = 1/2) yielding a Stot = 1/2 ground state very similar to Cpd I of chloroperoxidase from Caldariomyces fumago. In this mini-review the efforts to characterize Cpd I of cytochrome P450 by spectroscopic methods are summarized.  相似文献   

8.
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe231 in 1B1 and Phe226 in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B′-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved.  相似文献   

9.
Human microsomal cytochrome P450 (CYP) 2E1 is widely known for its ability to oxidize >70 different, mostly compact, low molecular weight drugs and other xenobiotic compounds. In addition CYP2E1 oxidizes much larger C9–C20 fatty acids that can serve as endogenous signaling molecules. Previously structures of CYP2E1 with small molecules revealed a small, compact CYP2E1 active site, which would be insufficient to accommodate medium and long chain fatty acids without conformational changes in the protein. In the current work we have determined how CYP2E1 can accommodate a series of fatty acid analogs by cocrystallizing CYP2E1 with ω-imidazolyl-octanoic fatty acid, ω-imidazolyl-decanoic fatty acid, and ω-imidazolyl-dodecanoic fatty acid. In each structure direct coordination of the imidazole nitrogen to the heme iron mimics the position required for native fatty acid substrates to yield the ω-1 hydroxylated metabolites that predominate experimentally. In each case rotation of a single Phe298 side chain merges the active site with an adjacent void, significantly altering the active site size and topology to accommodate fatty acids. The binding of these fatty acid ligands is directly opposite the channel to the protein surface and the binding observed for fatty acids in the bacterial cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium. Instead of the BM3-like binding mode in the CYP2E1 channel, these structures reveal interactions between the fatty acid carboxylates and several residues in the F, G, and B′ helices at successive distances from the active site.  相似文献   

10.
Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450·P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR·CYP1A2, 2) CPR·CYP2B4, 3) a mixture of CPR·CYP1A2 vesicles with CPR·CYP2B4 vesicles, and 4) CPR·CYP1A2·CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane.  相似文献   

11.
NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot techniques. Kinetic studies using cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P450c (P450IA1) as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. Our results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.  相似文献   

12.
The P450 monooxygenases CYP102A1 from Bacillus megaterium and CYP102A3 from Bacillus subtilis are fusion flavocytochromes comprising of a P450 heme domain and a FAD/FMN reductase domain. This protein organization is responsible for the extraordinary catalytic activities making both monooxygenases promising enzymes for biocatalysis. CYP102A1 and CYP102A3 are fatty acid hydroxylases that share 65% identity, and their mutants are able to oxidize a wide range of substrates. In an attempt to increase the process stability of CYP102A1, we exchanged the more unstable reductase domain of CYP102A1 with the more stable reductase domain of CYP102A3. Stability of the chimeric fusion protein was determined spectrophotometrically as well as by measuring the hydroxylation activity towards 12-para-nitrophenoxydodecanoic acid (12-pNCA) after incubation at elevated temperatures. In the reaction with 12-pNCA, the new chimeric protein exhibited 88 and 38% of the activity of CYP102A3 and CYP102A1, respectively, but was able to hydroxylate substrates within a wider temperature range compared with the parental enzymes. Maximum activity was obtained at 51°C, and the half-life at 50°C was with 100 min more than ten times longer than that of CYP102A1 (8 min).  相似文献   

13.
Cytochrome P4503A4 (CYP3A4), a major human drug-metabolizing enzyme, is responsible for the oxidation and clearance of the majority of administered drugs. One of the CYP3A4 substrates is bromoergocryptine (BEC), a dopamine receptor agonist prescribed for the inhibition of prolactin secretion and treatment of Parkinson disease, type 2 diabetes, and several other pathological conditions. Here we present a 2.15 Å crystal structure of the CYP3A4-BEC complex in which the drug, a type I heme ligand, is bound in a productive mode. The manner of BEC binding is consistent with the in vivo metabolite analysis and identifies the 8′ and 9′ carbons of the proline ring as the primary sites of oxidation. The crystal structure predicts the importance of Arg212 and Thr224 for binding of the tripeptide and lysergic moieties of BEC, respectively, which we confirmed experimentally. Our data support a three-step BEC binding model according to which the drug binds first at a peripheral site without perturbing the heme spectrum and then translocates into the active site cavity, where formation of a hydrogen bond between Thr224 and the N1 atom of the lysergic moiety is followed by a slower conformational readjustment of the tripeptide group modulated by Arg212.  相似文献   

14.
CYPs have major role in the biosynthesis and modification of secondary metabolites. Predicting the possible involvement of CYPs in secondary metabolism, 20 partial sequences were amplified from the cDNA of trichome enriched tissue of Artemisia annua. Seven CYPs were converted to full length and assigned to different families based on sequence homology. These were co-expressed with CPR in Saccharomyces cerevisiae and microsome fractions were assayed for conversion of sesquiterpenes, phenols and fatty acid substrates. CIM_CYP02(c73) and CIM_CYP05(c81) converted trans-cinnamic acid to p-coumaric acid; and capric acid, lauric acid to their hydroxylated products, respectively. Higher expression of CIM_CYP71AV1, CIM_CYP03(c72a), CIM_CYP06(c72b), CIM_CYP02(c73) and CIM_CYP04(c83) was observed in the mature leaf, whereas expression of CIM_CYP05(c81) was more in the seedling. CIM_CYP71AV1, CIM_CYP02(c73) and CIM_CYP04(c83) expressed more in the flower bud compared to the leaf, with minor expression in stem. All CYPs' expression increased progressively with time after wounding except for CIM_CYP07(c92). These results relate involvement of CIM_CYP02(c73) to phenyl-propanoid metabolism in the leaf and CIM_CYP05(c81) to fatty acid metabolism in the seedling. Expression of CIM_CYP71AV1 and CIM_CYP02(c73) significantly increased when sprayed with trans-cinnamic acid indicating a relationship between phenylpropanoid and artemisinic acid pathways.  相似文献   

15.
Cytochrome P450 enzymes are versatile catalysts involved in a wide variety of biological processes from hormonal regulation and antibiotic synthesis to drug metabolism. A hallmark of their versatility is their promiscuous nature, allowing them to recognize a wide variety of chemically diverse substrates. However, the molecular details of this promiscuity have remained elusive. Here, we have utilized two-dimensional heteronuclear single quantum coherence NMR spectroscopy to examine a series of mutants site-specific labeled with the unnatural amino acid, [13C]p-methoxyphenylalanine, in conjunction with all-atom molecular dynamics simulations to examine substrate and inhibitor binding to CYP119, a P450 from Sulfolobus acidocaldarius. The results suggest that tight binding hydrophobic ligands tend to lock the enzyme into a single conformational substate, whereas weak binding low affinity ligands bind loosely in the active site, resulting in a distribution of localized conformers. Furthermore, the molecular dynamics simulations suggest that the ligand-free enzyme samples ligand-bound conformations of the enzyme and, therefore, that ligand binding may proceed largely through a process of conformational selection rather than induced fit.  相似文献   

16.
Specialized cytochromes P450 or catalase-related hemoproteins transform fatty acid hydroperoxides to allene oxides, highly reactive epoxides leading to cyclopentenones and other products. The stereochemistry of the natural allene oxides is incompletely defined, as are the structural features required for their cyclization. We investigated the transformation of 9S-hydroperoxylinoleic acid with the allene oxide synthase CYP74C3, a reported reaction that unexpectedly produces an allene oxide-derived cyclopentenone. Using biphasic reaction conditions at 0 °C, we isolated the initial products and separated two allene oxide isomers by HPLC at −15 °C. One matched previously described allene oxides in its UV spectrum (λmax 236 nm) and NMR spectrum (defining a 9,10-epoxy-octadec-10,12Z-dienoate). The second was a novel stereoisomer (UV λmax 239 nm) with distinctive NMR chemical shifts. Comparison of NOE interactions of the epoxy proton at C9 in the two allene oxides (and the equivalent NOE experiment in 12,13-epoxy allene oxides) allowed assignment at the isomeric C10 epoxy-ene carbon as Z in the new isomer and the E configuration in all previously characterized allene oxides. The novel 10Z isomer spontaneously formed a cis-cyclopentenone at room temperature in hexane. These results explain the origin of the cyclopentenone, provide insights into the mechanisms of allene oxide cyclization, and define the double bond geometry in naturally occurring allene oxides.  相似文献   

17.
P450 2D6 contributes significantly to the metabolism of >15% of the 200 most marketed drugs. Open and closed crystal structures of P450 2D6 thioridazine complexes were obtained using different crystallization conditions. The protonated piperidine moiety of thioridazine forms a charge-stabilized hydrogen bond with Asp-301 in the active sites of both complexes. The more open conformation exhibits a second molecule of thioridazine bound in an expanded substrate access channel antechamber with its piperidine moiety forming a charge-stabilized hydrogen bond with Glu-222. Incubation of the crystalline open thioridazine complex with alternative ligands, prinomastat, quinidine, quinine, or ajmalicine, displaced both thioridazines. Quinine and ajmalicine formed charge-stabilized hydrogen bonds with Glu-216, whereas the protonated nitrogen of quinidine is equidistant from Asp-301 and Glu-216 with protonated nitrogen H-bonded to a water molecule in the access channel. Prinomastat is not ionized. Adaptations of active site side-chain rotamers and polypeptide conformations were evident between the complexes, with the binding of ajmalicine eliciting a closure of the open structure reflecting in part the inward movement of Glu-216 to form a hydrogen bond with ajmalicine as well as sparse lattice restraints that would hinder adaptations. These results indicate that P450 2D6 exhibits sufficient elasticity within the crystal lattice to allow the passage of compounds between the active site and bulk solvent and to adopt a more closed form that adapts for binding alternative ligands with different degrees of closure. These crystals provide a means to characterize substrate and inhibitor binding to the enzyme after replacement of thioridazine with alternative compounds.  相似文献   

18.
Density functional theoretical studies of monooxygenation reactivity of the high-valent oxoiron(IV) porphyrin cation-radical compound of cytochrome P450, the so-called Compound I, and of its precursor, the ferric(III)-hydroperoxide species, are described. The degeneracy of the spin states of Compound I, its electron deficiency, and dense orbital manifold lead to two-state and multi-state reactivity scenarios and may thereby create reactivity patterns as though belonging to two or more different oxidants. Most of the controversies in the experimental data are reconciled using Compound I as the sole competent oxidant. Theory finds ferric(III)-hydroperoxide to be a very sluggish oxidant, noncompetitive with Compound I. If and when Compound I is absent, P450 oxidation will logically proceed by another form, but this has to be more reactive than ferric(III)-hydroperoxide. Theoretical studies are conducted to pinpoint such an oxidant for P450.
Sason ShaikEmail: Phone: +972-2-6585909Fax: +972-2-6584680
  相似文献   

19.
The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (−103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12–C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s−1 at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications.  相似文献   

20.
NADPH-cytochrome P450 reductase was purified to electrophoretic homogeneity from detergent-solubilized liver microsomes from the leaping mullet (Liza saliens). The purified reductase was characterized with respect to spectral, electrophoretic, and biocatalytic properties. In addition, effects of pH, ionic strength, and the substrate concentration on the NADPH-dependent cytochrome c reductase activity of the purified fish liver cytochrome P450 reductase were studied. Cytochrome P450 reductase was purified 438-fold with a yield of 17.5% with respect to the initial amount present in the fish liver microsomes. The specific activity of the enzyme was found to be 52.6 μmol cytochrome c reduced per minute per mg protein. The monomer molecular weight of the purified enzyme was calculated to be 77,000 ± 1000 when electrophoresed on polyacrylamide gels under the denaturing conditions in the presence of SDS. The absorption spectrum of fish reductase showed two peaks at 378 and 455 nm. NADPH-dependent cytochrome c reductase activity of the purified Liza saliens liver cytochrome P450 reductase was found to be maximal when pH was between 7.4 and 7.8. The apparent Km of the purified enzyme was found to be 7.69 μM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer, pH 7.7, at room temperature, and the enzyme was fully saturated by its substrate, cytochrome c, when the substrate concentration was at or above the 70 μM. Furthermore, the purified enzyme was biocatalytically active in reconstituting the 7-ethoxyresorufin O-deethylase activity in the reconstituted system containing purified mullet liver cytochrome P4501A1 and lipid. These results suggested that the purified fish liver cytochrome P450 reductase is similar to its mammalian counterparts with respect to spectral, electrophoretic, and biocatalytic properties. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 103–113, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号