首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Infection of laboratory mice with murine noroviruses (MNV) is widely prevalent. MNV alters various mouse models of disease, including the Helicobacter bilis-induced mouse model of inflammatory bowel disease (IBD) in Mdr1a−/− mice. To further characterize the effect of MNV on IBD, we used mice deficient in the immunoregulatory cytokine IL10 (Il10−/− mice). In vitro infection of Il10−/− bone marrow-derived macrophages (BMDM) with MNV4 cocultured with H. bilis antigens increased the gene expression of the proinflammatory cytokines IL1β, IL6, and TNFα as compared with that of BMDM cultured with H. bilis antigens only. Therefore, to test the hypothesis that MNV4 infection increases inflammation and alters disease phenotype in H. bilis-infected Il10−/− mice, we compared the amount and extent of inflammation in Il10−/− mice coinfected with H. bilis and MNV4 with those of mice singly infected with H. bilis. IBD scores, incidence of IBD, or frequency of severe IBD did not differ between mice coinfected with H. bilis and MNV4 and those singly infected with H. bilis. Mice infected with MNV4 only had no appreciable IBD, comparable to uninfected mice. Our findings suggest that, unlike in Mdr1a−/− mice, the presence of MNV4 in Il10−/− mouse colonies is unlikely to affect the IBD phenotype in a Helicobacter-induced model. However, because MNV4 altered cytokine expression in vitro, our results highlight the importance of determining the potential influence of MNV on mouse models of inflammatory disease, given that MNV has a tropism for macrophages and dendritic cells and that infection is widely prevalent.Abbreviations: BMDM, bone marrow-derived macrophages; IBD, inflammatory bowel disease; MLN, mesenteric lymph node; MNV, murine norovirusInflammatory bowel disease (IBD), which includes both ulcerative colitis and Crohn disease, is a chronic and relapsing inflammatory disorder of the gastrointestinal tract. In addition, patients with IBD may be at increased risk of developing colorectal cancer.15,46 Although the exact mechanisms of disease are still not understood fully, the pathogenesis of disease is likely multifactorial, with components of the innate and adaptive immune systems, host genetics, and environmental factors (for example, the commensal gut microflora) all playing a role.4,37,55Animal models of IBD have been used to advance our knowledge and understanding of IBD pathogenesis and treatment.16,20,37,38,52 One such model that has been widely used to elucidate the mechanisms of IBD is the interleukin10–deficient (Il10−/−) mouse.3,5,6,20,21,29,33,57 The antiinflammatory cytokine IL10 modulates both innate and adaptive immune responses.41 Produced mainly by dendritic cells, monocytes, macrophages, and T regulatory cells, IL10 exerts its immunomodulatory effects by various mechanisms including decreasing secretion of proinflammatory cytokines (for example, interferon γ, IL1, IL2, IL6, IL12 and TNFα) and downregulating important components of innate immune responses and T-cell activation (for example, MHC class II, costimulatory molecules, and nitric oxide production) in antigen presenting cells.14,41 As a consequence, Il10−/− mice, which lack the suppressive effects of IL10, develop IBD in response to their commensal gut microflora or to certain microbial triggers such as Helicobacter infections.5,6,11,21,29,52,57Antigen-presenting cells such as macrophages and dendritic cells play key roles in the inflammatory responses in IBD.32,47,50 In 2003, a newly discovered murine norovirus (MNV) in laboratory mice was shown to infect macrophages and dendritic cells.27,53 Subsequent studies indicated widespread MNV infection in laboratory mice used for biomedical research, with a serologic prevalence as high as 32%.25,43 Members of the genus Norovirus are regarded as gastrointestinal pathogens in humans and animals, eliciting both innate and adaptive immune responses.19 Therefore, in light of the cellular (macrophages and dendritic cells) and tissue (gastrointestinal) tropisms of MNV as well as the high prevalence of MNV infection in laboratory mice, we hypothesized that MNV infection could be a potential confounder in mouse models of inflammatory diseases including IBD. In support of this idea, our laboratory recently reported that MNV infection in Mdr1a−/− mice (FVB.129P2-Abcb1atm1Bor) accelerated weight loss and exacerbated IBD progression initiated by H. bilis infection.31 This effect potentially was mediated in part through modulating dendritic cell and cytokine responses. In addition, others have reported gastrointestinal abnormalities as a result of MNV infection in some strains of mice,7,26,36 whereas others have described the importance of both innate and adaptive immune responses during MNV infection.8,9,10,28,34,36,48 Collectively, these data indicate that MNV could alter inflammatory responses in laboratory mice.Here we extended our studies of MNV beyond Mdr1a−/− mice to Il10−/− mice, another common animal model of IBD, to further examine the potential effect of MNV on IBD research. Disease was initiated in Il10−/− mice with H. bilis, and we determined whether coinfection with MNV altered disease development, incidence, and severity and the production of cytokines. We demonstrated that although MNV stimulates a Th1 skewing of cytokines in Il10−/− bone marrow-derived macrophages (BMDM) in vitro, MNV does not alter the development, incidence, or severity of disease in vivo. Therefore, although MNV may not affect disease in Il10−/− mouse models, the virus may influence in vitro cytokine phenotypes and thus complicate interpretation of such data. To our knowledge, this report is the first to describe the evaluation of MNV infection in the Helicobacter-induced Il10−/− mouse model of IBD.  相似文献   

5.
6.
7.
M Shen  L Wang  B Wang  T Wang  G Yang  L Shen  T Wang  X Guo  Y Liu  Y Xia  L Jia  X Wang 《Cell death & disease》2014,5(11):e1528
Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl channel by 4,4''-diisothiocya-natostilbene-2,2''-disulfonic acid (DIDS), a non-selective Cl channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl channel blockers against ER stress-associated cardiac anomalies.The endoplasmic reticulum (ER) is characterized as an organelle that participates in the folding of membrane and secretory proteins.1,2 Efficient functioning of the endoplasmic reticulum is important for cell function and survival. Perturbations of ER homeostasis by energy deprivation and glucose,3 viral infections4 and accumulation of misfolded and/or unfolded proteins2 interfere with ER function, leading to a state of ER stress.5, 6, 7 A cohort of chemicals, for example, tunicamycin and thapsigargin, also trigger ER stress.8, 9, 10 Thapsigargin disrupts the calcium storage of ER by blocking calcium reuptake into the ER lumen, thus by depleting calcium from the organelle.11 In particular, tunicamycin is a highly specific ER stress inducer by inhibiting N-linked glycosylation of protein, representing a well-documented method to artificially elicit unfolded protein response.8 In response to ER stress, ER chaperones such as glucose-regulated protein 78 kDa (GRP78) and glucose-regulated protein 94 kDa (GRP94) are upregulated to facilitate the recovery of unfolded or misfolded proteins.12 ER stress may act as a defense mechanism against external insults; however, prolonged and/or severe ER stress may ultimately trigger apoptosis.8 The C/EBP homologous protein (CHOP) has been defined as a pivotal mediator of cell death signaling in ER stress.13, 14 Accumulating evidence has demonstrated that ER stress-induced cell death is an essential step in the pathogenesis of a wide variety of cardiovascular diseases such as ischemia reperfusion heart diseases,15 atherosclerosis,5, 16, 17, 18 myocardial infarction,19 hypertension20, 21 and heart failure.8, 22, 23 Inhibiting ER stress has great therapeutic values for cardiac anomalies. However, the precise mechanism involved in ER stress-induced cardiovascular diseases has not been well identified, which impedes the translation of our understanding of ER stress-induced cardiovascular anomalies into effective therapeutic strategies. Apoptosis induction requires persistent cell shrinkage, named apoptotic volume decrease (AVD).24, 25, 26, 27 It is an early prerequisite for the activation of caspases.24 In various types of cells including cardiomyocytes, AVD process is accomplished by the activation of volume-sensitive outwardly rectifying (VSOR) Cl channel and is concomitant with the egress of water from the cells undergoing mitochondrion-initiated or death receptor-induced apoptosis.25, 28, 29, 30 Although inhibition of VSOR Cl channel by DIDS (4,4''-diisothiocyanatostilbene-2,2''-disulphonic acid) and DCPIB (4-(2-butyl-6,7- dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid) blocked AVD and rescued cardiomyocytes from mitochondrial and death receptor pathway-induced apoptosis,31, 32 it remains largely unknown concerning the role of VSOR Cl channel and how it is regulated in ER stress-induced apoptotic cardiomyocyte death.Emerging evidence indicates that Wnt signal pathways are found to be anti-apoptotic in the cardiovascular diseases,33, 34, 35 regulating crucial aspects of cardiovascular biology. However, up to now, its activity in ER stress-induced apoptosis and in the process of AVD in cardiomyocytes remains elusive.In the present study, we probed the role of VSOR Cl channel in ER stress-induced apoptosis of cardiomyocytes, which intimately correlates with cardiac contractile dysfunction (CCD). We hypothesized that VSOR Cl channel controls the process of AVD occurring concomitantly with ER stress-induced apoptosis of cardiomyocytes. To test this hypothesis, we investigated VSOR Cl currents in cardiomyocytes treated with the ER stress inducer tunicamycin. The pathophysiological role of VSOR Cl channel and the potential signaling mechanisms in the development of ER stress-induced apoptosis in CCD were also dissected.  相似文献   

8.
Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc–mediated disruption of neuronal chloride homeostasis.Glioma-associated epilepsy is an established but poorly understood phenomenon. Over 80% of glioma patients suffer from seizures,1 often representing the first symptomatic presentation of a tumor and possibly preceding it.2 It has been extensively reported that glioma cells release glutamate in the extracellular space, through the glutamate-cystine transporter (system Xc), promoting proliferation and invasion and causing neuronal death.3 Accordingly, increased glutamate levels have been implicated in numerous seizure disorders4 and contribute to epileptogenesis in glioma-implanted rodents.5, 6 Glutamate excess may cause the alteration of neuronal chloride (Cl) homeostasis and depolarize γ-aminobutyric acid (GABA) reversal potential (EGABA), as a result of Cl transporters dysfunction or disequilibrium.7 Indeed, a precise balance between NKCC1 and KCC2 activity is necessary for inhibitory GABAergic signaling in the adult central nervous system8 and its disequilibrium can cause elevation of intracellular [Cl] leading to switch of GABAergic signaling from hyperpolarizing to depolarizing in epileptic tissue,9, 10 contributing to epileptogenesis.11, 12, 13In this study, we investigated the mechanisms of glioma-induced neuronal overexcitation using co-cultures of hippocampal and glioma cells. We report that glioma cells cause the alteration of EGABA, through glutamate-receptor-dependent zinc (Zn2+) accumulation, leading to KCC2-mediated Cl transport unbalance. Our study provides the molecular mechanism of glioma-induced elevation in intracellular Cl and a complete model linking glutamate release by glioma cells to glioma-related epilepsy.  相似文献   

9.
Mycoplasmosis is a frequent causative microbial agent of community-acquired pneumonia and has been linked to exacerbation of chronic obstructive pulmonary disease. The macrophage class A scavenger receptor (SRA) facilitates the clearance of noxious particles, oxidants, and infectious organisms by alveolar macrophages. We examined wildtype and SRA−/− mice, housed in either individually ventilated or static filter-top cages that were cycled with fresh bedding every 14 d, as a model of gene–environment interaction on the outcome of pulmonary Mycoplasma pulmonis infection. Intracage NH3 gas measurements were recorded daily prior to infection. Mice were intranasally infected with 1 × 107 cfu M. pulmonis UAB CT and evaluated at 3, 7, and 14 d after inoculation. Wildtype mice cleared 99.5% of pulmonary M. pulmonis by 3 d after infection but remained chronically infected through the study. SRA−/− mice were chronically infected with 40-fold higher mycoplasma numbers than were wildtype mice. M. pulmonis caused a chronic mixed inflammatory response that was accompanied with high levels of IL1β, KC, MCP1, and TNFα in SRA−/− mice, whereas pulmonary inflammation in WT mice was represented by a monocytosis with elevation of IL1β. Housing had a prominent influence on the severity and persistence of mycoplasmosis in SRA−/− mice. SRA-/- mice housed in static cages had an improved recovery and significant changes in surfactant proteins SPA and SPD compared with baseline levels. These results indicate that SRA is required to prevent chronic mycoplasma infection of the lung. Furthermore, environmental conditions may exacerbate chronic inflammation in M. pulmonis-infected SRA−/− mice.Abbreviations: BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; KC, keratinocyte-derived chemokine (CXCL1); MCP1, monocyte chemotactic protein 1; SPA, surfactant protein A (SFTPA1); SPB, surfactant protein B (SFTPB); SPD, surfactant protein D (SFTPD); SRA, class A scavenger receptor (MSR1); WT, wildtypeThere are numerous options for the housing and husbandry of rodents in the laboratory setting. Various available choices in caging, bedding material, and cage-change frequency have the potential to effect physiologic values and thus experimental outcomes.20,108 In many facilities, current practices involve performing cage changes every 1 to 2 wk, with some facilities exploring the possibility of extending these practices to every 4 wk.97 Cage-change frequency practices are established at various institutions after consideration of several variables that affect animal health, welfare, and cost. Ideally, an appropriate sanitation program provides clean and dry bedding, adequate air quality, and clean cage surfaces and accessories.44 When establishing performance standards for a sanitation program that are different from those which are recommended in the Guide for the Care and Use of Animals in Research,44 microenvironmental conditions, including intracage humidity, temperature, animal behavior and appearance, microbiologic loads, and levels of pollutants such as CO2 and NH3, should be evaluated and verified. Although there are currently no established NH3 exposure limits for laboratory animals, the human occupational exposure limit of 25 ppm as an 8-h time-weighted average, established by the National Institute for Occupational Safety and Health, is often referenced as a guideline for animals.95 Multiple factors, such as animal cage density, sex, age, bedding type, reusable compared with disposable caging, static caging compared with IVC, and cage-change frequency, influence intracage and ambient NH3 levels.82,83,97 Only limited information is available that addresses the effect of natural intracage NH3 levels on respiratory function in experimental rodents and whether exposure to high NH3 levels under current standard practices affects the results of respiratory disease research.Ammonia is an alkaline, corrosive, and irritant gas that is very water soluble. It reacts with the moisture of the mucous membranes of the eyes, mouth, and respiratory tract to form ammonium hydroxide in an exothermic reaction, resulting in thermal and chemical burns.68 Clinical symptoms in humans exposed to high levels of NH3 include eye irritation, headaches, and multiple acute and chronic respiratory symptoms, such as irritation of the nose, pharynx, and sinuses, and in severe cases, development of bronchitis and hyper-reactive airway disease.79 Animals are similarly susceptible to NH3-induced pulmonary disease.23,31,48Mice exposed to naturally increasing levels of intracage NH3 can develop lesions in the rostral nasal cavity, with decreasing severity of the lesions moving caudally into the nasopharynx, and no lesions in the lung.97 However, dust is another common environmental pollutant that is often present in animal settings. Dust particles readily absorb NH3, which then serve as a source of NH3 deposition into the lower respiratory tract. Dust particulate can range from large (300 µm), minimally respirable particles to very fine (< 50 µm) particulate matter, which can settle deep within the alveoli.10,102 The mucociliary system of the respiratory tract is the first line of defense against inspired noxious stimuli and pathogens. Exposure of the ciliated respiratory epithelium to the damaging effects of NH3 are known to cause decreased mucociliary beating.56 Disruption of the respiratory mucociliary escalator initiated by NH3 exposure can then promote establishment of chronic infections and inflammation of the airway mucosa.11,87 Therefore, NH3 potentially can cause pathophysiologic changes of the lung in the absence of histopathologic lesions.Our primary goal was to analyze the effect of 2 housing modalities, which result in different intracage NH3 concentrations, on mice that were challenged with a respiratory pathogen. Mycoplasma pulmonis was chosen as a model because it is a well-established model in rodents which causes chronic mycoplasmosis and reproduces the features of M. pneumoniae in humans.22,41 M. pneumoniae infection is a frequent and contagious etiology of community-acquired pneumonia causing tracheobronchitis, sneezing, cough, and inflammation of the respiratory tract.8,12,47,63 Moreover, atypical and difficult-to-detect respiratory pathogens such as Chlamydophila pneumoniae and Mycoplasma pneumoniae that can establish chronic asymptomatic infections may contribute to both the development and exacerbation of COPD26,45,57,58,62,63,66,72,96,103 and asthma.8,51,65 Infection with M. pulmonis in rodents causes rhinitis, otitis media, tracheitis, and pneumonia, which can be exacerbated by housing conditions and genetic background.14,32,85 The mechanism of pathogenicity of mycoplasmas continues to be an area of interest in the research.The innate host factors protecting against pulmonary mycoplasmosis include the secreted surfactant protein opsonins SPA and SPD, surfactant phospholipids, and the molecular pattern-recognition receptor TLR2.15,16,54,74 Therefore, compared with their wildtype (WT) counterparts, SPA-deficient mice infected with either M. pulmonis or M. pneumoniae develop more severe inflammation and have decreased capacity to clear these infections from the lungs.43 In addition, TLR2-deficient mice exhibit decreased clearance and increased inflammation in response to mycoplasma infection.60,104Second, we wanted to study the effects of SRA deficiency in mycoplasmosis. The class A scavenger receptor (SRA) modulates inflammatory responses and mediates the clearance of airborne oxidants, particulates, and respiratory pathogens.3,17,18,49,88,101 Inhibition of SRA expression in alveolar macrophages in an elastase–LPS model of COPD was associated with decreased clearance of Haemophilus influenzae.33 Lack of SRA similarly impaired alveolar macrophage-mediated clearance of Streptococcus pneumoniae,5 environmental particles,6 and ozone-oxidized lipids18 by alveolar macrophages. Absence of SRA also enhanced hyperoxia-induced lung injury49 and exacerbated inflammation in response to Staphylococcus aureus infection.88 SRA appears to have antiinflammatory properties with the capacity to modify macrophage phenotype and suppress polarization toward the M1 alternative macrophage activation state.13 The SRA gene (MSR1) is polymorphic in both mice and humans.19,29,105 Genetic association studies in humans, however, showed that subjects with truncations or point mutations in MSR1 have significantly increased risk for the development of pulmonary diseases such as COPD33,38,71,94 and asthma.5 Our understanding of the immune factors that contribute to mycoplasmosis is far from complete.In the present study, by investigating the role of SRA in mycoplasmosis jointly with the effects of housing, we demonstrated that genetic and environmental factors both serve as critical players in disease progression. We show that SRA-deficient mice are susceptible to chronic colonization with M. pulmonis and development of chronic mycoplasma-induced bronchopneumonia characterized by persistent multicellular inflammation. Furthermore, we show that housing conditions influence the effect of SRA deficiency on the severity of mycoplasmosis. Taken together, these results indicate that lack of SRA function impairs host protection against both infectious and environmental insults.  相似文献   

10.
11.
12.
Transforming growth factor-β1 (TGF-β1) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β1 may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β1-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β1 to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β1 promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β1 in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β1-induced autophagy is required for the fibrogenic response in hATMyofbs.Interstitial fibrosis is common to many cardiovascular disease etiologies including myocardial infarction (MI),1 diabetic cardiomyopathy2 and hypertension.3 Fibrosis may arise due to maladaptive cardiac remodeling following injury and is a complex process resulting from activation of signaling pathways, such as TGF-β1.4 TGF-β1 signaling has broad-ranging effects that may affect cell growth, differentiation and the production of extracellular matrix (ECM) proteins.5, 6 Elevated TGF-β1 is observed in post-MI rat heart7 and is associated with fibroblast-to-myofibroblast phenoconversion and concomitant activation of canonical Smad signaling.8 The result is a proliferation of myofibroblasts, which then leads to inappropriate deposition of fibrillar collagens, impaired cardiac function and, ultimately, heart failure.9, 10Autophagy is necessary for cellular homeostasis and is involved in organelle and protein turnover.11, 12, 13, 14 Autophagy aids in cell survival by providing primary materials, for example, amino acids and fatty acids for anabolic pathways during starvation conditions.15, 16 Alternatively, autophagy may be associated with apoptosis through autodigestive cellular processes, cellular infection with pathogens or extracellular stimuli.17, 18, 19, 20 The overall control of cardiac fibrosis is likely due to the complex functioning of an array of regulatory factors, but to date, there is little evidence linking autophagy with fibrogenesis in cardiac tissue.11, 12, 13, 14, 15, 16, 17, 18, 21, 22Recent studies have demonstrated that TGF-β1 may not only promote autophagy in mouse fibroblasts and human tubular epithelial kidney cells15, 23, 24 but can also inhibit this process in fibroblasts extracted from human patients with idiopathic pulmonary fibrosis.25 Moreover, it has recently been reported that autophagy can negatively15 and positively25, 26, 27 regulate the fibrotic process in different model cell systems. In this study, we have explored the putative link between autophagy and TGF-β1-induced fibrogenesis in human atrial myofibroblasts (hATMyofbs) and in a model of MI rat heart.  相似文献   

13.
Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3 to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3 was retained in roots of Xiangyou15. Moreover, NO3 concentration in xylem sap, [15N] shoot:root (S:R) and [NO3] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3 in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3 long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3 in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3 allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8.China is the largest consumer of nitrogen (N) fertilizer in the world; however, the average N use efficiency (NUE) in fertilizer is only around 35%, suggesting considerable potential for improvements (Shen et al., 2003; Wang et al., 2014). With the high amounts of N-fertilizer being used, crop yields are declining in some areas, where application is exceeding the optimum required for local field crops (Shen et al., 2003; Miller and Smith, 2008; Xu et al., 2012). The extremely low NUE results in waste of resources and environmental contamination, and also presents serious hazards for human health (Xu et al., 2012; Chen et al., 2014). Consequently, exploiting the maximum potential for improving NUE in crop plants will have practical significance for agriculture production and the environment (Zhang et al., 2010; Schroeder et al., 2013; Wang et al., 2014). Elucidating the genetic and physiological regulatory mechanisms governing NUE in plants will allow breeding crops and varieties with higher NUE.Ammonium (NH4+) and nitrate (NO3) are the main N species absorbed and utilized by crops, and NO3 accumulation and utilization are of major emphasis for N nutrient studies in dry land crops, such as Brassica napus. Several studies revealed the close relationship between NO3 content and NUE in plant tissues (Shen et al., 2003; Zhang et al., 2012; Tang et al., 2013; Han et al., 2015a). When plants are sufficiently illuminated, NO3 assimilation efficiency significantly increase in shoots compared with roots (Smirnoff and Stewart, 1985; Tang et al., 2013). Consequently, under daytime with optimal illumination, higher proportion of NO3 in plant tissue is transported from root to shoot, as an advantageous physiological adaptation that reduces the cost of energy for metabolism (Tang et al., 2013). NO3 assimilation in plant shoots can therefore take advantage of solar energy while improving NUE (Smirnoff and Stewart, 1985; Andrews, 1986; Tang et al., 2012, 2013).The NO3 long-distance transport and distribution between root and shoot is regulated by two genes encoding long transport mechanisms. NRT1.5 is responsible for xylem NO3 loading, while NRT1.8 is responsible for xylem NO3 unloading (Lin et al., 2008; Li et al., 2010). Expression of the two genes is influenced by NO3 concentration. NRT1.5 is strongly induced by NO3 (Lin et al., 2008), while NRT1.8 expression is extremely up-regulated in nrt1.5 mutants (Chen et al., 2012). A negative correlation between the extents of expression of the two genes was observed when plants are subjected to abiotic stresses (Chen et al., 2012). Moreover, expression of NRT1.5 is strongly inhibited by 1-aminocyclopropane-1-carboxylic acid (ACC) and methyl jasmonate (MeJA), whereas the expression of NRT1.8 is significantly up-regulated (Zhang et al., 2014). Based on these studies, we argue that the expression and functioning of NO3 long-distance transport genes NRT1.5 and NRT1.8 are regulated by cytosolic NO3 concentration. In addition, the vacuolar and cytosolic NO3 distribution is likely regulated by proton pumps located within the tonoplast (V-ATPase and V-PPase; Granstedt and Huffaker, 1982; Glass et al., 2002; Krebs et al., 2010). Therefore, NO3 use efficiency must be affected by NO3 long-distant transport (between shoot and root) and short-distant transport (between vacuole and cytosol). However, the physiological mechanisms controlling this regulation are still obscure.Previous studies showed that the chloride channel protein (CLCa) is mainly responsible for vacuole NO3 short-distance transport, as it is the main channel for NO3 movement between the vacuoles and cytosol (De Angeli et al., 2006; Wege et al., 2014). The vacuole proton-pumps (V-ATPase and V-PPase) located in the tonoplast supply energy for active transport of NO3 and accumulation within the vacuole (Gaxiola et al., 2001; Brüx et al., 2008; Krebs et al., 2010). Despite the fact about 90% of the volume of mature plant cells is occupied by vacuoles, vacuolar NO3 cannot be efficiently assimilated because the enzyme nitrate reductase (NR) is cytosolic (Shen et al., 2003; Han et al., 2015a). However, retranslocation of NO3 from the vacuole to the cytosol will permit its immediate assimilation and utilization.Generally, NO3 concentrations in plant cell vacuoles and the cytoplasm are in the range of 30–50 mol m−3 and 3–5 mol m−3, respectively (Martinoia et al., 1981, 2000). Because vacuoles are obviously the organelle for high NO3 accumulation and storage in plant tissues, their function in NO3 use efficiency cannot be ignored (Martinoia et al., 1981; Zhang et al., 2012; Han et al., 2015b). NO3 assimilatory system in the cytoplasm is sufficient for its assimilation when it is transported out of the vacuoles. Therefore, NO3 use efficiency could in part be dependent on vacuolar-cytosolic NO3 short-distance transport in plant tissues (Martinoia et al., 1981; Shen et al., 2003; Zhang et al., 2012; Han et al., 2015a).Evidently, NO3 use efficiency is regulated by both NO3 long-distance transport from root to shoot and short-distance transport and distribution between vacuoles and cytoplasm within cells (Glass et al., 2002; Dechorgnat et al., 2011; Han et al., 2015a). Although vacuoles compartment excess NO3 that accumulates in plant cells (Granstedt and Huffaker, 1982; Krebs et al., 2010), neither NO3 inducible NR genes (NIA1 and NIA2; Fan et al., 2007; Han et al., 2015a) nor the NO3 long-distance transport gene NRT1.5 (Lin et al., 2008) are regulated by vacuolar NO3, even though they are essential for NO3 assimilation. Only NO3 transported from the vacuole to the cytosol can play a role in regulating NO3 inducible genes. Consequently, we argue that both NO3 assimilation in cells and its long-distance transport from root to shoot are regulated by cytosolic NO3 concentration. However, this hypothesis needs to be substantiated. The mechanisms underlying both NO3 short-distance (Gaxiola et al., 2001; De Angeli et al., 2006; Brüx et al., 2008; Krebs et al., 2010) and long-distance transport (Lin et al., 2008; Li et al., 2010) have been previously investigated, yet the underlying mechanisms regulating the flux of NO3 and the obvious relationship between the two transport pathways, as well as their relation to NUE, are not well understood.The NRT family of genes play a partial role in vacuolar NO3 accumulation in petioles (Chiu et al., 2004) and seed tissues (Chopin et al., 2007), whereas the proton pumps and CLCa system in the tonoplast play a major role in accumulating NO3 in vacuoles (Gaxiola et al., 2001; De Angeli et al., 2006; Brüx et al., 2008; Krebs et al., 2010). The vacuolar NO3 short-distance transport system is spread throughout the plant tissues and is the principal means by which vacuolar NO3 short-distance transport and distribution is controlled (De Angeli et al., 2006; Krebs et al., 2010).The NRT genes seem to work synergistically to control NO3 long-distance transport between roots and shoots. NRT1.9 is responsible for NO3 loading into the phloem (Wang and Tsay, 2011), whereas NO3 loading and unloading into xylem are regulated by NRT1.5 and NRT1.8, respectively (Lin et al., 2008; Li et al.; 2010). Phloem transport mainly involves organic N; the inorganic-N (NO3) concentrations in the phloem sap are typically very low, ranging from one-tenth to one-hundredth of that of the inorganic-N in xylem sap (Lin et al., 2008; Fan et al., 2009). Therefore, this study focused on NO3 short-distance transport mediated through the tonoplast proton pumps and the CLCa system and the long-distant transport mechanisms responsible for xylem NO3 loading and unloading via NRT1.5 and NRT1.8, respectively.Questions related to how long- and short-distance transport of NO3 are coupled in plant tissues and their role in determining NUE were addressed using a pair of high- and low-NUE B. napus genotypes and Arabidopsis (Arabidopsis thaliana). Application of proton pump inhibitors and ACC in the former, and use of mutants with defective proton pumps in the latter, allowed experimental distinction of the physiological mechanisms regulating these processes. Data presented here provide strong evidence from both model plants supporting this linkage and strongly suggest that cytosolic NO3 concentration in roots regulates NO3 long-distance transport from roots to shoots. We also investigated how NO3 concentration in plant tissues would be affected by NO3 long-distance transport, vacuolar NO3 sequestration, and the ensuing relationship with NO3 use efficiency. We also proposed the physiological mechanisms likely to be important for enhancing NO3 use efficiency in plants. These findings will provide scientific rationales for improving NUE in important industrial and food crops.  相似文献   

14.
15.
Neurodegeneration is a serious issue of neurodegenerative diseases including epilepsy. Downregulation of the chloride transporter KCC2 in the epileptic tissue may not only affect regulation of the polarity of GABAergic synaptic transmission but also neuronal survival. Here, we addressed the mechanisms of KCC2-dependent neuroprotection by assessing truncated and mutated KCC2 variants in different neurotoxicity models. The results identify a threonine- and tyrosine-phosphorylation-resistant KCC2 variant with increased chloride transport activity, but they also identify the KCC2 N-terminal domain (NTD) as the relevant minimal KCC2 protein domain that is sufficient for neuroprotection. As ectopic expression of the KCC2-NTD works independently of full-length KCC2-dependent regulation of Cl transport or structural KCC2 C-terminus-dependent regulation of synaptogenesis, our study may pave the way for a selective neuroprotective therapeutic strategy that will be applicable to a wide range of neurodegenerative diseases.Neurodegeneration restricts neuron numbers during development but can become a serious issue in disease conditions such as temporal lobe epilepsy (TLE).1 GABA-activated Cl channels contribute to activity-dependent refinement of neural networks by triggering the so-called giant depolarizing potentials providing developing neurons with a sense of activity essential for neuronal survival and co-regulation of excitatory glutamatergic and (inhibitory) GABAergic synapses.2 By regulating transmembrane Cl gradients KCC2 plays a vital role in development and disease.3 In addition, KCC2 plays a protein structural role in spine formation through its C-terminal protein domain (CTD).4, 5 Hence, regulation of KCC2 expression and function is relevant for development and disease-specific plasticity of neural networks.6, 7, 8, 9GlyR α3K RNA editing leads to proline-to-leucine substitution (P185L) in the ligand-binding domain and generates gain-of-function neurotransmitter receptors.10, 11, 12, 13 GlyR RNA editing is upregulated in the hippocampus of patients with TLE and leads to GlyR α3K185L-dependent tonic inhibition of neuronal excitability associated with neurodegeneration.14 KCC2 expression promotes neuroprotection14, 15 but whether this involves regulation of transmembrane Cl gradient or protein structural role is a matter of debate.14, 15Here, we assessed neuroprotection through several KCC2 variants in two different models of neurodegeneration including chronic neuronal silencing (α3K185L model) and acute neuronal overexcitation (NMDA model).14, 15 The results identify a threonine- and tyrosine-phosphorylation-resistant KCC2 variant with increased Cl transport activity, but they also demonstrate that the N-terminal KCC2 protein domain (NTD) is sufficient for neuroprotection.  相似文献   

16.
Evidence indicates that nitrosative stress and mitochondrial dysfunction participate in the pathogenesis of Alzheimer''s disease (AD). Amyloid beta (Aβ) and peroxynitrite induce mitochondrial fragmentation and neuronal cell death by abnormal activation of dynamin-related protein 1 (DRP1), a large GTPase that regulates mitochondrial fission. The exact mechanisms of mitochondrial fragmentation and DRP1 overactivation in AD remain unknown; however, DRP1 serine 616 (S616) phosphorylation is likely involved. Although it is clear that nitrosative stress caused by peroxynitrite has a role in AD, effective antioxidant therapies are lacking. Cerium oxide nanoparticles, or nanoceria, switch between their Ce3+ and Ce4+ states and are able to scavenge superoxide anions, hydrogen peroxide and peroxynitrite. Therefore, nanoceria might protect against neurodegeneration. Here we report that nanoceria are internalized by neurons and accumulate at the mitochondrial outer membrane and plasma membrane. Furthermore, nanoceria reduce levels of reactive nitrogen species and protein tyrosine nitration in neurons exposed to peroxynitrite. Importantly, nanoceria reduce endogenous peroxynitrite and Aβ-induced mitochondrial fragmentation, DRP1 S616 hyperphosphorylation and neuronal cell death.Nitric oxide (NO) is a neurotransmitter and neuromodulator required for learning and memory.1 NO is generated by NO synthases, a group of enzymes that produce NO from L-arginine. In addition to its normal role in physiology, NO is implicated in pathophysiology. When overproduced, NO combines with superoxide anions (O2·), byproducts of aerobic metabolism and mitochondrial oxidative phosphorylation, to form peroxynitrite anions (ONOO) that are highly reactive and neurotoxic. Accumulation of these reactive oxygen species (ROS) and reactive nitrogen species (RNS), known as oxidative and nitrosative stress, respectively, is a common feature of aging, neurodegeneration and Alzheimer''s disease (AD).1Nitrosative stress caused by peroxynitrite has a critical role in the etiology and pathogenesis of AD.2, 3, 4, 5, 6, 7 Peroxynitrite is implicated in the formation of the two hallmarks of AD, Aβ aggregates and neurofibrillary tangles containing hyperphosphorylated Tau protein.1, 4, 7 In addition, peroxynitrite promotes the nitrotyrosination of presenilin 1, the catalytic subunit of the γ-secretase complex, which shifts production of Aβ to amyloid beta (Aβ)42 and increases the Aβ42/Aβ40 ratio, ultimately resulting in an increased propensity for aggregation and neurotoxicity.5 Furthermore, nitration of Aβ tyrosine 10 enhances its aggregation.6 Peroxynitrite can also modify enzymes, such as triosephosphate isomerase,4 and activate kinases, including Jun amino-terminal kinase and p38 mitogen-activated protein kinase, which enhance neuronal cell death.8, 9 Moreover, peroxynitrite can trigger the release of free metals such as Zn2+ from intracellular stores with consequent inhibition of mitochondrial function and enhancement of neuronal cell death.10, 11, 12 Finally, peroxynitrite can irreversibly inhibit complexes I and IV of the mitochondrial respiratory chain.11, 13Because mitochondria have a critical role in neurons as energy producers to fuel vital processes such as synaptic transmission and axonal transport,14 and mitochondrial dysfunction is a well-documented and early event in AD,15 it is important to consider how peroxynitrite and nitrosative stress affect mitochondria. Although the ultimate cause of mitochondrial dysfunction in AD remains unclear, an imbalance in mitochondrial fission and fusion is one possibility.1, 14, 16, 17, 18 Notably, peroxynitrite, N-methyl D-aspartate (NMDA) receptor activation and Aβ can induce mitochondrial fragmentation by activating mitochondrial fission and/or inhibiting fusion.16 Mitochondrial fission and fusion is regulated by large GTPases of the dynamin family, including dynamin-related protein 1 (DRP1) that is required for mitochondrial division,19 and inhibition of mitochondrial division by overexpression of the GTPase-defective DRP1K38A mutant provides protection against peroxynitrite-, NMDA- and Aβ-induced mitochondrial fragmentation and neuronal cell death.16The exact mechanism of peroxynitrite-induced mitochondrial fragmentation remains unclear. A recent report suggested that S-nitrosylation of DRP1 at cysteine 644 increases DRP1 activity and is the cause of peroxynitrite-induced mitochondrial fragmentation in AD;20 however, the work remains controversial, suggesting that alternative pathways might be involved.21 For example, peroxynitrite also causes rapid DRP1 S616 phosphorylation that promotes its translocation to mitochondria and organelle division.21, 22 In mitotic cells, DRP1 S616 phosphorylation is mediated by Cdk1/cyclinB1 and synchronizes mitochondrial division with cell division.23 Interestingly, DRP1 is S616 hyperphosphorylated in AD brains, suggesting that this event might contribute to mitochondrial fragmentation in the disease.21, 22 A recent report indicates that Cdk5/p35 is responsible for DRP1 S616 phosphorylation,24 and notably aberrant Cdk5/p35/p25 signaling is associated with AD pathogenesis.25 Thus, we explored here the possible role of DRP1 S616 hyperphosphorylation in Aβ- and peroxynitrite-mediated mitochondrial fragmentation.Under normal conditions, accumulated mitochondrial superoxide anions and hydrogen peroxide (H2O2) can be neutralized by superoxide dismutase (SOD) and catalase. Nitrosative stress in aging and AD might be explained by a loss of antioxidant enzymes. Previous studies suggest that expression of SOD subtypes is decreased in the human AD brain.26, 27 Furthermore, SOD1 deletion in a mouse model of AD increased the burden of amyloid plaques.26 By contrast, overexpression of SOD2 in a mouse model of AD decreased the Aβ42/Aβ40 ratio and alleviated memory deficits.28, 29 There is currently a lack of antioxidants that can effectively quench superoxide anions, H2O2 or peroxynitrite and provide lasting effects. Cerium is a rare earth element and cerium oxide (CeO2) nanoparticles, or nanoceria, shuttle between their 3+ or 4+ states. Oxidation of Ce4+ to Ce3+ causes oxygen vacancies and defects on the surface of the crystalline lattice structure of the nanoparticles, generating a cage for redox reactions to occur.30 Accordingly, nanoceria mimic the catalytic activities of antioxidant enzymes, such as SOD31, 32 and catalase,33 and are able to neutralize peroxynitrite.34 Because of these antioxidant properties, we hypothesized that nanoceria could detoxify peroxynitrite and protect against Aβ-induced DRP1 S616 hyperphosphorylation, mitochondrial fragmentation and neuronal cell death.  相似文献   

17.
18.
Caspase-2 has been implicated in various cellular functions, including cell death by apoptosis, oxidative stress response, maintenance of genomic stability and tumor suppression. The loss of the caspase-2 gene (Casp2) enhances oncogene-mediated tumorigenesis induced by E1A/Ras in athymic nude mice, and also in the -Myc lymphoma and MMTV/c-neu mammary tumor mouse models. To further investigate the function of caspase-2 in oncogene-mediated tumorigenesis, we extended our studies in the TH-MYCN transgenic mouse model of neuroblastoma. Surprisingly, we found that loss of caspase-2 delayed tumorigenesis in the TH-MYCN neuroblastoma model. In addition, tumors from TH-MYCN/Casp2−/− mice were predominantly thoracic paraspinal tumors and were less vascularized compared with tumors from their TH-MYCN/Casp2+/+ counterparts. We did not detect any differences in the expression of neuroblastoma-associated genes in TH-MYCN/Casp2−/− tumors, or in the activation of Ras/MAPK signaling pathway that is involved in neuroblastoma progression. Analysis of expression array data from human neuroblastoma samples showed a correlation between low caspase-2 levels and increased survival. However, caspase-2 levels correlated with clinical outcome only in the subset of MYCN-non-amplified human neuroblastoma. These observations indicate that caspase-2 is not a suppressor in MYCN-induced neuroblastoma and suggest a tissue and context-specific role for caspase-2 in tumorigenesis.The caspase family of cysteine proteases are highly conserved regulators of cell death by apoptosis.1 In addition to their pro-apoptotic function, many caspases also have non-apoptotic roles in other physiological processes, such as inflammation, necrosis and tumor suppression.2, 3, 4 The most highly conserved caspase, caspase-2, has recently been demonstrated to function in the cellular stress response, protection against ageing, maintenance of genome stability and in tumor suppression.2, 5, 6, 7, 8The tumor suppressor function of caspase-2 was first demonstrated using E1A/Ras-transformed caspase-2-deficient mouse embryonic fibroblasts (MEFs), which showed an increased tumorigenic potential in athymic nude mice.7 Further supporting evidence came from experiments demonstrating that caspase-2 deficiency enhances B-cell lymphoma development in Eμ-Myc transgenic mice7 and mammary carcinomas in MMTV/c-neu mice,9 suggesting that caspase-2 prevents oncogene-induced lymphomas and epithelial tumors. Importantly, tumor suppression by caspase-2 is also evident in the non-oncogene-driven Atm−/− thymoma mouse model.10Given its role in apoptosis, the tumor suppression function of caspase-2 was thought to be associated with this role, via the elimination of mutagenic or potentially tumorigenic cells. Recent studies have now indicated that the role of caspase-2 may extend beyond apoptosis and that its tumor suppression function may, in part, be mediated by maintaining genomic stability and/or the oxidative stress response. Caspase-2-deficient MEFs and tumor cells from Eμ-Myc/Casp2−/−, MMTV/c-neu/Casp2−/− and Atm−/−;Casp2−/− mice all display aberrant proliferation, and increased genomic instability6, 9, 10 and indicate that caspase-2 is important for the maintenance of genome stability. Importantly, the role of caspase-2 in maintaining genomic stability in primary cells appears to be required for its tumor suppressor function.10Genomic instability is a hallmark of cancer11 and the overexpression of Myc family oncoproteins is commonly associated with genomic instability and a wide spectrum of human cancers.12, 13, 14 Interestingly, a common feature of the oncogene-induced tumor models used in the study of caspase-2 tumor suppressor function is the overexpression of c-Myc15 or aberrant c-Myc signaling.16, 17, 18 Given the role of Myc proteins as key mediators of genomic instability as well as cell proliferation, cell growth and DNA damage, we were interested in further assessing whether caspase-2 can promote tumor suppression in other MYC-dependent mouse tumor models. We used the MYCN mouse model of neuroblastoma (TH-MYCN mouse), in which MYCN is constitutively expressed under the control of the rat tyrosine hydroxylase (TH) promoter leading to neural crest cell-specific expression and early-onset neuroblastoma.19 Amplification of MYCN occurs in ∼20% of human neuroblastomas and high MYCN protein levels are strongly associated with tumor progression and poor clinical outcome.20, 21 Thus, the TH-MYCN transgenic mouse model recapitulates many clinical features of aggressive neuroblastomas in humans and provides a powerful model of preclinical neuroblastoma.19, 22MYCN-mediated neuroblastoma onset and progression is commonly associated with additional genetic events, including the expression of the key genes including Odc1, Mrp1, SirT1 and Ras.23, 24, 25 A recent study has found that caspase-8 is in fact a potent suppressor of neuroblastoma, with the loss of caspase-8 expression occurring in ∼70% of neuroblastoma patients.26, 27 Interestingly, the loss of caspase-8 also promotes bone marrow metastasis in the TH-MYCN neuroblastoma mouse model.26, 27 The role of other caspases in neuroblastoma has not previously been examined, and given the function of caspase-2 in tumor suppression, provided additional relevance in assessing its role in this model.This study shows that caspase-2 is not able to suppress neuroblastoma development in TH-MYCN mice. In contrast to a role for caspase-2 as a tumor suppressor, our findings demonstrate that loss of caspase-2 somewhat delays neuroblastoma onset in mice. Interestingly, expression array data from human neuroblastoma show a strong correlation between low caspase-2 levels and improved outcome. Our data demonstrate that the tumor suppressor function of caspase-2 is not specific to Myc-mediated oncogenesis and that its role is likely to be tissue- and/or context-specific.  相似文献   

19.
Na+ and K+ homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na+ transport or Na+ and K+ transport when expressed in Xenopus laevis oocytes and yeast. However, the Na+/K+ selectivities of the K+-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5′ untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K+ permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na+ uptake, but little Rb+ uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na+-K+ cotransport in plant cells such that extracellular K+ stimulated OsHKT2;2-mediated Na+ influx and vice versa. Furthermore, at millimolar Na+ concentrations, OsHKT2;2 mediated Na+ influx into plant cells without adding extracellular K+. This study shows that the Na+/K+ selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K+ and Ca2+ down-regulated OsHKT2;1-mediated Na+ influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.Intracellular Na+ and K+ homeostasis play vital roles in growth and development of higher plants (Clarkson and Hanson, 1980). Low cytosolic Na+ and high K+/Na+ ratios aid in maintaining an osmotic and biochemical equilibrium in plant cells. Na+ and K+ influx and efflux across membranes require the function of transmembrane Na+ and K+ transporters/channels. Several Na+-permeable transporters have been characterized in plants (Zhu, 2001; Horie and Schroeder, 2004; Apse and Blumwald, 2007). Na+/H+ antiporters mediate sequestration of Na+ into vacuoles under salt stress conditions in plants (Blumwald and Poole, 1985, 1987; Sze et al., 1999). Na+ (cation)/H+ antiporters are encoded by six AtNHX genes in Arabidopsis (Arabidopsis thaliana; Apse et al., 1999; Gaxiola et al., 1999; Yokoi et al., 2002; Aharon et al., 2003). A distinct Na+/H+ antiporter, Salt Overly Sensitive1, mediates Na+/H+ exchange at the plasma membrane and mediates cellular Na+ extrusion (Shi et al., 2000, 2002; Zhu, 2001; Ward et al., 2003). Electrophysiological analyses reveal that voltage-independent channels, also named nonselective cation channels, mediate Na+ influx into roots under high external Na+ concentrations (Amtmann et al., 1997; Tyerman et al., 1997; Buschmann et al., 2000; Davenport and Tester, 2000); however, the underlying genes remain unknown.Potassium is the most abundant cation in plants and an essential nutrient for plant growth. The Arabidopsis genome includes 13 genes encoding KUP/HAK/KT transporters (Quintero and Blatt, 1997; Santa-María et al., 1997; Fu and Luan, 1998; Kim et al., 1998), and 17 genes have been identified encoding this family of transporters in rice (Oryza sativa ‘Nipponbare’; Bañuelos et al., 2002). Several KUP/HAK/KT transporters have been characterized as mediating K+ uptake across the plasma membrane of plant cells (Rigas et al., 2001; Bañuelos et al., 2002; Gierth et al., 2005).Ionic balance, especially the Na+/K+ ratio, is a key factor of salt tolerance in plants (Niu et al., 1995; Maathuis and Amtmann, 1999; Shabala, 2000; Mäser et al., 2002a; Tester and Davenport, 2003; Horie et al., 2006; Apse and Blumwald, 2007; Chen et al., 2007; Gierth and Mäser, 2007). Salinity stress is a major problem for agricultural productivity of crops worldwide (Greenway and Munns, 1980; Zhu, 2001). The Arabidopsis AtHKT1;1 transporter plays a key role in salt tolerance of plants by mediating Na+ exclusion from leaves (Mäser et al., 2002a; Berthomieu et al., 2003; Gong et al., 2004; Sunarpi et al., 2005; Rus et al., 2006; Davenport et al., 2007; Horie et al., 2009). athkt1;1 mutations cause leaf chlorosis and elevated Na+ accumulation in leaves under salt stress conditions in Arabidopsis (Mäser et al., 2002a; Berthomieu et al., 2003; Gong et al., 2004; Sunarpi et al., 2005). AtHKT1;1 and its homolog in rice, OsHKT1;5 (SKC1), mediate leaf Na+ exclusion by removing Na+ from the xylem sap to protect plants from salinity stress (Ren et al., 2005; Sunarpi et al., 2005; Horie et al., 2006, 2009; Davenport et al., 2007).The land plant HKT gene family is divided into two classes based on their nucleic acid sequences and protein structures (Mäser et al., 2002b; Platten et al., 2006). Class 1 HKT transporters have a Ser residue at a selectivity filter position in the first pore loop, which is replaced by a Gly in all but one known class 2 HKT transporter (Horie et al., 2001; Mäser et al., 2002b; Garciadeblás et al., 2003). While the Arabidopsis genome includes only one HKT gene, AtHKT1;1 (Uozumi et al., 2000), seven full-length OsHKT genes were found in the japonica rice cv Nipponbare genome (Garciadeblás et al., 2003). Members of class 1 HKT transporters, AtHKT1;1 and SKC1/OsHKT1;5, have a relatively higher Na+-to-K+ selectivity in Xenopus laevis oocytes and yeast than class 2 HKT transporters (Uozumi et al., 2000; Horie et al., 2001; Mäser et al., 2002b; Ren et al., 2005). The first identified plant HKT transporter, TaHKT2;1 from wheat (Triticum aestivum), is a class 2 HKT transporter (Schachtman and Schroeder, 1994). TaHKT2;1 was found to mediate Na+-K+ cotransport and Na+ influx at high Na+ concentrations in heterologous expression systems (Rubio et al., 1995, 1999; Gassmann et al., 1996; Mäser et al., 2002b). Thus, class 1 HKT transporters have been characterized as Na+-preferring transporters with a smaller K+ permeability (Fairbairn et al., 2000; Uozumi et al., 2000; Su et al., 2003; Jabnoune et al., 2009), whereas class 2 HKT transporters function as Na+-K+ cotransporters or channels (Gassmann et al., 1996; Corratgé et al., 2007). In addition, at millimolar Na+ concentrations, class 2 HKT transporters were found to mediate Na+ influx, without adding external K+ in Xenopus oocytes and yeast (Rubio et al., 1995, 1999; Gassmann et al., 1996; Horie et al., 2001). However, the differential cation transport selectivities of the two types of HKT transporters have not yet been analyzed and compared in plant cells.A study of the barley (Hordeum vulgare) and wheat class 2 transporters has suggested that the transport properties of HvHKT2;1 and TaHKT2;1 expressed in yeast are variable, depending on the constructs from which the transporter is expressed, and have led to questioning of the K+ transport activity of HKT transporters characterized in Xenopus oocytes and yeast (Haro et al., 2005). It was further proposed that the 5′ translation initiation of HKT proteins in yeast at nonconventional (non-ATG) sites affects the transporter selectivities of HKT transporters (Haro et al., 2005), although direct evidence for this has not yet been presented. However, recent research has shown a K+ permeability of OsHKT2;1 but not of OsHKT1;1 and OsHKT1;3 in Xenopus oocytes. These three OsHKT transporters show overlapping and also distinctive expression patterns in rice (Jabnoune et al., 2009).The report of Haro et al. (2005) has opened a central question addressed in this study: are the Na+/K+ transport selectivities of plant HKT transporters characterized in heterologous systems of physiological relevance in plant cells, or do they exhibit strong differences in the cation transport selectivities in these nonplant versus plant systems? To address this question, we analyzed the Na+/K+ transport selectivities of the OsHKT2;1 and OsHKT2;2 transporters expressed in cultured tobacco (Nicotiana tabacum ‘Bright-Yellow 2’ [BY2]) cells. OsHKT2;1 and OsHKT2;2 are two highly homologous HKT transporters from indica rice cv Pokkali, sharing 91% amino acid and 93% cDNA sequence identity (Horie et al., 2001). OsHKT2;1 mediates mainly Na+ uptake, which correlates with the presence of a Ser residue in the first pore loop of OsHKT2;1 (Horie et al., 2001, 2007; Mäser et al., 2002b; Garciadeblás et al., 2003). In contrast, OsHKT2;2 mediates Na+-K+ cotransport in Xenopus oocytes and yeast (Horie et al., 2001). Furthermore, at millimolar Na+ concentrations, OsHKT2;2 mediates Na+ influx in the absence of added K+ (Horie et al., 2001). Recent research on oshkt2;1 loss-of-function mutant alleles has revealed that OsHKT2;1 from japonica rice mediates a large Na+ influx component into K+-starved roots, thus compensating for lack of K+ availability (Horie et al., 2007). But the detailed Na+/K+ selectivities of Gly-containing, predicted K+-transporting class 2 HKT transporters have not yet been analyzed in plant cells.Here, we have generated stable OsHKT2;1- and OsHKT2;2-expressing tobacco BY2 cell lines and characterized the cell lines by ion content measurements and tracer influx studies to directly analyze unidirectional fluxes (Epstein et al., 1963). These analyses showed that OsHKT2;1 exhibits Na+ uptake activity in plant BY2 cells in the absence of added K+, but little K+ (Rb+), influx activity. In contrast, OsHKT2;2 was found to function as a Na+-K+ cotransporter/channel in plant BY2 cells, showing K+-stimulated Na+ influx and Na+-stimulated K+ (Rb+) influx. The differential K+ selectivities of the two OsHKT2 transporters were consistently reproduced by voltage clamp experiments using Xenopus oocytes here, as reported previously (Horie et al., 2001). OsHKT2;2 was also found to mediate K+-independent Na+ influx at millimolar external Na+ concentrations. These findings demonstrate that the cation selectivities of OsHKT2;1 and OsHKT2;2 in plant cells are consistent with past findings obtained from heterologous expression analyses under similar ionic conditions (Horie et al., 2001; Garciadeblás et al., 2003; Tholema et al., 2005). Furthermore, the shift in OsHKT2;2 Na+-K+ selectivity depending on ionic editions is consistent with the model that HKT transporters/channels are multi-ion pores (Gassmann et al., 1996; Corratgé et al., 2007). Classical studies of ion channels have shown that ion channels, in which multiple ions can occupy the pore at the same time, can change their relative selectivities depending on the ionic conditions (Hille, 2001). Moreover, the presence of external K+ and Ca2+ was found here to down-regulate OsHKT2;1-mediated Na+ influx both in tobacco BY2 cells and in rice roots. The inhibitory effect of external K+ on OsHKT2;1-mediated Na+ influx into intact rice roots, however, showed a distinct difference in comparison with that of BY2 cells, which indicates a possible posttranslational regulation of OsHKT2;1 in K+-starved rice roots.  相似文献   

20.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号