首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.  相似文献   

2.
Behavioral functions of the insect mushroom bodies   总被引:8,自引:0,他引:8  
New methods of intervention in Drosophila and other insect species reveal that the mushroom bodies are involved in a diverse set of behavioral functions. The intrinsic Kenyon cells (those neurons with projections within the mushroom bodies) house part of the short-term memory trace for odors and are required for courtship conditioning memory. A pair of extrinsic mushroom body neurons (neurons with projections both inside and outside the mushroom bodies) provides a neuropeptide important for 1-hour olfactory memory. In addition, the mushroom bodies are necessary for context generalization in visual learning and for regulating the transition from walking to rest.  相似文献   

3.
中华蜜蜂(Apis cerana cerana)的脑由前脑、中脑和后脑三部分构成,蕈形体位于前脑的背侧,是其重要的学习及其他复杂行为的整合中心。通过对中华蜜蜂工蜂的幼虫、蛹及成虫的蕈形体形态发育的观察研究,发现中华蜜蜂的蕈形体包含约1000个成神经细胞,它们最终形成了蕈形体的所有Kenyon细胞。这些成神经细胞来自于在新孵化的幼虫脑中已存在的四丛成神经细胞,每一丛细胞的数量不多于45个。蕈形体柄区的出现约在3龄幼虫,而α叶和β叶在5龄幼虫已可明显辨认。冠区出现较晚,大约在蛹期的第二天以后。由于社会性昆虫复杂的学习、记忆和认知需求,其蕈形体的体积和复杂程度都优于其他昆虫。  相似文献   

4.
Subpopulations of Kenyon cells, the intrinsic neurons of the insect mushroom bodies, are typically sequentially generated by dedicated neuroblasts that begin proliferating during embryogenesis. When present, Class III Kenyon cells are thought to be the first born population of neurons by virtue of the location of their cell somata, farthest from the position of the mushroom body neuroblasts. In the adult tobacco hornworm moth Manduca sexta, the axons of Class III Kenyon cells form a separate Y tract and dorsal and ventral lobelet; surprisingly, these distinctive structures are absent from the larval Manduca mushroom bodies. BrdU labeling and immunohistochemical staining reveal that Class III Kenyon cells are in fact born in the mid-larval through adult stages. The peripheral position of their cell bodies is due to their genesis from two previously undescribed protocerebral neuroblasts distinct from the mushroom body neuroblasts that generate the other Kenyon cell types. These findings challenge the notion that all Kenyon cells are produced solely by the mushroom body neuroblasts, and may explain why Class III Kenyon cells are found sporadically across the insects, suggesting that when present, they may arise through de novo recruitment of neuroblasts outside of the mushroom bodies. In addition, lifelong neurogenesis by both the Class III neuroblasts and the mushroom body neuroblasts was observed, raising the possibility that adult neurogenesis may play a role in mushroom body function in Manduca.  相似文献   

5.
The insect mushroom bodies are prominent higher order neuropils consisting of thousands of approximately parallel projecting intrinsic neurons arising from the minute basophilic perikarya of globuli cells. Early studies described these structures as centers for intelligence and other higher functions; at present, the mushroom bodies are regarded as important models for the neural basis of learning and memory. The insect mushroom bodies share a similar general morphology, and the same basic sequence of developmental events is observed across a wide range of insect taxa. Globuli cell progenitors arise in the embryo and proliferate throughout the greater part of juvenile development. Discrete morphological and functional subpopulations of globuli cells (or Kenyon cells, as they are called in insects) are sequentially produced at distinct periods of development. Kenyon cell somata are arranged by age around the center of proliferation, as are their processes in the mushroom body neuropil. Other aspects of mushroom body development are more variable from species to species, such as the origin of specific Kenyon cell populations and neuropil substructures, as well as the timing and pace of the general developmental sequence.  相似文献   

6.
The mushroom bodies are a morphologically diverse sensory integration and learning and memory center in the brains of various invertebrate species, of which those of insects are the best described. Insect mushroom bodies are composed of numerous tiny intrinsic neurons (Kenyon cells) that form calyces with their dendrites and a pedunculus and lobes with their axons. The identities of conserved Kenyon cell subpopulations and the correlations between morphological and functional specializations of the mushroom bodies are just beginning to be elucidated, providing insight into mechanisms of mushroom body evolution. Comparisons of mushroom body organization in different insect lineages reveal trends in the evolution of subcompartments correlated with the elaboration, reduction, acquisition or loss of Kenyon cell subpopulations. Furthermore, these changes often appear correlated with variation in type and strength of afferent input and in behavioral ecology. These and other features of mushroom body organization suggest a striking convergence with mammalian cortex, with Kenyon cell subpopulations displaying evolutionary modularity in a manner reminiscent of cortical areas.  相似文献   

7.
The mushroom bodies are distinctive neuropils in the protocerebral brain segments of many protostomes. A defining feature of mushroom bodies is their intrinsic neurons, masses of cytoplasm-poor globuli cells that form a system of lobes with their densely-packed, parallel-projecting axon-like processes. In insects, the role of the mushroom bodies in olfactory processing and associative learning and memory has been studied in depth, but several lines of evidence suggest that the function of these higher brain centers cannot be restricted to these roles. The present account considers whether insight into an underlying function of mushroom bodies may be provided by cerebellum-like structures in vertebrates, which are similarly defined by the presence of masses of tiny granule cells that emit thin parallel fibers forming a dense molecular layer. In vertebrates, the shared neuroarchitecture of cerebellum-like structures has been suggested to underlie a common functional role as adaptive filters for the removal of predictable sensory elements, such as those arising from reafference, from the total sensory input. Cerebellum-like structures include the vertebrate cerebellum, the electrosensory lateral line lobe, dorsal and medial octavolateral nuclei of fish, and the dorsal cochlear nucleus of mammals. The many architectural and physiological features that the insect mushroom bodies share with cerebellum-like structures suggest that it might be fruitful to consider mushroom body function in light of a possible role as adaptive sensory filters. The present account thus presents a detailed comparison of the insect mushroom bodies with vertebrate cerebellum-like structures.  相似文献   

8.
The mushroom bodies of the insect brain are sensory integration centers best studied for their role in learning and memory. Studies of mushroom body structure and development in neopteran insects have revealed conserved morphogenetic mechanisms. The sequential production of morphologically distinct intrinsic neuron (Kenyon cell) subpopulations by mushroom body neuroblasts and the integration of newborn neurons via a discrete ingrowth tract results in an age-based organization of modular subunits in the primary output neuropil of the mushroom bodies, the lobes. To determine whether these may represent ancestral characteristics, the present account assesses mushroom body organization and development in the basal wingless insect Thermobia domestica. In this insect, a single calyx supplied by the progeny of two neuroblast clusters, and three perpendicularly oriented lobes are readily identifiable. The lobes are subdivided into 15 globular subdivisions (Trauben). Lifelong neurogenesis is observed, with axons of newborn Kenyon cells entering the lobes via an ingrowth core. The Trauben do not appear progressively during development, indicating that they do not represent the ramifications of sequentially produced subpopulations of Kenyon cells. Instead, a single Kenyon cell population produces highly branched axons that supply all lobe subdivisions. This suggests that although the ground plan for neopteran mushroom bodies existed in early insects, the organization of modular subunits composed of separate Kenyon cell subpopulations is a later innovation. Similarities between the calyx of Thermobia and the highly derived fruit fly Drosophila melanogaster also suggest a correlation between calyx morphology and Kenyon cell number.  相似文献   

9.
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes. Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors; responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom bodies is specifically modulated by experience. Accepted: 9 September 1999  相似文献   

10.
The purpose of this study was to examine the mitogenic effects of 20-hydroxyecdysone on neurogenesis in mushroom bodies of the adult cockroach, Diploptera punctata. The occurrence of neurogenesis was studied immunocytochemically after in vivo labeling with 5-bromo-2'-deoxyuridine (BrdU). The number of BrdU-labeled cells in the mushroom bodies was high shortly after adult ecdysis, then gradually decreased, and proliferation ceased on day 8. 20-Hydroxyecdysone injection during the early adult stages significantly delayed the decrease in mitotic activity. Moreover, 20-hydroxyecdysone injection during the late stage stimulated quiescent mushroom body neuroblasts to initiate their mitotic activity in a dose-dependent manner. These results indicated that the mushroom body neuroblasts of this insect become quiescent in the maturing central nervous system, but retain the capacity for proliferation if exposed to appropriate environmental signals. We conclude that 20-hydroxyecdysone has a mitogenic effect on neurogenesis in mushroom bodies of this insect.  相似文献   

11.
Studies on insect olfactory learning have established the mushroom bodies as key brain structures for the formation of long-term memory (LTM). Two new neurons in the fly brain are reported now as essential sites for LTM formation, while mushroom bodies are claimed to be unnecessary to this end.  相似文献   

12.
Mushroom bodies are the main integrative structures of insect brain. They receive sensory information from the eyes, the palps, and the antennae. In the house cricket, Acheta domesticus, a cluster of mushroom body neuroblasts keeps producing new interneurons during an insect's life span. The aim of the present work is to study the impact of environmental stimuli on mushroom body neurogenesis during adulthood. Crickets were reared either in an enriched environment, where they received complex environmental and congeneric stimulations or isolated in small cages and deprived of most visual, auditory, and olfactory stimuli. They then were injected with a S-phase marker, 5-bromo, 2'-deoxyuridine (BrdU) and sacrificed at different periods of their life. Neurogenesis and cell survival were estimated by counting the number of BrdU-labeled cells in the mushroom bodies. Environmentally enriched crickets were found to have an increased number of newborn cells in their mushroom bodies compared with crickets housed in cages with an impoverished environment. This effect of external factors on neurogenesis seems to be limited to the beginning of imaginal life. Furthermore, no cell loss could be detected among the newborn neurons in either environmental situation, suggesting that cell survival was not affected by the quality of the environment. Considering vertebrate studies which showed that enriched environment increases hippocampal cell survival and improves animal performances in spatial learning tests, we suggest that the increased number of interneurons produced in an integrative brain structure after exposure to enriched environment could contribute to adaptive behavioral performances in adult insects.  相似文献   

13.
A Nighorn  M J Healy  R L Davis 《Neuron》1991,6(3):455-467
Drosophila dunce (dnc) flies are defective in learning and memory as a result of lesions in the gene that codes for a cAMP-specific phosphodiesterase (PDE). Antibodies to the dnc PDE showed that the most intensely stained regions in the adult brain were the mushroom body neuropil--areas previously implicated in learning and memory. In situ hybridization demonstrated that dnc RNA was enriched in the mushroom body perikarya. The mushroom bodies of third instar larval brains were also stained intensely by the antibody, suggesting that the dnc PDE plays an important role in these neurons throughout their development. The role of the dnc PDE in mushroom body physiology is discussed, and a circuit model describing a possible role of the mushroom bodies in mediating olfactory learning and memory is presented.  相似文献   

14.
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful.  相似文献   

15.
The purpose of this study was to examine the mitogenic effects of 20‐hydroxyecdysone on neurogenesis in mushroom bodies of the adult cockroach, Diploptera punctata. The occurrence of neurogenesis was studied immunocytochemically after in vivo labeling with 5‐bromo‐2′‐deoxyuridine (BrdU). The number of BrdU‐labeled cells in the mushroom bodies was high shortly after adult ecdysis, then gradually decreased, and proliferation ceased on day 8. 20‐Hydroxyecdysone injection during the early adult stages significantly delayed the decrease in mitotic activity. Moreover, 20‐hydroxyecdysone injection during the late stage stimulated quiescent mushroom body neuroblasts to initiate their mitotic activity in a dose‐dependent manner. These results indicated that the mushroom body neuroblasts of this insect become quiescent in the maturing central nervous system, but retain the capacity for proliferation if exposed to appropriate environmental signals. We conclude that 20‐hydroxyecdysone has a mitogenic effect on neurogenesis in mushroom bodies of this insect. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 264–274, 1999  相似文献   

16.
17.
The mushroom bodies (MBs) are prominent structures in the Drosophila brain that are essential for olfactory learning and memory. Characterization of the development and projection patterns of individual MB neurons will be important for elucidating their functions. Using mosaic analysis with a repressible cell marker (Lee, T. and Luo, L. (1999) Neuron 22, 451-461), we have positively marked the axons and dendrites of multicellular and single-cell mushroom body clones at specific developmental stages. Systematic clonal analysis demonstrates that a single mushroom body neuroblast sequentially generates at least three types of morphologically distinct neurons. Neurons projecting into the (gamma) lobe of the adult MB are born first, prior to the mid-3rd instar larval stage. Neurons projecting into the alpha' and beta' lobes are born between the mid-3rd instar larval stage and puparium formation. Finally, neurons projecting into the alpha and beta lobes are born after puparium formation. Visualization of individual MB neurons has also revealed how different neurons acquire their characteristic axon projections. During the larval stage, axons of all MB neurons bifurcate into both the dorsal and medial lobes. Shortly after puparium formation, larval MB neurons are selectively pruned according to birthdays. Degeneration of axon branches makes early-born gamma neurons retain only their main processes in the peduncle, which then project into the adult gamma lobe without bifurcation. In contrast, the basic axon projections of the later-born (alpha'/beta') larval neurons are preserved during metamorphosis. This study illustrates the cellular organization of mushroom bodies and the development of different MB neurons at the single cell level. It allows for future studies on the molecular mechanisms of mushroom body development.  相似文献   

18.
Summary 322 neurons were recorded intracellularly within the central part of the insect brain and 150 of them were stained with Lucifer Yellow or cobaltous sulphide. Responses to mechanical, olfactory, visual and acoustical stimulation were determined and compared between morphologically different cell types in different regions of the central brain. Almost all neurons responded to multimodal stimulation and showed complex responses. It was not possible to divide the cells into different groups using physiological criteria alone.Extrinsic neurons with projections to the calyces connect the mushroom bodies with the deutocerebrum and also with parts of the diffuse protocerebrum. These cells probably give input to the mushroom body system. The majority are multimodal and they often show olfactory responses. Among those cells that extend from the antennal neuropil are neurons that respond to non-antennal stimulation (Figs. 1, 2).Extrinsic neurons with projections in the lobes of the mushroom bodies often project to the lateral protocerebrum. Anatomical and physiological evidence suggest that they form an output system of the mushroom bodies. They are also multimodal and often exhibit long lasting after discharges and changes in sensitivity and activity level, which can be related to specific stimuli or stimulus combinations (Figs. 3, 4).Extrinsic neurons, especially those projecting to the region where both lobes bifurcate, exhibit stronger responses to multimodal stimuli than other local brain neurons. Intensity coding for antennal stimulation is not different from other areas of the central protocerebrum, but the signal-tonoise ratio is increased (Fig. 5).Abbreviation AGT antenno-glomerular tract  相似文献   

19.
Mushroom bodies represent the main sensory integrative center of the insect brain and probably play a major role in the adaptation of behavioral responses to the environment. Taking into account the continuous neurogenesis of cricket mushroom bodies, we investigated ontogenesis of this brain structure. Using BrdU labeling, we examined the fate of neuroblast progeny during the postembryonic development. Preimaginal Kenyon cells survived throughout larval and imaginal moults and persisted during adulthood. Our results indicate that the location of labelled Kenyon cells in the cortex of the adult cricket mainly depends upon the period when they were produced during development. The present data demonstrate that cricket mushroom bodies grow from the inside out and that, at any developmental stage, the center of the cortex contains the youngest Kenyon cells. This study also allowed us to observe the occurrence of quiescent neuroblasts. Kenyon cell death during postembryonic and adult life seems to be reduced. Although preimaginal Kenyon cells largely contribute to adult mushroom body structure, a permanent remodeling of the mushroom body occurs throughout the whole insect life due to the persistence of neurogenesis in the house cricket. Further studies are needed to understand the functional significance of these findings.  相似文献   

20.
W M Getz  A Lutz 《Chemical senses》1999,24(4):351-372
A central problem in olfaction is understanding how the quality of olfactory stimuli is encoded in the insect antennal lobe (or in the analogously structured vertebrate olfactory bulb) for perceptual processing in the mushroom bodies of the insect protocerebrum (or in the vertebrate olfactory cortex). In the study reported here, a relatively simple neural network model, inspired by our current knowledge of the insect antennal lobes, is used to investigate how each of several features and elements of the network, such as synapse strengths, feedback circuits and the steepness of neural activation functions, influences the formation of an olfactory code in neurons that project from the antennal lobes to the mushroom bodies (or from mitral cells to olfactory cortex). An optimal code in these projection neurons (PNs) should minimize potential errors by the mushroom bodies in misidentifying the quality of an odor across a range of concentrations while maximizing the ability of the mushroom bodies to resolve odors of different quality. Simulation studies demonstrate that the network is able to produce codes independent or virtually independent of concentration over a given range. The extent of this range is moderately dependent on a parameter that characterizes how long it takes for the voltage in an activated neuron to decay back to its resting potential, strongly dependent on the strength of excitatory feedback by the PNs onto antennal lobe intrinsic neurons (INs), and overwhelmingly dependent on the slope of the activation function that transforms the voltage of depolarized neurons into the rate at which spikes are produced. Although the code in the PNs is degraded by large variations in the concentration of odor stimuli, good performance levels are maintained when the complexity of stimuli, as measured by the number of component odorants, is doubled. When excitatory feedback from the PNs to the INs is strong, the activity in the PNs undergoes transitions from initial states to stimulus-specific equilibrium states that are maintained once the stimulus is removed. When this PN-IN feedback is weak the PNs are more likely to relax back to a stimulus-independent equilibrium state, in which case the code is not maintained beyond the application of the stimulus. Thus, for the architecture simulated here, strong feedback from the PNs onto the INs, together with step-like neuronal activation functions, could well be important in producing easily discriminable odor quality codes that are invariant over several orders of magnitude in stimulus concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号