首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (asymptotic) degree distributions of the best-known “scale-free” network models are all similar and are independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models are generally similar. In this paper, we observe that several key topological features of such networks depend heavily on the specific model and the seed graph used. Furthermore, we show that starting with the “right” seed graph (typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many topological features of publicly available protein–protein interaction networks very well.  相似文献   

2.
Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein∶protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein∶protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data.  相似文献   

3.
The Database of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu) is a database that documents experimentally determined protein–protein interactions. It provides the scientific community with an integrated set of tools for browsing and extracting information about protein interaction networks. As of September 2001, the DIP catalogs ~11 000 unique interactions among 5900 proteins from >80 organisms; the vast majority from yeast, Helicobacter pylori and human. Tools have been developed that allow users to analyze, visualize and integrate their own experimental data with the information about protein–protein interactions available in the DIP database.  相似文献   

4.
Information Flow Analysis of Interactome Networks   总被引:1,自引:0,他引:1  
Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein–protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we combine gene expression data with interaction data in C. elegans and construct an interactome network for muscle-specific genes. We find that genes that rank high in terms of information flow in the muscle interactome network but not in the entire network tend to play important roles in muscle function. This framework for studying tissue-specific networks by the information flow model can be applied to other tissues and other organisms as well.  相似文献   

5.
The detection of protein–protein interactions through two-hybrid assays has revolutionized our understanding of biology. The remarkable impact of two-hybrid assay platforms derives from their speed, simplicity, and broad applicability. Yet for many organisms, the need to express test proteins in Saccharomyces cerevisiae or Escherichia coli presents a substantial barrier because variations in codon specificity or bias may result in aberrant protein expression. In particular, nonstandard genetic codes are characteristic of several eukaryotic pathogens, for which there are currently no genetically based systems for detection of protein–protein interactions. We have developed a protein–protein interaction assay that is carried out in native host cells by using GFP as the only foreign protein moiety, thus circumventing these problems. We show that interaction can be detected between two protein pairs in both the model yeast S. cerevisiae and the fungal pathogen Candida albicans. We use computational analysis of microscopic images to provide a quantitative and automated assessment of confidence.  相似文献   

6.
7.
Most cellular processes are enabled by cohorts of interacting proteins that form dynamic networks within the plant proteome. The study of these networks can provide insight into protein function and provide new avenues for research. This article informs the plant science community of the currently available sources of protein interaction data and discusses how they can be useful to researchers. Using our recently curated IntAct Arabidopsis thaliana protein–protein interaction data set as an example, we discuss potentials and limitations of the plant interactomes generated to date. In addition, we present our efforts to add value to the interaction data by using them to seed a proteome-wide map of predicted protein subcellular locations.For well over two decades, plant scientists have studied protein interactions within plants using many different and evolving approaches. Their findings are represented by a large and growing corpus of peer-reviewed literature reflecting the increasing activity in this area of plant proteomic research. More recently, a number of predicted interactomes have been reported in plants and, while these predictions remain largely untested, they could act as a useful guide for future research. These studies have allowed researchers to better understand the function of protein complexes and to refine our understanding of protein function within the cell (Uhrig, 2006; Morsy et al., 2008). The extraction of protein interaction data from the literature and its standardized deposition and representation within publicly available databases remains a challenging task. Aggregating the data in databases allows researchers to leverage visualization, data mining, and integrative approaches to produce new insights that would be unachievable when the data are dispersed within largely inaccessible formats (Rodriguez et al., 2009).Currently, there are three databases that act as repositories of plant protein interaction data. These are IntAct (http://www.ebi.ac.uk/intact/; Aranda et al., 2010), The Arabidopsis Information Resource (TAIR; http://www.Arabidopsis.org/; Poole, 2007), and BioGRID (http://www.thebiogrid.org/; Breitkreutz et al., 2008). These databases curate experimentally established interactions available from the peer-reviewed literature (as opposed to predicted interactions, which will be discussed below). Each repository takes its own approach to the capture, storage, and representation of protein interaction data. TAIR focuses on Arabidopsis thaliana protein–protein interaction data exclusively; BioGRID currently focuses on the plant species Arabidopsis and rice (Oryza sativa), while IntAct attempts to capture protein interaction data from any plant species. Unlike the other repositories, IntAct follows a deep curation strategy that captures detailed experimental and biophysical details, such as binding regions and subcellular locations of interactions using controlled vocabularies (Aranda et al., 2010). While the majority of plant interaction data held by IntAct concern protein–protein interaction data in Arabidopsis, there is a small but growing content of interaction data relating to protein–DNA, protein–RNA, and protein–small molecule interactions, as well as interaction data from other plant species.Using the IntAct Arabidopsis data set as an example, we outline how the accumulating knowledge captured in these repositories can be used to further our understanding of the plant proteome. We compare the characteristics of predicted interactomes with the IntAct protein–protein interaction data set, which consists entirely of experimentally measured protein interactions, to gauge the predictive accuracy of these studies. Finally, we show how the IntAct data set can be used together with a recently developed Divide and Conquer k-Nearest Neighbors Method (DC-kNN; K. Lee et al., 2008) to predict the subcellular locations for most Arabidopsis proteins. This data set predicts high confidence subcellular locations for many unannotated Arabidopsis proteins and should act as a useful resource for future studies of protein function. Although this article focuses on the IntAct Arabidopsis protein–protein interaction data set, readers are also encouraged to explore the resources offered by our colleagues at TAIR and BioGRID.Each database employs its own system to report molecular interactions, as represented in the referenced source publications, and each avoids making judgments on interaction reliability or whether two participants in a complex have a direct interaction. Thus, the user should carefully filter these data sets for their specific purpose based on the full annotation of the data sets. In particular, the user should consider the experimental methods and independent observation of the same interaction in different publications when assessing the reliability and type of interaction of the proteins (e.g., direct or indirect). Confidence scoring schemes for interaction data are discussed widely in the literature (Yu and Finley, 2009).  相似文献   

8.
Proteins interact in complex protein–protein interaction (PPI) networks whose topological properties—such as scale-free topology, hierarchical modularity, and dissortativity—have suggested models of network evolution. Currently preferred models invoke preferential attachment or gene duplication and divergence to produce networks whose topology matches that observed for real PPIs, thus supporting these as likely models for network evolution. Here, we show that the interaction density and homodimeric frequency are highly protein age–dependent in real PPI networks in a manner which does not agree with these canonical models. In light of these results, we propose an alternative stochastic model, which adds each protein sequentially to a growing network in a manner analogous to protein crystal growth (CG) in solution. The key ideas are (1) interaction probability increases with availability of unoccupied interaction surface, thus following an anti-preferential attachment rule, (2) as a network grows, highly connected sub-networks emerge into protein modules or complexes, and (3) once a new protein is committed to a module, further connections tend to be localized within that module. The CG model produces PPI networks consistent in both topology and age distributions with real PPI networks and is well supported by the spatial arrangement of protein complexes of known 3-D structure, suggesting a plausible physical mechanism for network evolution.  相似文献   

9.
The availability of large-scale protein-protein interaction networks for numerous organisms provides an opportunity to comprehensively analyze whether simple properties of proteins are predictive of the roles they play in the functional organization of the cell. We begin by re-examining an influential but controversial characterization of the dynamic modularity of the S. cerevisiae interactome that incorporated gene expression data into network analysis. We analyse the protein-protein interaction networks of five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, and confirm significant and consistent functional and structural differences between hub proteins that are co-expressed with their interacting partners and those that are not, and support the view that the former tend to be intramodular whereas the latter tend to be intermodular. However, we also demonstrate that in each of these organisms, simple topological measures are significantly correlated with the average co-expression of a hub with its partners, independent of any classification, and therefore also reflect protein intra- and inter- modularity. Further, cross-interactomic analysis demonstrates that these simple topological characteristics of hub proteins tend to be conserved across organisms. Overall, we give evidence that purely topological features of static interaction networks reflect aspects of the dynamics and modularity of interactomes as well as previous measures incorporating expression data, and are a powerful means for understanding the dynamic roles of hubs in interactomes.  相似文献   

10.
Structures of proteins and protein–protein complexes are determined by the same physical principles and thus share a number of similarities. At the same time, there could be differences because in order to function, proteins interact with other molecules, undergo conformations changes, and so forth, which might impose different restraints on the tertiary versus quaternary structures. This study focuses on structural properties of protein–protein interfaces in comparison with the protein core, based on the wealth of currently available structural data and new structure‐based approaches. The results showed that physicochemical characteristics, such as amino acid composition, residue–residue contact preferences, and hydrophilicity/hydrophobicity distributions, are similar in protein core and protein–protein interfaces. On the other hand, characteristics that reflect the evolutionary pressure, such as structural composition and packing, are largely different. The results provide important insight into fundamental properties of protein structure and function. At the same time, the results contribute to better understanding of the ways to dock proteins. Recent progress in predicting structures of individual proteins follows the advancement of deep learning techniques and new approaches to residue coevolution data. Protein core could potentially provide large amounts of data for application of the deep learning to docking. However, our results showed that the core motifs are significantly different from those at protein–protein interfaces, and thus may not be directly useful for docking. At the same time, such difference may help to overcome a major obstacle in application of the coevolutionary data to docking—discrimination of the intramolecular information not directly relevant to docking.  相似文献   

11.
Hybrids between species often show extreme phenotypes, including some that take place at the molecular level. In this study, we investigated the phenotypes of an interspecies diploid hybrid in terms of protein–protein interactions inferred from protein correlation profiling. We used two yeast species, Saccharomyces cerevisiae and Saccharomyces uvarum, which are interfertile, but yet have proteins diverged enough to be differentiated using mass spectrometry. Most of the protein–protein interactions are similar between hybrid and parents, and are consistent with the assembly of chimeric complexes, which we validated using an orthogonal approach for the prefoldin complex. We also identified instances of altered protein–protein interactions in the hybrid, for instance, in complexes related to proteostasis and in mitochondrial protein complexes. Overall, this study uncovers the likely frequent occurrence of chimeric protein complexes with few exceptions, which may result from incompatibilities or imbalances between the parental proteomes.  相似文献   

12.
Lu H  Zhu X  Liu H  Skogerbø G  Zhang J  Zhang Y  Cai L  Zhao Y  Sun S  Xu J  Bu D  Chen R 《Nucleic acids research》2004,32(16):4804-4811
The refinement and high-throughput of protein interaction detection methods offer us a protein–protein interaction network in yeast. The challenge coming along with the network is to find better ways to make it accessible for biological investigation. Visualization would be helpful for extraction of meaningful biological information from the network. However, traditional ways of visualizing the network are unsuitable because of the large number of proteins. Here, we provide a simple but information-rich approach for visualization which integrates topological and biological information. In our method, the topological information such as quasi-cliques or spoke-like modules of the network is extracted into a clustering tree, where biological information spanning from protein functional annotation to expression profile correlations can be annotated onto the representation of it. We have developed a software named PINC based on our approach. Compared with previous clustering methods, our clustering method ADJW performs well both in retaining a meaningful image of the protein interaction network as well as in enriching the image with biological information, therefore is more suitable in visualization of the network.  相似文献   

13.
Biological networks have evolved to be highly functional within uncertain environments while remaining extremely adaptable. One of the main contributors to the robustness and evolvability of biological networks is believed to be their modularity of function, with modules defined as sets of genes that are strongly interconnected but whose function is separable from those of other modules. Here, we investigate the in silico evolution of modularity and robustness in complex artificial metabolic networks that encode an increasing amount of information about their environment while acquiring ubiquitous features of biological, social, and engineering networks, such as scale-free edge distribution, small-world property, and fault-tolerance. These networks evolve in environments that differ in their predictability, and allow us to study modularity from topological, information-theoretic, and gene-epistatic points of view using new tools that do not depend on any preconceived notion of modularity. We find that for our evolved complex networks as well as for the yeast protein–protein interaction network, synthetic lethal gene pairs consist mostly of redundant genes that lie close to each other and therefore within modules, while knockdown suppressor gene pairs are farther apart and often straddle modules, suggesting that knockdown rescue is mediated by alternative pathways or modules. The combination of network modularity tools together with genetic interaction data constitutes a powerful approach to study and dissect the role of modularity in the evolution and function of biological networks.  相似文献   

14.
The brain''s structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a “fingerprint”. Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the “uncertainty” of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.  相似文献   

15.
Studying social‐behavior and species associations in ecological communities is challenging because it is difficult to observe the interactions in the field. Animal behavior is especially difficult to observe when selection of habitat and activities are linked to energy costs of long‐distance movement. Migrating communities tend to be resource specific and prefer environments that offer more suitability for coexisting in a shared space and time. Given the recent advances in digital technologies, digital video recording systems are gaining popularity in wildlife research and management. We used digital video recording cameras to study social interactions and species–habitat linkages for wintering waterbirds communities in shared habitats. Examining over 8,640 hr of video footages, we built tetrapartite social‐behavioral association network of wintering waterbirds over habitat (n = 5) selection events in sites with distinct management regimes. We analyzed these networks to identify hub species and species role in activity persistence, and to explore the effects of hydrological regime on these network characteristics. Although the differences in network attributes were not significant at treatment level (p = .297) in terms of network composition and keystone species composition, our results indicated that network attributes were significantly different (p = .000, r 2 = .278) at habitat level. There were evidences suggesting that the habitat quality was better at the managed sites, where the formed networks had more species, more network nodes and edges, higher edge density, and stronger intra‐ and inter‐species interactions. In addition, we also calculated the species interaction preference scores (SIPS) and behavioral interaction preference scores (BIPS) of each network. The results showed that species synchronize activities in shared space for temporal niche partitioning in order to avoid or minimize any potential competition for shared space. Our social network analysis (SNA) approach is likely to provide a practical use for ecosystem management and biodiversity conservation.  相似文献   

16.
The recent availability of protein–protein interaction networks for several species makes it possible to study protein complexes in an evolutionary context. In this article, we present a novel network-based framework for reconstructing the evolutionary history of protein complexes. Our analysis is based on generalizing evolutionary measures for single proteins to the level of whole subnetworks, comprehensively considering a broad set of computationally derived complexes and accounting for both sequence and interaction changes. Specifically, we compute sets of orthologous complexes across species, and use these to derive evolutionary rate and age measures for protein complexes. We observe significant correlations between the evolutionary properties of a complex and those of its member proteins, suggesting that protein complexes form early in evolution and evolve as coherent units. Additionally, our approach enables us to directly quantify the extent to which gene duplication has played a role in the evolution of complexes. We find that about one quarter of the sets of orthologous complexes have originated from evolutionary cores of homodimers that underwent duplication and divergence, testifying to the important role of gene duplication in protein complex evolution.  相似文献   

17.
Here we introduce the ‘interaction generality’ measure, a new method for computationally assessing the reliability of protein–protein interactions obtained in biological experiments. This measure is basically the number of proteins involved in a given interaction and also adopts the idea that interactions observed in a complicated interaction network are likely to be true positives. Using a group of yeast protein–protein interactions identified in various biological experiments, we show that interactions with low generalities are more likely to be reproducible in other independent assays. We constructed more reliable networks by eliminating interactions whose generalities were above a particular threshold. The rate of interactions with common cellular roles increased from 63% in the unadjusted estimates to 79% in the refined networks. As a result, the rate of cross-talk between proteins with different cellular roles decreased, enabling very clear predictions of the functions of some unknown proteins. The results suggest that the interaction generality measure will make interaction data more useful in all organisms and may yield insights into the biological roles of the proteins studied.  相似文献   

18.
The elucidation of a protein’s interaction/association network is important for defining its biological function. Mass spectrometry–based proteomic approaches have emerged as powerful tools for identifying protein–protein interactions (PPIs) and protein–protein associations (PPAs). However, interactome/association experiments are difficult to interpret, considering the complexity and abundance of data that are generated. Although tools have been developed to identify protein interactions/associations quantitatively, there is still a pressing need for easy-to-use tools that allow users to contextualize their results. To address this, we developed CANVS, a computational pipeline that cleans, analyzes, and visualizes mass spectrometry–based interactome/association data. CANVS is wrapped as an interactive Shiny dashboard with simple requirements, allowing users to interface easily with the pipeline, analyze complex experimental data, and create PPI/A networks. The application integrates systems biology databases such as BioGRID and CORUM to contextualize the results. Furthermore, CANVS features a Gene Ontology tool that allows users to identify relevant GO terms in their results and create visual networks with proteins associated with relevant GO terms. Overall, CANVS is an easy-to-use application that benefits all researchers, especially those who lack an established bioinformatic pipeline and are interested in studying interactome/association data.  相似文献   

19.
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding.  相似文献   

20.
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号