首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2014,16(6):845-856
Background aimsCytokine-induced killer (CIK) cells ex vivo–expanded from cord blood (CB) or peripheral blood (PB) have been shown to be cytotoxic against autologous and allogeneic tumor cells. We have previously shown that CD56+ CIK cells (CD3+CD56+ and CD3CD56+) are capable of killing precursor B-cell acute lymphoblastic leukemia (B-ALL) cell lines. However, the lytic pathways used by CD56+ PB and CB-CIK cells to kill B-ALL cell lines have not been studied.MethodsCB and PB-CIK cells were differentiated. CD56+ CB- and PB-CIK cells were compared for expression of different phenotypic markers and for the lytic pathways used to kill B-ALL cell lines.ResultsWe found that cytotoxic granule proteins were expressed at higher levels in CD56+ PB-CIK than in CD56+ CB-CIK cells. However, CD56+ CB-CIK cells expressed more tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) compared with CD56+ PB-CIK cells. We observed that CD56+ CB-CIK cells used both the NKG2D and TRAIL cytotoxic pathways and were more effective at killing REH cells than CD56+ PB-CIK cells that used only the NKG2D pathway. In contrast, CD56+ PB-CIK cells used both NKG2D and TRAIL pathways to kill NALM6 cells, whereas CD56+ CB-CIK cells used only the NKG2D pathway.ConclusionsOur results suggest that both the source of CIK and the type of B-ALL cell line have an impact on the intensity of the cytolytic activity and on the pathway used. These findings may have clinical implications with respect to optimizing therapeutic efficacy, which may be dependent on the source of the CIK cells and on the target tumor cells.  相似文献   

2.
《Cytotherapy》2014,16(6):835-844
Background aimsCytokine-induced killer (CIK) cells may offer a novel therapeutic approach for patients with malignancies relapsing after allogeneic stem cell transplantation. Although CIK cells display negligible alloreactivity and cause minimal graft versus-host-disease (GVHD), high CIK cell doses required during relapse may pose a risk for severe GVHD, specifically in the mismatched or haploidentical transplantation setting. Manipulation of CIK cells may reduce risk for GVHD without affecting the anti-tumor potential.MethodsIn this pre-clinical study, we provide a detailed functional comparison of conventional and irradiated, CD56-enriched or T-cell receptor α/β-depleted CIK cells.ResultsIn vitro analysis showed retained anti-leukemic and anti-tumor potential after CIK cell manipulation. Even being sequentially infused into immunodeficient mice grafted with malignant cells, cytotoxic effects were fewest after irradiation but were improved by CD56 enrichment and were best with conventional CIK cells. Hence, considering the proliferative capacity of inoculated malignancies and effector cells, a single dose of conventional CIK cells resulted in prolonged disease-free survival and elimination of rhabdomyosarcoma cells, whereas sequential infusions were needed to achieve comparable results in leukemia-bearing mice. However, this mouse model has limitations: highly effective conventional CIK cells demonstrated both limited xenogenic GVHD and low alloreactive potential in vitro.ConclusionsOur study revealed that conventional CIK cells demonstrate no significant alloreactive potential but provide the strongest anti-tumor efficacy compared with manipulated CIK cells. Conventional CIK cells may therefore be tested in high numbers and short-term intervals in patients with impending relapse even after mismatched transplantation.  相似文献   

3.
《Cytotherapy》2023,25(2):202-209
Background aimsNon-small cell lung cancer (NSCLC) remains the most common cancer worldwide, with an annual incidence of around 1.3 million. Surgery represents the standard treatment in early-stage NSCLC when feasible. However, because of cancer recurrence, only approximately 53% of patients with stage I and II NSCLC survive 5 years after radical surgery. The authors performed a retrospective study to investigate the impact of cytokine-induced killer (CIK) cell immunotherapy on the long-term survival of patients with stage I–II NSCLC after curative resection.MethodsFifty-seven patients with NSCLC were included in the study, with 41 and 16 in the control and CIK groups, respectively. Clinical characteristics were compared using a t-test and χ2 test. Survival analysis of patients with NSCLC was performed using the Kaplan–Meier method. The phenotypes and anti-tumor functions of CIK cells were evaluated by flow cytometry.ResultsPatients in the CIK group exhibited significantly longer overall survival (OS) and better disease-free survival (DFS) than those in the control group. Subgroup analysis indicated that patients with a higher risk of recurrence benefited more from CIK treatment and attained longer OS and DFS compared with those in the control group. No severe adverse events related to CIK treatment occurred. CIK cells contained a higher proportion of CD3+CD56+ natural killer (NK) T cells and CD3+ and CD8+ T cells and a lower proportion of CD3CD56+ NK cells compared with peripheral blood mononuclear cells. CIK cells exhibited potent tumor-killing ability, with longer contact times with tumor cells and a greater number of cells exposed to tumor cells.ConclusionsThe authors’ data suggest that adjuvant CIK cell therapy is a safe and effective therapeutic strategy for improving OS and DFS in patients with stage I–II NSCLC after curative resection.  相似文献   

4.

Background

Cytokine-induced killer cells (CIKs) are an advanced therapeutic medicinal product (ATMP) that has shown therapeutic activity in clinical trials but needs optimization. We developed a novel strategy using CIKs from banked cryopreserved cord blood units (CBUs) combined with bispecific antibody (BsAb) blinatumomab to treat CD19+ malignancies.

Methods

CB-CIKs were expanded in vitro and fully characterized in comparison with peripheral blood (PB)–derived CIKs.

Results

CB-CIKs, like PB-CIKs, were mostly CD3+ T cells with mean 45% CD3+CD56+ and expressing mostly TCR(T cell receptor)αβ with a TH1 phenotype. CB-CIK cultures had, however, a larger proportion of CD4+ cells, mostly CD56?, as well as a greater proportion of naïve CCR7+CD45RA+ and a lower percentage of effector memory cells, compared with PB-CIKs. CB-CIKs were very similar to PB-CIKs in their expression of a large panel of co-stimulatory and inhibitory/exhaustion markers, except for higher CD28 expression among CD8+ cells. Like PB-CIKs, CB-CIKs were highly cytotoxic in vitro against natural killer (NK) cell targets and efficiently lysed CD19+ tumor cells in the presence of blinatumomab, with 30–60% lysis of target cells at very low effector:target ratios. Finally, both CB-CIKs and PB-CIKs, combined with blinatumomab, showed significant therapeutic activity in an aggressive PDX Ph+ CD19+ acute lymphoblastic leukemia model in NOD-SCID mice, without sign of toxicity or graft-versus-host disease. The improved expansion protocol was finally validated in good manufacturing practice conditions, showing reproducible expansion of CIKs from cryopreserved cord blood units with a median of 28.8?×?106 CIK/kg.

Discussion

We conclude that CB-CIKs, combined with bispecific T-cell–engaging antibodies, offer a novel, effective treatment strategy for leukemia.  相似文献   

5.
《Cytotherapy》2014,16(7):934-945
BackgroundTo evaluate the therapeutic efficacy of dendritic cells (DC) alone, cytokine-induced killer (CIK) cells alone and the combination of DC and CIK cells in the treatment of breast cancer, we performed a systemic review of the relevant published clinical studies, collectively referred to as DC-CIK cell therapy.MethodsSix hundred thirty-three patients with breast cancer were assigned to cohorts, and a meta-analysis was conducted.ResultsThe treatment of breast cancer with DC-CIK cells was associated with a significantly improved 1-year survival (P = 0.0001). The Karnofsky performance status scale of the patients treated with DC-CIK cells was significantly improved compared with that of the non-DC-CIK group (P < 0.0001). The percentage of T cells (CD3+, CD4+ and CD4+CD8+), CD16+ monocytes, and CD3+CD56+ natural killer T cells in the peripheral blood of cancer patients was significantly increased (P ≤ 0.05), whereas the percentage of CD4+CD25+ regulatory T cells was not significantly decreased (P = 0.32) in the DC-CIK treatment group compared with the non-DC-CIK group. The levels of interleukin-2, interleukin-12, tumor necrosis factor-α, interferon-γ, and nucleolar organizer region protein in the peripheral blood of cancer patients, which reflect immune function, were significantly increased (P < 0.001) after DC-CIK cell treatment. Furthermore, after DC-CIK treatment, the average levels of the alpha-fetoprotein, cancer antigen embryonic antigen and carbohydrate antigen tumor markers were decreased (P < 0.00001).ConclusionsDC-CIK cell therapy markedly prolongs survival time, enhances immune function, and improves the efficacy of the treatment of breast cancer patients.  相似文献   

6.
Background aimsWe have recently shown that thymoglobulin (TG) efficiently expands cytokine-induced killer (CIK) cells in combination with interferon (IFN)-γ and interleukin (IL)-2 (ITG2 protocol). It is presently unknown whether the infusion of autologous immune effector cells generated by TG, IFN-γ and IL-2 is feasible and safeMethodsFive patients with advanced and/or refractory solid tumors were enrolled in the present phase I/II study. Peripheral blood mononuclear cells (PBMC) collected by leukapheresis were stimulated under good manufacturing practice (GMP)-conditions with IFN-γ, followed by TG and IL-2. After 2–3 weeks in culture, a median of 4.65 × 106 immune effector cells per kilogram of recipient's body weight was obtained and infused intravenously. The median time from enrollment into the study to infusion of the expanded CIK cells was 30 daysResultsITG2 efficiently expanded immune effector cells that comprised both conventional natural killer (NK) cells and CD3+ CD16+ CD56+ CIK cells. One patient with advanced melanoma died because of disease progression before the infusion of CIK cells. The target dose of at least 2.5 × 106 CIK cells/kg of recipient's body weight was reached in four out of five evaluable patients. CIK cells were administered intravenously without any measurable toxicity. In vitro, CIK cells exerted lytic activity against cervical cancer cells. The median survival was 4.5 months (range 1–13) from the first infusion of CIK cells.ConclusionsThis study has highlighted the feasibility and safety of the administration of CIK cells generated with the ITG2 protocol. Whether CIK cells can help control disease burden in patients with advanced malignancies will be determined in future clinical trials.  相似文献   

7.
《Cytotherapy》2014,16(1):90-100
Background aimsNaturally occurring regulatory T cells (Treg) are emerging as a promising approach for prevention of graft-versus-host disease (GvHD), which remains an obstacle to the successful outcome of allogeneic hematopoietic stem cell transplantation. However, Treg only constitute 1–5% of total nucleated cells in cord blood (CB) (<3 × 106 cells), and therefore novel methods of Treg expansion to generate clinically relevant numbers are needed.MethodsSeveral methodologies are currently being used for ex vivo Treg expansion. We report a new approach to expand Treg from CB and demonstrate their efficacy in vitro by blunting allogeneic mixed lymphocyte reactions and in vivo by preventing GvHD through the use of a xenogenic GvHD mouse model.ResultsWith the use of magnetic cell sorting, naturally occurring Treg were isolated from CB by the positive selection of CD25+ cells. These were expanded to clinically relevant numbers by use of CD3/28 co-expressing Dynabeads and interleukin (IL)-2. Ex vivo–expanded Treg were CD4+25+FOXP3+127lo and expressed a polyclonal T-cell receptor, Vβ repertoire. When compared with conventional T-lymphocytes (CD4+25 cells), Treg consistently showed demethylation of the FOXP3 TSDR promoter region and suppression of allogeneic proliferation responses in vitro.ConclusionsIn our NOD-SCID IL-2Rγnull xenogeneic model of GvHD, prophylactic injection of third-party, CB-derived, ex vivo–expanded Treg led to the prevention of GvHD that translated into improved GvHD score, decreased circulating inflammatory cytokines and significantly superior overall survival. This model of xenogenic GvHD can be used to study the mechanism of action of CB Treg as well as other therapeutic interventions.  相似文献   

8.
Ma Y  Zhang Z  Tang L  Xu YC  Xie ZM  Gu XF  Wang HX 《Cytotherapy》2012,14(4):483-493
Background aimsThe aim of this study was to evaluate the efficacy and safety of cytokine-induced killer (CIK) cell therapy for solid carcinomas.MethodsWe performed a computerized search of phase II/III clinical trial databases of CIK cell-based therapy using a combination of the terms ‘cytokine-induced killer cells’, ‘tumor’ and ‘cancer’.ResultsTreatment with CIK cells was associated with a significantly improved half-year survival (P = 0.003), 1-year survival (P = 0.0005), 2-year survival (P  < 0.01) and mean survival time (MST) (P  < 0.001). Patients in the CIK group showed a prolonged half-year progression-free survival (PFS) (P  < 0.01), 1-year PFS (P < 0.01) and median time to progression (MTTP) (P < 0.001). A favored disease control rate (DCR) was observed in patients receiving CIK cell therapy, while the objective response rate (ORR) was not altered (P = 0.05) compared with the non-CIK group (P = 0.007). CIK cell therapy could also reduce the adverse effects of grade III and IV leukopenia caused by chemotherapy (P = 0.002) and diminish hepatitis B virus (HBV)-DNA content (P < 0.01). However, the incidence of fever in the CIK therapy group was significantly higher than in the non-CIK group (P = 0.02). The percentage of CD3+, CD4+, CD4+ CD8+, CD3? CD56+ and CD3+ CD56+ T-lymphocyte subsets in the peripheral blood of cancer patients was significantly increased, whereas the percentage of CD8+ T-lymphocyte cells was significantly decreased in the CIK group compared with the non-CIK group (P < 0.01).ConclusionsCIK cell therapy has demonstrated a significant superiority in prolonging the MST, PFS, DCR and quality of life (QoL) of patients.  相似文献   

9.
Background aimsHuman umbilical cord blood-derived stromal cells (hUCBDSC) comprise a novel population of CD34+ cells that has been isolated in our laboratory. They have been shown previously not only to be non-immunogenic but also to exert immunosuppressive effects on xenogenic T cells in vitro. This study investigated the role of hUCBDSC in immunomodulation in an acute graft-versus-host disease (GvHD) mouse model after haplo-identical stem cell transplantationMethodsAcute GvHD was induced in recipient (B6 × BALB/c)F1 mice by irradiation (750 cGy) followed by infusion of bone marrow cells and splenocytes from donor C57BL/6 mice. hUCBDSC were co-transplanted in the experimental group. The survival time, body weight and clinical and histopathologic scores were recorded after transplantation. The expression of surface markers [major histocompatibility complex (MHC) I, MHC II, CD80 and CD86] on CD11c+ dendritic cells (DC), and the percentage of CD4+ regulatory T cells (Treg), in the spleens of recipient mice were examined by flow cytometryResultsThe survival time was significantly prolonged, and the clinical and histopathologic scores were reduced in mice co-transplanted with hUCBDSC. The expression levels of the surface markers on DC were significantly lower in mice transplanted with hUCBDSC compared with those without. The proportion of CD4+ Treg in the spleen was also increased in mice transplanted with hUCBDSCConclusionsThese results from a GvHD mouse model are in agreement with previous in vitro findings, suggesting that hUCBDSC possess immunosuppressive properties and may act via influencing DC and CD4+ Treg.  相似文献   

10.
11.
Background aimsCytokine-induced killer (CIK) cells may serve as an alternative approach to adoptive donor lymphocyte infusions (DLI) for patients with acute leukemia relapsing after haplo-identical hematopoietic stem cell transplantation (HSCT). We investigated the feasibility of enhancing CIK cell-mediated cytotoxicity by interleukin (IL)-15 against acute myeloid and lymphoblastic leukemia/lymphoma cells.MethodsCIK cells were activated using IL-2 (CIKIL-2) or IL-15 (CIKIL-15) and phenotypically analyzed by fluorescence-activated cell sorting (FACS). Cytotoxic potential was measured by europium release assay.ResultsCIKIL-2 cells showed potent cytotoxicity against the T-lymphoma cell line H9, T-cell acute lymphoblastic leukemia (T-ALL) cell line MOLT-4 and subtype M4 acute myeloid leukemia (AML) cell line THP-1, but low cytotoxicity against the precursor B (pB)-cell ALL cell line Tanoue. IL-15 stimulation resulted in a significant enhancement of CIK cell-mediated cytotoxicity against acute lymphoblastic leukemia/lymphoma cell lines as well as against primary acute myeloid and defined lymphoblastic leukemia cells. However, the alloreactive potential of CIKIL-15 cells remained low. Further analysis of CIKIL-15 cells demonstrated that the NKG2D receptor is apparently involved in the recognition of target cells whereas killer-cell immunoglobulin-like receptor (KIR)-HLA mismatches contributed to a lesser extent to the CIKIL-15 cell-mediated cytotoxicity. In this context, CD3 + CD8 + CD25 + CD56? CIKIL-15 cell subpopulations were more effective in the lysis of AML cells, in contrast with CD56 + CIKIL-15 cells, which showed the highest cytotoxic potential against ALL cells.ConclusionsThis study provides the first evidence that CIKIL-15 cells may offer a therapeutic option for patients with refractory or relapsed leukemia following haplo-identical HSCT.  相似文献   

12.
Cytokine-induced killer (CIK) cells, which display both potent anti-tumor ability of T lymphocytes and non-major histocompatibility complex (MHC) restricted killing tumor cells capacity of natural killer (NK) cells are capable of recognizing and lysing a broad array of tumor targets. They have begun to be used in clinical care with good prospects for treatment success. CIK cells are a heterogeneous cell population that contain CD3+CD56+ cells, CD3CD56+ natural killer (NK) cells and CD3+CD56 T cells on which much attention has been focused. This review will summarize the connections and differences among CD3+CD56+CIK cells, CD3CD56+ NK cells and CD3+CD56 T cells in the following aspects: the main cell surface molecule, killing mechanism, and clinical applications so that treatment with CIK cells can be optimized and further to enhance the antitumor effect.  相似文献   

13.
《Cytotherapy》2022,24(5):526-533
Background aimsIn this retrospective clinical study, the authors investigated the impact of cytokine-induced killer (CIK) cell-based immunotherapies on the long-term survival of patients with esophageal squamous cell carcinoma (ESCC).MethodsA total of 87 patients with ESCC who received comprehensive treatment were enrolled in the study. Of these patients, 43 were in the control group and 44 were in the CIK treatment group. Flow cytometry analysis was performed to detect the phenotype and anti-tumor function of CIK cells. Clinical characteristics were compared between these two groups, and the survival estimates of ESCC patients were determined using Kaplan–Meier analysis.ResultsCIK cells contained a high proportion of the main functional fraction (CD3+CD56+ group) and exhibited a strong killing ability for esophageal cancer cells in vitro. Importantly, overall survival (OS) and progression-free survival (PFS) were significantly higher in the CIK group than in the control group in early-stage ESCC. However, patients with advanced-stage ESCC did not benefit from CIK cell-based therapy in terms of OS and PFS compared with the control group.ConclusionsThese results demonstrate that CIK cells combined with conventional treatments potentially prolong long-term survival of patients and may serve as a combined therapeutic approach for the treatment of early-stage ESCC.  相似文献   

14.
Aim and background: CD4+CD25+ cells are described as professional regulatory/suppressor T cells that are crucial for the prevention of spontaneous autoimmune diseases. They play an important role in maintaining a balanced peripheral immune system. On the other hand, it has been suggested that regulatory T cells (Treg) suppress antitumor immune responses after tumor-specific vaccinations. Therefore, we determined the percentage of regulatory T cells in cytokine-induced killer (CIK) cells, an effector cell population with high impact for adoptive immunotherapeutic strategies. Results: CIK cells showed strong induction of CD4+CD25+ cells with high secretion of interleukin 10 (IL-10) after unspecific stimulation of the TCR complex and stimulation with interleukin 2. Depletion of CD25+ cells led to an increase in cytotoxic activity and a reduction of IL-10 release. A more pronounced reversal of suppression could be induced by coculture of CIK cells with dendritic cells (DCs). After coculture of CIK cells with DCs, the number of CD4+CD25+ cells as well as the IL-10 concentration in the supernatant decreased, and the cytotoxic activity against pancreatic carcinoma cells increased. This was shown for cells from healthy donors as well as for cells from patients with pancreatic carcinoma. Conclusion: Our established effector cells possess some regulatory features induced by unspecific TCR-activation that could be prevented by coculture with DCs. CIK cells have desirable properties for immunotherapeutical approaches, especially after coculture with DCs, which could be used additionally for induction of a specific immune response.  相似文献   

15.
《Cytotherapy》2021,23(9):799-809
Background aimsTracking administered natural killer (NK) cells in vivo is critical for developing an effective NK cell-based immunotherapy against human hepatocellular carcinoma (HCC). Here the authors established a new molecular imaging using ex vivo-activated NK cells and investigated real-time biodistribution of administered NK cells during HCC progression.MethodsEx vivo-expanded NK cells from healthy donors were labeled with a near-infrared lipophilic cytoplasmic dye, and their proliferation, surface receptor expression and cytotoxicity activity were evaluated. Human HCC HepG2 cells were implanted into the livers of NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The authors administered 1,1’-dioctadecyltetramethyl indotricarbocyanine iodide (DiR)-labeled NK cells intravenously to non-tumor-bearing and intrahepatic HCC tumor-bearing NSG mice. Fluorescent imaging was performed using a fluorescence-labeled organism bioimaging instrument. Single cell suspensions from the resected organs were analyzed using flow cytometry.ResultsThe fluorescent DiR dye was nontoxic and did not affect the proliferation or surface receptor expression levels of the NK cells, even at high doses. The administered DiR-labeled NK cells immediately migrated to the lungs of the non-tumor-bearing NSG mice, with increased NK cell signals evident in the liver and spleen after 4 h. NK cells migrated to the intrahepatic tumor-bearing livers of both early- and late-stage HCC mice within 1 h of injection. In early-stage intrahepatic tumor-bearing mice, the fluorescence signal increased in the liver until 48 h post-injection and decreased 7 days after NK injection. In late-stage HCC, the NK cell fluorescence signal was the highest in the liver for 7 days after NK injection and persisted for 14 days. The purity of long-term persistent CD45+CD56+CD3 NK cells was highest in early- and late-stage HepG2-bearing liver compared with normal liver 2 weeks after NK injection, whereas highest purity was still observed in the lungs of non-tumor-bearing mice. In addition, Ki-67 expression was detected in migrated human NK cells in the liver and lung up to 72 h after administration. With HepG2 tumor progression, NK cells reduced the expression of NKp30 and NKG2D.ConclusionsAdministered NK cells were successfully tracked in vivo by labeling the NK cells with near-infrared DiR dye. Highly expanded, activated NK cells migrated rapidly to the tumor-bearing liver, where they persisted for 14 days after administration, with high purity of CD45+CD56+CD3 NK cells. Liver biodistribution and persistence of administered NK cells showed significantly different accumulation patterns during HCC progression.  相似文献   

16.
Psoriasis is a chronic inflammatory skin disorder mediated by the cells and molecules of both the innate and adaptive immune systems. Autologous cytokine-induced killer (CIK) cell infusion is considered an effective and safe cancer treatment and is licensed for this use in China. Accumulated evidence indicating that CD3+CD56+ cells are significantly decreased in psoriatic patients prompted us to investigate if the restoration of CD3+CD56+ cells may be beneficial for psoriatic patients. We designed a clinical trial for psoriasis treatment that involved CIK cell infusion because CIK cells include a large amount of CD3+CD56+ T cells (NCT01894373 at www.clinicaltrials.gov). Six patients with severe psoriasis were initially enrolled, and four of them exhibited markedly lower levels of CD3+CD56+ cells in their peripheral blood (PB) relative to healthy donors. CIK cell infusion-associated toxicity was not observed in any infusion. The percentage of CD3+CD56+ cells in the PB markedly increased and the psoriasis area and severity index (PASI) synchronously decreased in four patients with lower CD3+CD56+ cell contents, and two of them obtained a more than 4-month PASI75 after completing a four-cycle treatment. However, a decrease in the CD3+CD56+ cells was observed concomitantly with disease recurrence after short-term amelioration. In contrast, no obvious improvement was observed in the two patients with nearly normal CD3+CD56+ cells in the PB before treatment. These observations suggest that the normalization of the CD3+CD56+ cell level may improve the skin lesions of severe psoriasis and warrant further clinical trials for severe psoriasis using repeated CIK adoptive immunotherapy.  相似文献   

17.
Cytokine-induced killer (CIK) cells show cytolytic activity against tumor. The purpose of this study was to evaluate the antitumor effect of dendritic cell (DC)-activated CIK cells in vitro and their clinical efficacy of DC-activated CIK cells in combination with chemotherapy (abbreviated below as chemotherapy plus DC + CIK) in patients with advanced non-small-cell lung cancer (NSCLC). A paired study was performed between 61 patients treated with chemotherapy alone (group 1) and 61 patients treated with chemotherapy plus DC + CIK cells (group 2). In group 2, 36 patients with adenocarcinoma and 18 patients with squamous cell carcinoma were analyzed for the survival rate. Compared to unstimulated CIK cells, DC-activated CIK cells significantly enhanced antitumor activity, increased the ratio of CD3+CD56+ cells, promoted cell proliferation and lessened cell apoptosis. In the paired study, the 1- and 2-year overall survival rates in group 2 were 57.2 and 27.0 %, which were significantly higher than that of group 1 (37.3 and 10.1 %) (P < 0.05). There was no significant difference in the survival rate between the adenocarcinoma and squamous carcinoma patients in group 2. The present study suggests that DC-activated CIK cell has enhanced antitumor effects and chemotherapy plus DC + CIK cells improved the clinical outcomes of chemotherapy for advanced NSCLC patients.  相似文献   

18.
Cytokine-induced killer (CIK) cells have reached clinical trials for leukemia and solid tumors. Their anti-tumor cytotoxicity had earlier been shown to be intensified after the co-culture with dendritic cells (DCs). We observed markedly enhanced anti-tumor cytotoxicity activity of CIK cells after the co-culture with sunitinib-pretreated DCs over that of untreated DCs. This cytotoxicity was reliant upon DC modulation by sunitinib because the direct exposure of CIK cells to sunitinib had no significant effect. Sunitinib promoted Th1-inducing and pro-inflammatory phenotypes (IL-12, IFN-γ and IL-6) in DCs at the expense of Th2 inducing phenotype (IL-13) and regulatory phenotype (PD-L1, IDO). Sunitinib-treated DCs subsequently induced the upregulation of Th1 phenotypic markers (IFN-γ and T-bet) and the downregulation of the Th2 signature (GATA-3) and the Th17 marker (RORC) on the CD3+CD56+ subset of CIK cells. It concluded that sunitinib-pretreated DCs drove the CD3+CD56+ subset toward Th1 phenotype with increased anti-tumor cytotoxicity.  相似文献   

19.
Poonia B  Pauza CD 《Cytotherapy》2012,14(2):173-181
Background aimsImmunotherapy using γδ T cells capable of mediating antibody-dependent cellular cytotoxicity (ADCC) is a promising anti-human immunodeficiency virus (HIV) strategy. Approved aminobispohsphonate drugs, for example zoledronate (Zometa), stimulate γδ T cells in cancer patients, where they may promote direct tumor killing. Knowing that γδ T cells are modulated during HIV disease, documenting their responses and potential for controlling HIV is important. We investigated whether zoledronate/interleukin (IL)-2 could expand cytotoxic Vδ2 cells from HIV+ donors and whether these cells functioned in ADCC.MethodsPeripheral blood mononuclear cells from uninfected controls and HIV+ individuals receiving anti-retroviral therapy were treated with isopentenyl pyrophosphate (IPP) or zoledronate plus IL-2 to expand the Vδ2+ subset. Immunophenotyping and functional analyzes (cytotoxicity or cytokine expression) allowed us to compare cell properties from individual donors and to compare the responses to each stimulating agent.ResultsZoledronate stimulated a greater expansion of Vδ2 cells in HIV+ individuals compared with phosphoantigen IPP, and these cells expressed CD16. CD56 expression (a marker for cytotoxic cells) was lower on zoledronate-expanded cells, consistent with significantly lower cytotoxicity against the Daudi tumor cell line. Cells expanded with either zoledronate or IPP were active in ADCC, were similar in terms of interferon (IFN)-γ and tumor necrosis factor (TNF)-α expression, and degranulated in response to Fc receptor cross-linking.ConclusionsZoledronate causes ex vivo expansion of Vδ2 cells from HIV+ individuals. Despite lower expression of CD56 and decreased direct cytotoxicity, these effectors were potent in ADCC. Zoledronate/IL-2- expanded cells have potential for immunotherapy to activate Vδ2 cells in HIV patients and enhance ADCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号