首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荒漠植物种子粘液的生态学意义   总被引:9,自引:0,他引:9  
种子粘液是在种皮外层细胞的高尔基体内产生并分泌到胞腔内或细胞壁层的吸湿膨胀的一类果胶类多糖物质。具粘液种子的植物大多生长在荒漠地区,广泛存在于十字花科、菊科和车前科等类群中。粘液的存在对荒漠植物种子的扩散、萌发、防御以及幼苗的生长等都具有重要的生态学意义,是荒漠植物适应干旱少雨的生态环境的有效对策之一。对粘液种子的研究不仅可全面揭示荒漠植物的生态适应机制及其进化生态意义,还可为研究基因控制的糖类生物合成和分泌、细胞次生壁的生物合成及形态分化建立理想的模式体系。为此,在广泛查阅相关文献的基础上,该文综合分析了国内外种子粘液的研究进展,并重点探讨了以下几方面问题:(1)种子粘液的化学成分:(2)粘液及粘液种皮的形态特征:(3)粘液细胞分化与粘液生物合成的细胞学及基因调控机制以及粘液的释放方式:(4)种子粘液的生态学意义。在此基础上展望了今后的研究方向,以期为推动我国荒漠植物种子生态学的理论与应用研究及西部荒漠区的植物物种多样性保护和生态保育提供重要理论依据。  相似文献   

2.
荒漠植物种子粘液的生态学意义   总被引:1,自引:0,他引:1  
刘晓风  谭敦炎 《植物学报》2007,24(3):414-424
种子粘液是在种皮外层细胞的高尔基体内产生并分泌到胞腔内或细胞壁层的吸湿膨胀的一类果胶类多糖物质。具粘液种子的植物大多生长在荒漠地区, 广泛存在于十字花科、菊科和车前科等类群中。粘液的存在对荒漠植物种子的扩散、萌发、防御以及幼苗的生长等都具有重要的生态学意义, 是荒漠植物适应干旱少雨的生态环境的有效对策之一。对粘液种子的研究不仅可全面揭示荒漠植物的生态适应机制及其进化生态意义, 还可为研究基因控制的糖类生物合成和分泌、细胞次生壁的生物合成及形态分化建立理想的模式体系。为此, 在广泛查阅相关文献的基础上, 该文综合分析了国内外种子粘液的研究进展, 并重点探讨了以下几方面问题: (1)种子粘液的化学成分; (2)粘液及粘液种皮的形态特征; (3)粘液细胞分化与粘液生物合成的细胞学及基因调控机制以及粘液的释放方式; (4)种子粘液的生态学意义。在此基础上展望了今后的研究方向, 以期为推动我国荒漠植物种子生态学的理论与应用研究及西部荒漠区的植物物种多样性保护和生态保育提供重要理论依据。  相似文献   

3.
Post-dispersal seed removal by animals can lead to extensive seed loss and thus is an important factor in structuring plant communities. However, we know much less about post-dispersal seed predation than about other forms of herbivory. Mucilage plays many ecological roles in adaptation of plants to diverse environments; nevertheless, until now the role of mucilage in ant-mediated seed movement remains largely hypothetical. We studied the role of mucilage in seed removal of Artemisia sphaerocephala by ants in Mu Us Sandland in Inner Mongolia, China. Messor aciculatus was the most active seed predator of Artemisia sphaerocephala. Time to first ant collecting (T 1st) of wet intact seeds was longest and significantly different from that for dry intact seeds, wet demucilaged seeds, and dry demucilaged seeds; number of seeds removed to ant nests was lowest for wet intact seeds. After they were collected by ants, 5 % of wet intact seeds were dropped during transport. Our results indicate that seed mucilage of Artemisia sphaerocephala may play a significant role in post-dispersal seed removal by (1) making seeds less attractive to ants, thus resulting in a delay of collection time; (2) forming a strong bond to soil particles, making it difficult for ants to remove seeds; and (3) making seeds more likely to be dropped during transport, thereby allowing them to escape from predation even after collection by ants. This study demonstrates the importance of mucilage in reducing seed removal by ants and thus in anchoring seeds of desert plants in the vicinity of mother plants.  相似文献   

4.
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.  相似文献   

5.
新疆短命植物抱茎独行菜种子粘液质特性的研究   总被引:1,自引:0,他引:1  
以新疆荒漠植物抱茎独行菜为材料,运用光镜与扫描电镜观察以及紫外吸收光谱法、化学反应及种子萌发实验等方法,对粘液质的形态和结构,物理化学特性,粘液质对种子萌发及萌发后的影响进行了研究.结果显示:(1)完整干种子表面覆盖着一层膜状物质(完全脱水的粘液质),并呈同一走向的山脊状突出的网状结构,遇水后粘液物质呈射线状向外发射出来,化学反应实验结果表明,粘液质的组成可能是某种多糖,如β-葡聚糖.(2)粘液质约占干种子重量的1/4,有很强的吸水能力,完全浸润10 min后,种子重量增加约30~40倍,种子长度、宽度、厚度的增加分别多于1倍、2倍、4倍;完全润湿的种子能够粘附相当于其干种子重量68倍的沙粒.(3)种皮粘液质对于不同土壤基质中的种子萌发有重要作用,但是对萌发后幼苗的生长没有作用.  相似文献   

6.
种子异型性及其生态意义的研究进展   总被引:9,自引:3,他引:6       下载免费PDF全文
种子异型性是指同一植株产生不同形状或行为种子的现象。根据异型种子在植株上的生长位置, 种子异型性可划分为地上下结实性和地上种子异型性两类。此现象已在26科129属292种被子植物中报道。异型性种子植物主要分布于干旱半干旱区、荒漠和盐渍土地区等干扰强烈的环境, 在菊科和藜科中最为常见, 主要出现在一年生植物中。种子异型性在避免密集负效应、减弱同胞子代间的竞争、采取两头下注策略以适应时空异质性环境等方面具有重要的进化生态意义。该文系统总结了国内外种子异型性的研究工作, 主要内容包括: 1)种子异型性的概念、类型和种类, 2)具有异型种子植物的生境和生活型, 3)异型种子的生态学特性, 4)种子异型性的理论模型, 5)种子异型性的生态意义。在综述文献的基础上, 对今后的研究进行了展望。针对国内外的研究现状, 提出两点建议: 1)系统调查具有种子异型性现象的植物种类, 摸清其生物学特性; 2)确定研究种子异型性现象的模式植物, 从生态学、生理学和分子生物学等学科角度来研究种子异型性的个体发育机制及分子调控机理。  相似文献   

7.
In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High‐performance anion‐exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO2 and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)‐labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well‐adapted.  相似文献   

8.
Post-dispersal seed predation is a risk for plants in semiarid environments, leading to strategies to protect their propagules from seed collection by animals. In this study, we evaluated the importance of mucilage secretion in seeds as a mechanism to reduce seed collection by ants. We selected three Mediterranean species with strong mucilage secretion on their seeds which become sticky upon wetting. Seeds of Rosmarinus officinalis, Fumana ericoides, and Fumana thymifolia were exposed to ants and survival was compared between dry loose seeds and seeds glued to the soil with previously secreted mucilage. The study site was in the Sierra Calderona, 25?km north of Valencia (Spain). The ant?Cplant interaction was analyzed by scrutinizing seed collection by ants and by analyzing the waste piles of ant nests. To test survival, groups of 10 seeds were placed on the ground. Each group consisted of five control (dry) and five?mucilaginous seeds (previously mucilage secreted) and was covered by the cover of a Petri dish modified to permit only the entry of ants. Seeds were inspected weekly for seed disappearance and the survival function (Kaplan?CMeier estimator) was calculated. Seeds of the target species were important food items for ants and were actively collected, and more than 50?% of the experimental seeds that were glued to the ground with their own mucilage survived at the end of the study period but only 0?C20?% of the control seeds survived after the same time of exposure. The implications for plant establishment of these findings are discussed.  相似文献   

9.
Diaspores of many plant species inhabiting open vegetation in semi‐arid environments secrete mucilage after wetting (myxospermy) that glues the diaspores to the ground and prevents movement when the mucilage dries. In the present study, we test whether mucilage secretion can be considered as a selective response to soil erosion in plant species inhabiting semi‐arid environments. We relate the amount and type of mucilage secretion by seeds of Helianthemum violaceum and Fumana ericifolia (Cistaceae) to the number of raindrop impacts needed to remove these seeds after gluing them with their own mucilage to the ground and also the time that these seeds resist water run‐off without detaching. We also compare the amount of seed mucilage production by plants growing in habitats without erosion and plants affected by severe erosion by fitting mixed effect models. Our results show an important phenotypic variation in the amount of mucilage secretion in both species, although it is suggested that the effect of mucilage secretion in the rate of seed removal by erosion is species‐ and mechanism‐dependent. For F. ericifolia, the amount of mucilage secreted by the seeds is directly proportional to their resistance to raindrop impacts and is positively related to the intensity of the erosive processes that the plants experience. Nevertheless, all the seeds resist the force of run‐off during 60 min, irrespective of the amount of mucilage they produce. In H. violaceum, mucilage secretion per se, and not the amount of mucilage produced by the seeds, has an effect on the rate of seed removal by erosive processes. Furthermore, cellulosic fibrils were found only in the mucilage of F. ericifolia but not in H. violaceum. Overall, our results only partially support the hypothesis that a selective response to soil erosion exists. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 241–251.  相似文献   

10.

Background and Aims

Myxospermy is a term which describes the ability of a seed to produce mucilage upon hydration. The mucilage is mainly comprised of plant cell-wall polysaccharides which are deposited during development of those cells that comprise the seed coat (testa). Myxospermy is more prevalent among those plant species adapted to surviving on arid sandy soils, though its significance in determining the ecological fitness of plants is unclear. In this study, the first mathematical model of myxospermous seed mucilage expansion is presented based on seeds of the model plant species Capsella bursa-pastoris (shepherd''s purse).

Methods

The structures underpinning the expansion process were described using light, electron and time-lapse confocal micrographs. The data and experimental observations were used to create a mathematical model of myxospermous seed mucilage expansion based on diffusion equations.

Key Results

The mucilage expansion was rapid, taking 5 s, during which the cell mucilage volume increased 75-fold. At the level of the seed, this represented a 6-fold increase in seed volume and a 2·5-fold increase in seed surface area. These increases were shown to be a function of water uptake (16 g water g−1 mucilage dry weight), and relaxation of the polymers which comprised the mucilage. In addition, the osmotic pressure of the seed mucilage, estimated by assessing the mucilage expansion of seeds hydrated in solutions of varying osmotic pressure, was –0·54 MPa (equivalent to 0·11 m or 6·6 g L−1 NaCl).

Conclusions

The results showed that the mucilage may be characterized as hydrogel and seed-mucilage expansion may be modelled using the diffusion equation described. The potential of myxospermous seeds to affect the ecological services provided by soil is discussed briefly.  相似文献   

11.
Seeds in a persistent soil seed bank (PSSB) provide an effective way to maintain plant population and community stability. Seeds that persist in soil incur physiological costs of maintaining viability and vigor, thus, the growth capability of resulting plants may be reduced. However, a lot of functional roles of the PSSB have been deduced from seed germination capability, and little consideration has been given to interspecific and intraspecific competitive ability of the resulting plants. Eupatorium adenophorum was used as the study species to compare germination of different artificially aged PSSB seeds and competition at different densities between resulting plants of aged and freshly produced seeds. Seed burial caused decreases in survival rates but not germination speed. During the 175-day growth period, the individual biomass, average height, basal stem diameter and leaf number of plants from aged PSSB seeds were little lower than that of plants germinated from freshly produced seeds. However, the differences were not significant at any densities. Thus, (1) although seeds stored in soil exhibited a very high death rate, they maintained a high vigor for germination, and (2) resulting plants from PSSB seeds exhibited good competiveness to plants from new seeds of the same population. The results further confirm the significance of PSSB in maintaining stability of plant populations and communities.  相似文献   

12.
种子重量的生态学研究进展   总被引:10,自引:4,他引:10       下载免费PDF全文
作为植物生活史中的一个关键性特征,种子重量与其它许多植物性状和生态因子有关,种子重量的分异与其它一些植物性状及环境的变化关系在进化生物学上已经成为一个非常有意义的研究内容,且具有一定的实践意义。种子重量被发现与下列的一些植物学和群落学性状有关:植物的生活型、种子的散布能力、种子的散布方式、植物的高度、植物的冠幅、植物的比叶面积、植物的寿命、动物的捕食、植被中植物的数量或多度、土壤中种子的数量或多度、种子的休眠、种子在土壤中的持久性和植物的净初级生产力等,另外生态因子如降雨、温度、坡向、海拔、经度、纬度、光强和干扰等都影响种子的重量。种子的重量被认为是在大量小种子和少量大种子之间的进化折衷,在一定的能量限度内,较大重量的种子一般具有较少的数量,而较小重量的种子一般数量较多,这是种子重量和数量方面具有的一种反向关系。与其它性状相比,很多研究都表明种子重量和植物的生活型的关系密切。没有散布结构或风散布的种子比以动物和水作为散布媒介的种子重量要小。种子重量与捕食的关系现发现有3种格局。种子重量和形状与种子在土壤中的持久性的关系有4种格局。在干旱和阴暗的环境条件下,种子有变大的趋势。大重量种子比小种子赋予幼苗较优势的竞争地位,其原理尚有争论,尚不清楚是否是幼苗阶段的竞争决定了世界上大部分植被类型的物种组成。未来的研究方向主要有以下几个方面:1) 种子重量与植物系统学相结合,探索种子重量的变化规律;2)调查群落三向(纬度、经度和海拔)性的种子重量谱变化规律;3) 群落演替与群落种子重量谱的变化;4) 种子重量与群落中植物个体和种子的数量的关系及机理研究;5) 微生境、微地形如坡向、坡位和林间隙等对种子重量的影响;6) 全球气候变化和种子重量变化的关系。  相似文献   

13.
Narita  Kenji  Wada  Naoya 《Plant Ecology》1998,135(2):177-184
Reproductive traits of a lignified annual plant, Blepharis sindica were studied in relation to the formation of an 'aerial seed pool' on dead plants in an arid grassland in the Thar Desert of northwestern India. The dead plants remained standing on the soil surface and retained fruits for more than one year. Aerial seed pools developed about 6 cm above the ground. There were no seed pools on or below the ground surface. Only 5.7% of seeds died on dead plants because of insect predation or fungi infection during one year. Seed release was cued by rainfall, and a fraction of seeds on the aerial seed pools was released in each rainfall event. After 13 rainfall events during the monsoon season, 25% of seeds was still retained on the plants. Seed predation on the ground surface was intensive; all cones placed on the soil surface were removed within four days, and 97% of fruits were removed within 10 days. Fifty percent of seeds germinated within 3.5 h, and there were no differences in viability and time required for germination between first year seeds and older seeds. The results indicate that the aerial seed-holding on dead plants is an available way to avoid seed predation in harsh desert environments where seed predation is intense and favorable periods for growth are temporally limited and unpredictable.  相似文献   

14.
High variation in seed size, as is common among angiosperms, may be maintained in a plant species when several factors select for seed size. Variation may also result from differences among adult plants, such as nutrient and water availability or the amount of photosynthetic tissue. In a study of Sabal palmetto seed ecology I found high seed size variation both within- and among-palms, and investigated possible factors maintaining this variation. Seed size was positively correlated with the number of leaves on parent palms. Larger seeds produced more vigorous seedlings that had greater leaf length, area, and mass, and greater root mass. Caryobruchus gleditsiae (Bruchidae: Coleoptera), whose larvae develop within palm seeds, preferentially oviposited on larger seeds, which in turn produced larger beetle offspring. By choosing the largest seeds available, ovipositing beetles thus affect both the quantity and the quality of seeds available for recruitment. I conclude that because beetle predation selects against large seeds, while larger seeds promote seedling vigor, the maintenance of seed size variation may be an adaptation of S. palmetto promoting both seed escape from predators and seedling vigor.  相似文献   

15.
Seedling emergence is a critical stage in the establishment of desert plants. Soil microbes participate in plant growth and development, but information is lacking with regard to the role of microbes on seedling emergence. We applied the biocides (captan and streptomycin) to assess how seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence of Artemisia sphaerocephala on the desert sand dune. Fungal and bacterial community composition and diversity and fungal–bacterial interactions were changed by both captan and streptomycin. Mucilage increased soil enzyme activities and fungal–bacterial interactions. Highest seedling emergence occurred under streptomycin and mucilage treatment. Members of the phyla Firmicutes and Glomeromycota were the keystone species that improved A. sphaerocephala seedling emergence, by increasing resistance of young seedlings to drought and pathogen. Seed mucilage directly improved seedling emergence and indirectly interacted with the soil microbial community through strengthening fungal–bacterial interactions and providing favourable environment for soil enzymes to affect seedling emergence. Our study provides a comprehensive understanding of the regulatory mechanisms by which soil microbial community and seed mucilage interactively promote successful establishment of populations of desert plants on the barren and stressful sand dune.  相似文献   

16.
Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide, decrease their consumption, environmental pollution and costs. This technique in new and there is a few information about it. So after searching and studying about this technique this paper is written to introduce it and its applications in crop protection.  相似文献   

17.
Seed survival in soil could be strongly influenced by habitat characteristics, but little is known about the behaviour of seeds sensitive to desiccation in seed banks installed in natural or disturbed habitats. Cryptocarya aschersoniana seeds disperse at the end of the rainy season but do not germinate immediately; thus, they may form seed banks in soil. This study evaluated the behaviour of C. aschersoniana seed banks induced in the natural environment of the species and in a disturbed area. Recently harvested C. aschersoniana germination units were characterized according to their water content, germination and viability. In 2011 and 2012, seed banks were established by burying samples of seeds in the understory of a semi‐deciduous forest. In 2012, samples were also buried in a disturbed area. The seed banks were sampled at certain time intervals, and the samples were characterized as described above. Precipitation and air temperature data were collected. As a result, seeds in the seed bank established in the natural environment form a transient seed bank and showed the same behaviour in both years studied. A germination peak was observed starting 210 days after burial (coinciding with the onset of the rainy season) and reached germination percentages higher than 80% at the end of the experiment for both years. Seed mortality did not exceeded 28% in the natural environment. However, in the disturbed environment, the seeds lost their viability more rapidly, with 90% of the seeds becoming unviable 240 days after burial. Germinated seeds in the disturbed environment (maximum 21%) were not able to establish seedlings. These results underscore the importance of maintaining a natural, undisturbed forest for the conservation of this species.  相似文献   

18.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   

19.
Seed bank formation plays an important role in plant population dynamics. However, buried seeds face several mortality factors, including the decay caused by microbial activity. Recent seed burial studies involving both fungicide-treated seeds and untreated seeds provide evidence for the importance of saprophytic soil fungi as a seed mortality factor. In this review, we summarize the available evidence. We discuss the influence of abiotic and biotic environmental factors, the specificity of plant-fungal associations at the seed level and mechanisms of resistance to seed decay. Finally, we discuss implications for plant communities and for the biocontrol of agricultural weeds.  相似文献   

20.
Seed enhancement technologies such as seed priming and seed coating, developed by the agricultural seed industry, are standard procedures for the majority of crop and horticultural seeds. However, such technologies are only just being evaluated for native plant seeds despite the potential benefits of such treatments for improving restoration effectiveness. Key approaches applicable to native seed include: (1) seed priming, where seeds are hydrated under controlled conditions, and (2) seed coating, in which external materials and compounds are applied onto seeds through a diversity of treatments. These technologies are commonly employed to accelerate and synchronize germination and to improve seed vigor, seedling emergence, establishment, and to facilitate mechanized seed delivery to site, through standardizing seed size and shape. Seed enhancement technologies have now been tested on native seeds to overcome logistical and ecological barriers in restoration. However, further research is needed to extend the application of seed enhancements to a broader array of species, ecosystems, and regions as well as to evaluate new and innovative approaches such as the incorporation of beneficial soil microorganisms and plant growth regulators in the coatings. As techniques in native seed enhancement develop, these approaches need to be capable of being scaled‐up to provide the tonnages of seed required for global restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号