首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avian predators learn to avoid defended insects on the basis of their conspicuous warning coloration. In many aposematic species, the level of chemical defence varies, with some individuals being more defended than others. Sequestration and production of defence chemicals is often costly and therefore less defended individuals enjoy the benefits of the warning signal without paying the full costs of chemical production. This is a fundamental theoretical problem for the evolutionary stability of aposematism, since less defended individuals appear to be at a selective advantage. However, if predators sample aposematic prey and selectively reject individuals on the basis of their chemical investment, aposematism could become evolutionarily stable. Previous research aimed at testing whether birds can use taste to discriminate between palatable and unpalatable prey has been confounded by other experimental factors. Here, we show that birds can taste and reject prey entirely on the basis of an individual's level of chemical defence and more importantly, they can make decisions on whether or not to consume a defended individual based upon their level of chemical investment. We discuss these results in relation to the evolution of aposematism, mimicry and defence chemistry.  相似文献   

2.
Chemically defended insects advertise their unpalatability to avian predators using conspicuous aposematic coloration that predators learn to avoid. Insects utilize a wide variety of different compounds in their defences, and intraspecific variation in defence chemistry is common. We propose that polymorphisms in insect defence chemicals may be beneficial to insects by increasing survival from avian predators. Birds learn to avoid a colour signal faster when individual prey possesses one of two unpalatable chemicals rather than all prey having the same defence chemical. However, for chemical polymorphisms to evolve within a species, there must be benefits that allow rare chemical morphs to increase in frequency. Using domestic chicks as predators and coloured crumbs for prey, we provide evidence that birds taste and reject proportionally more of the individuals with rare defence chemicals than those with common defence chemicals. This indicates that the way in which birds attack and reject prey could enhance the survival of rare chemical morphs and select for chemical polymorphism in aposematic species. This is the first experiment to demonstrate that predators can directly influence the form taken by prey's chemical defences.  相似文献   

3.
Both theoretical and laboratory research suggests that many prey animals should live in a solitary, dispersed distribution unless they lack repellent defences such as toxins, venoms and stings. Chemically defended prey may, by contrast, benefit substantially from aggregation because spatial localization may cause rapid predator satiation on prey toxins, protecting many individuals from attack. If repellent defences promote aggregation of prey, they also provide opportunities for new social interactions; hence the consequences of defence may be far reaching for the behavioural biology of the animal species. There is an absence of field data to support predictions about the relative costs and benefits of aggregation. We show here for the first time using wild predators that edible, undefended artificial prey do indeed suffer heightened death rates if they are aggregated; whereas chemically defended prey may benefit substantially by grouping. We argue that since many chemical defences are costly to prey, aggregation may be favoured because it makes expensive defences much more effective, and perhaps allows grouped individuals to invest less in chemical defences.  相似文献   

4.
Chemical defence is superficially easy to understand as a means for individuals to protect themselves from enemies. The evolution of chemical defence is however potentially complex because such defences may cause the generation of a public good, protecting members of the population as a whole as well as individuals that deploy toxins defensively. If a public good of protection exists, it may be exploited and degraded by “cheats” that do not invest in defence. This can in turn lead to complex frequency (and density) dependent effects in toxin evolution. To investigate this we used ecologically relevant predators (Great tits, Parus major) and examined how individual and public benefits vary depending on the frequency of non-defended “cheating” prey and their spatial distribution. We found that the public benefit, of reduced attack probability, increased with increasing frequency of defended individuals. In contrast the individual benefit of chemical defence, measured as increased chance of rejection during an attack before injury, did not vary with the frequency of defended forms. Hence the selective dynamics of these two levels of benefits responded differently to the frequency of defended forms. Surprisingly, given the strong associations of chemical defences and grouping in animals, large aggregations did not help individuals in the group regardless of their defence status. The explanation for the result, may be that in our experiment birds did not have information about other potential aggregations (i.e. set up was sequential) and thus their giving up density was lower compared to the situations where set ups were simultaneous. We use behavioural data of our predators to construct a simple model of toxin evolution which can make quantitative predictions about the frequencies to which defence cheats evolve. We use this model to discuss how toxin evolution can be investigated in the wild and in laboratory settings.  相似文献   

5.
Many species defend themselves against enemies using repellent chemicals. An important but unanswered question is why investment in chemical defence is often variable within prey populations. One explanation is that some prey benefit by cheating, paying no costs of defence, but gaining a reduced attack rate because of the presence of defended conspecifics. Two important assumptions about predator behaviour must be met to explain cheating as a stable strategy: first, predators increase attack rates as cheats increase in frequency; second, defended prey survive attacks better than non‐defended conspecifics. We lack data from wild predators that evaluate these hypotheses. Here, we examine how changes in the frequency of non‐defended ‘cheats’ affect predation by wild birds on a group of otherwise defended prey. We presented mealworm larvae that were either edible (‘cheats’) or unpalatable (bitter tasting), and varied the proportion of cheats from 0 to 1 by increments of 0.25. We found strong frequency‐dependent effects on the birds' foraging behaviour, with the proportion of prey attacked increasing nonlinearly with the frequency of cheats. We did not, however, observe that birds taste‐rejected defended prey at the site of capture. One explanation is that wild birds may not assess prey palatability at the site of capture, but do this elsewhere. If so, defended and undefended prey may pay high costs of initial attack and relocation away from ecologically favourable locations. Alternatively, defended prey may not be taste‐rejected because with acute time constraints, wild birds do not have time to make fine‐grained decisions during feeding. We discuss the data in relation to the evolutionary ecology of prey defences.  相似文献   

6.
While theoretical studies predict that inducible defences should be fine-tuned according to the qualities of the predator, very few studies have investigated how dangerousness of predators, i.e. the rate at which predators kill prey individuals, affects the strength of phenotypic responses and resulting benefits and costs of induced defences. We performed a comprehensive study on fitness consequences of predator-induced responses by involving four predators (leech, water scorpion, dragonfly larva and newt), evaluating costs and benefits of responses, testing differences in dangerousness between predators and measuring responses in several life history traits of prey. We raised Rana dalmatina tadpoles in the presence of free-ranging predators, in the presence of caged predators, and exposed naive and experienced tadpoles to free-ranging predators. Tadpoles adjusted the intensities of their behavioural and morphological defences to predator dangerousness. Survival was lower in the nonlethal presence of the most dangerous predator, while we could not detect costs of induced defences at or after metamorphosis. When exposed to free-ranging predators, small, but not large, tadpoles benefited from exhibiting an induced phenotype in terms of elevated survival when compared to naive tadpoles, but we did not observe higher survival either in tadpoles exhibiting more extreme phenotypes or in tadpoles exposed to the type of predator they were raised with. These results indicate that while predator-induced defences can mirror dangerousness of predators, costs and benefits do not necessarily scale to the magnitude of plastic responses.  相似文献   

7.
In this paper we compare foraging strategies that might be used by predators seeking prey in a patchy environment. The strategies differ in the extent to which predators aggregate in response to prey density. The approach to the comparison is suggested by the idea of evolutionarily stable strategies. A strategy is said to be evolutionarily stable if it cannot be invaded by another strategy. Thus we examine scenarios where a small number of individuals using one strategy are introduced into a situation where a large number of individuals using the other strategy are already present. However, our foraging models do not explicitly incorporate predator population dynamics, so we use net energy uptake as a surrogate for reproductive fitness. In cases where all of the patches visited by predators sustain prey populations, we find that for any pair of strategies one of them will have a higher net energy uptake than the other whether it is the resident or the introduced strain. However, which one is higher will typically depend on the total predator population, which is determined by the resident strain. If the predators leave prey densities high, the more aggregative strain will have the advantage. If the predators reduce prey densities to low levels the less aggregative strain will have the advantage. In cases where one strain of predators aggregates in response to prey density and the other does not, then there might be patches which do not contain prey but do contain (non-aggregating) predators. In those cases, there is the possibility that whichever strategy is used by the introduced strain will yield a higher energy uptake than that used by the resident strain. This suggests that if some patches are empty of prey then aggregative and non-aggregative strategies may be able to coexist.  相似文献   

8.
Evolution of costly secondary defences for a cryptic prey is puzzling, if the prey is already well protected by camouflage. However, if the chemical defence is not sufficient to deter all predators, selection can favour low signal intensity in defended prey. Alternatively, if the costs of chemical defence are low or cost-free, chemical defences can be expected to evolve also for non-signalling prey, particularly if conspicuous signalling is costly. We tested these assumptions with pine sawfly larvae (Neodiprion sertifer and Diprion pini) that are cryptically coloured and chemically defended with resin acids sequestered from their host plant (Pinus sp.). Larvae feed in large aggregations, which we hypothesise could function as a signal of unprofitability. Our results show that even though the birds found N. sertifer larvae unprofitable in the controlled laboratory assays, they continued attacking and consuming them in the wild. When we tested the signal value of aggregation we found that a large group size did not offer protection for a defended larva: the survival was higher in groups of 10 individuals compared to groups of 50, suggesting increased detectability costs for individuals in larger groups. Finally, we tested how costly the production and maintenance of a chemical defence is for D. pini larvae by manipulating the resin acid content of the diet. We did not find any life history or immunological costs of the chemical defence for the larvae. In contrast, pupal weights were higher on the high resin diet than on the low resin diet. Also, larvae were able to produce higher amounts of defence fluids on the high diet than on the low diet. Thus, our result suggests high detectability costs and low production costs of defences could explain why some unprofitable species have not evolved conspicuous signals.  相似文献   

9.
Aposematic signals often allow chemically defended prey to avoid attack from generalist predators, including jumping spiders. However, not all individual predators in a population behave in the same way. Here, in laboratory trials, we document that most individual Phidippus regius jumping spiders attack and reject chemically defended milkweed bugs (Oncopeltus fasciatus), immediately releasing them unharmed. However, a small number of individuals within the population kill and completely consume these presumably toxic prey items. This phenomenon was infrequent with only 14% of our sample (17/122) consuming the milkweed bugs over the course of the study. Individuals that killed and consumed bugs often did so repeatedly; specifically, individuals that consumed a bug in their first test were more likely to kill a bug in their second test and also tended to consume them again. We explored what might drive some (but not all) individuals to consume these bugs and found that neither sex, sexual maturity, body size, laboratory housing type, nor being wild-caught or being laboratory-reared, predicted milkweed bug consumption. Consuming bugs had no negative effects on spider mass or body condition; contrary to expectations, individuals that consumed milkweed bugs actually gained more body mass and increased in body condition. We discuss potential behavioural and physiological variation between individuals that may drive these rare behaviours and the implications for the evolution of prey defences.  相似文献   

10.
We consider the neglected question of how secondary defences of prey animals evolve if they are discontinuous in nature, being either present or absent, or expressible over a limited number of levels. We present a novel computer model that evaluates the conditions in which defended mutant prey may (1) fail to rise above nontrivial levels within a population, (2) reach values close to fixation, or (3) find some evolutionarily stable strategy (ESS) frequency between these two situations. Undefended prey that coexist with defended conspecifics are known as automimics. One finding is that automimicry can be an ESS over a range of conditions, but especially when prey are relatively cryptic and secondary defences are very effective at deterring predation. Evolutionarily stable automimicry emerges from the interplay between the direct benefits of costly defences in surviving individual attacks by predators and frequency-dependent benefits conferred on all prey, from a reduction in the rate of attack on all identical-looking prey. When, in contrast, secondary defences have continuous variation, the result is effectively a monomorphic state of defence across the population. Thus the degree and kind of variation that a defence takes has a profound effect on its initial evolution. We discuss the interesting possibility that mixed ESSs may help explain some examples of variation in prey secondary defences.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 393–402.  相似文献   

11.
Abrusán G 《Oecologia》2003,134(2):278-283
The responses of invertebrate predators to changes in the morphology of their prey, and especially the responses for induced defences, are largely unexplored, compared with the vast amount of data on predator-induced defences. This study demonstrates that the size of the feeding basket, the anatomical structure used to capture prey by the predaceous freshwater cladoceran Leptodora kindtii, shows significant allometric changes with the average body size of the prey (herbivorous cladocerans) in six lakes of northeastern Poland. Prey density influences the basket size only in adult Leptodora individuals, whereas induced defences such as helmets of Daphniasp. seem to have no effect on Leptodora's morphology. In a feeding experiment it is shown that the increase in the feeding basket enables Leptodora to capture larger prey. The seasonal pattern of morphological change, and its measurable benefit suggest that the observed morphological variability of Leptodora is phenotypic plasticity.  相似文献   

12.
John L. Quinn  Will Cresswell 《Oikos》2012,121(8):1328-1334
Theory and empirical evidence suggest that predator activity makes prey more wary and less vulnerable to predation. However if at least some prey in the population are energetically or spatially constrained, then predators may eventually increase local prey vulnerability because of the cumulative costs of anti‐predation behaviour. We tested whether repeated attacks by a predator might increase prey vulnerability in a system where redshanks on a saltmarsh are attacked regularly by sparrowhawks from adjacent woodland. Cumulative attack number led to a reduction in redshank numbers and flock size (but had no effect on how close redshanks fed to predator‐concealing cover) because some redshanks moved to safer but less profitable habitats, leaving smaller flocks on the saltmarsh. This effect held even though numbers of redshank on the saltmarsh increased with time of day. As a result of the change in flock size, predicted attack‐success increased up to 1.6‐fold for the sparrowhawk, while individual risk of capture for the redshank increased up to 4.5‐fold among those individuals remaining on the saltmarsh. The effect did not arise simply because hawks were more likely to attack smaller flocks because attack rate was not dependent on flock size or abundance. Our data demonstrate that when some individual prey are constrained in their ability to feed on alternative, safer foraging sites, their vulnerability to predation increases as predator attacks accumulate, although those, presumably better quality individuals that leave the immediate risky area will have lower vulnerability, so that the mean vulnerability across the entire population may not have changed substantially. This suggests that the selective benefits of multiple low‐cost attacks by predators on prey could potentially lead to 1) locally heightened trait‐mediated interactions, 2) locally reduced interference among competing predators, and 3) the evolution of active prey manipulation by predators.  相似文献   

13.
This paper considers the evolution of phenotypic traits in a community comprising the populations of predators and prey subject to Allee effect. The evolutionary model is constructed from a deterministic approximation of the stochastic process of mutation and selection. Firstly, we investigate the ecological and evolutionary conditions that allow for continuously stable strategy and evolutionary branching. We find that the strong Allee effect of prey facilitates the formation of continuously stable strategy in the case that prey population undergoes evolutionary branching if the Allee effect of prey is not strong enough. Secondly, we show that evolutionary suicide is impossible for prey population when the intraspecific competition of prey is symmetric about the origin. However, evolutionary suicide can occur deterministically on prey population if prey individuals undergo strong asymmetric competition and are subject to Allee effect. Thirdly, we show that the evolutionary model with symmetric interactions admits a stable limit cycle if the Allee effect of prey is weak. Evolutionary cycle is a likely outcome of the process, which depends on the strength of Allee effect and the mutation rates of predators and prey.  相似文献   

14.
It is common for species that possess toxins or other defences to advertise these defences to potential predators using aposematic ("warning") signals. There is increasing evidence that within such species, there are individuals that have reduced or non-existent levels of defence but still signal. This phenomenon (generally called automimicry) has been a challenge to evolutionary biologists because of the need to explain why undefended automimics do not gain such as a fitness advantage by saving the physiological costs of defence that they increase in prevalence within the population, hence making the aposematic signal unreliable. The leading theory is that aposematic signals do not stop all predatory attacks but rather encourage predators to attack cautiously until they have identified the defence level of a specific individual. They can then reject defended individuals and consume the undefended. This theory has recently received strong empirical support, demonstrating that high-accuracy discrimination appears possible. However, this raises a new evolutionary problem: if predators can perfectly discriminate the defended from the undefended and preferentially consume the latter, then how can automimicry persist? Here, we present four different mechanisms that can allow non-trivial levels of automimics to be retained within a population, even in the extreme case where predators can differentiate defended from undefended individuals with 100% accuracy. These involve opportunity costs to the predator of sampling carefully, temporal fluctuation in predation pressure, predation pressure being correlated with the prevalence of automimicry, or developmental or evolutionary constraints on the availability of defence. These mechanisms generate predictions as to the conditions where we would expect aposematically signalling populations to feature automimicry and those where we would not.  相似文献   

15.
为研究轮虫通过母体效应诱导能否产生行为响应, 以萼花臂尾轮虫(Brachionus calyciflorus)为例, 研究其反捕食漂浮行为响应的母体效应。通过控制轮虫母体在捕食者诱导液中的暴露时间及带卵状态, 收集母体产生的后代, 再将这些后代再次用捕食者诱导液处理, 观察后代的漂浮行为及形态特征。研究发现: 暴露于捕食者诱导液诱导较长时间的母体产生的后代个体, 当再次暴露于捕食者诱导液时, 其产生的行为响应强于没有母体暴露经历的后代; 母体暴露时间越长, 后代形态和行为响应均更加强烈。研究显示萼花臂尾轮虫可通过母体效应产生漂浮行为响应。  相似文献   

16.
Avian predators readily learn to associate the warning coloration of aposematic prey with the toxic effects of ingesting them, but they do not necessarily exclude aposematic prey from their diets. By eating aposematic prey ‘educated’ predators are thought to be trading-off the benefits of gaining nutrients with the costs of eating toxins. However, while we know that the toxin content of aposematic prey affects the foraging decisions made by avian predators, the extent to which the nutritional content of toxic prey affects predators'' decisions to eat them remains to be tested. Here, we show that European starlings (Sturnus vulgaris) increase their intake of a toxic prey type when the nutritional content is artificially increased, and decrease their intake when nutritional enrichment is ceased. This clearly demonstrates that birds can detect the nutritional content of toxic prey by post-ingestive feedback, and use this information in their foraging decisions, raising new perspectives on the evolution of prey defences. Nutritional differences between individuals could result in equally toxic prey being unequally predated, and might explain why some species undergo ontogenetic shifts in defence strategies. Furthermore, the nutritional value of prey will likely have a significant impact on the evolutionary dynamics of mimicry systems.  相似文献   

17.
Warning signals are a striking example of natural selection present in almost every ecological community – from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. Here, we explore factors likely to determine the prevalence of warning signals in prey assemblages. These factors include the nature of prey defences and any constraints upon them, the behavioural interactions of predators with different prey defences, the numerical responses of predators governed by movement and reproduction, the diversity and abundance of undefended alternative prey and Batesian mimics in the community, and variability in other ecological circumstances. We also discuss the macroevolution of warning signals. Our review finds that we have a basic understanding of how many species in some taxonomic groups have warning signals, but very little information on the interrelationships among population abundances across prey communities, the diversity of signal phenotypes, and prey defences. We also have detailed knowledge of how a few generalist predator species forage in artificial laboratory environments, but we know much less about how predators forage in complex natural communities with variable prey defences. We describe how empirical work to address each of these knowledge gaps can test specific hypotheses for why warning signals exhibit their particular patterns of distribution. This will help us to understand how behavioural interactions shape ecological communities.  相似文献   

18.
Chemical defences against predation often involve responses to specific predation events where the prey expels fluids, such as haemolymph or gut contents, which are aversive to the predator. The common link is that each predation attempt that is averted results in an energetic cost and a reduction in the chemical defences of the prey, which might leave the prey vulnerable if the next predation attempt occurs soon afterwards. Since prey appear to be able to control the magnitude of their responses, we should expect them to trade-off the need to repel the current threat against the need to preserve defences against future threats and conserve energy for other essential activities. Here we use dynamic state-dependent models to predict optimal strategies of defence deployment in the juvenile stage of an animal that has to survive to maturation. We explore the importance of resource level, predator density, and the costs of making defences on the magnitude of the responses and optimal age and size at maturation. We predict the patterns of investment and the magnitude of the deployment of defences to potentially multiple attacks over the juvenile period, and show that responses should be smaller when the costs of defences and/or predation risk are higher. The model enables us to predict that animals in which defences benefit the adult stage will employ different strategies than those that do not use the same defences as adults, and thereby experience a smaller reduction in body size as a result of repeated attacks. We also explore the effect of the importance of adult size, and find that the sex and mating system of the prey should also affect defensive strategies. Our work provides the first predictive theory of the adaptive use of responsive defences across taxa.  相似文献   

19.
Introduced predators can have profound impacts on prey populations, with subsequent ramifications throughout entire ecosystems. However, studies of predator–prey interaction strengths in community and food-web analyses focus on adults or use average body sizes. This ignores ontogenetic changes, or lack thereof, in predatory capabilities over the life-histories of predators. Additionally, large individual predators might not be physically capable of consuming very small prey individuals. Both situations are important to resolve, as native prey may or may not therefore experience ontogenetic or size refuges from invasive predators. Here, we find that the freshwater amphipod invader, Gammarus pulex, is predatory throughout its development from juvenile through to adult. All size classes collected in the field had a common prey, nymphs of the mayfly Baetis rhodani, in their guts. In an experiment with predator, prey and experimental arenas scaled for body size, G. pulex juveniles and adults consumed B. rhodani in all size-matched categories. In a second experiment, the largest G. pulex individuals were able to prey on the smallest B. rhodani. Thus, the prey do not benefit from any ontogenetic or size refuge from the predator. This corroborates with the known negative population abundance relationships between this invasive predator and its native prey species. Understanding and predicting invasive predator impacts will be best served when interactions among all life-history stages of predator and prey are considered.  相似文献   

20.
A number of foraging studies have demonstrated that populations of predators rarely consist of individuals with identical preferences for particular types of prey. Variation among predators can lead to frequency-dependent changes in population preference, because those predators mat prefer the rarer type of prey generally have the greatest influence on population preference. In this study we develop a series of theoretical models which demonstrate how anti-apostatic selection (i.e. selection against the rare form) can arise out of (a) bimodal and (b) normal variation in preference among individuals of the same species. We show that population level anti-apostatic selection can occur even when individual predators show pro-apostatic selection (i.e. selection against the common form). Furthermore, patterns of population prey selection that arise out of variation in preference can potentially be pro-apostatic over one range of relative densities and anti-apostatic over another range of relative densities. Finally, we examine a case study involving predation by female waterboatmen Notonecta glauca and show that the variation in preference in this species is large enough to generate higher anti-apostatic selection than would be expected from the diet selected by the average individual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号